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a b s t r a c t

IFNb innate immune plays an essential role in antiviral immune. Previous reports suggested that many
important regulatory proteins in innate immune pathway may be modified by ubiquitin and that many
de-ubiquitination (DUB) proteins may affect immunity. Monocyte chemotactic protein-inducing protein
1 (MCPIP1), one of the CCCH Zn finger-containing proteins, was reported to have DUB function, but its
effect on IFNb innate immune was not fully understood. In this study, we uncovered a novel mechanism
that may explain how MCPIP1 efficiently inhibits IFNb innate immune. It was found that MCPIP1
negatively regulates the IFNb expression activated by RIG-I, STING, TBK1, IRF3. Furthermore, MCPIP1
inhibits the nuclear translocation of IRF3 upon stimulation with virus, which plays a key role in type I IFN
expression. Additionally, MCPIP1 interacts with important modulators of IFNb expression pathway
including IPS1, TRAF3, TBK1 and IKKε. Meanwhile, the interaction between the components in TRAF3-
TBK1-IKKε complex was disrupted by MCPIP1. These results collectively suggest MCPIP1 as an innate
immune regulator encoded by the host and point to a newmechanism through which MCPIP1 negatively
regulates IRF3 activation and type I IFNb expression.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

The innate immune system stands the first line of the defense
that protects the host from viral intrusion, depending on pattern
recognition receptors (PRRs) and the corresponding pathways
[1e4]. The pathogen-associated molecular patterns (PAMPs) of the
invading viruses may be recognized by PRRs. Then, the adaptor
proteins (TRIF forTLR3, MyD88 for TLR7/8/9, MAVS/IPS-1 for RIG-I)
would be recruited, and the infecting signals would be transmitted
to the downstream kinase complexes, followed by the activation of
transcription factors, such as interferon regulatoryfactor-3 (IRF-3),
nuclear factor kB (NF-kB) and ATF-2/c-jun [2,5e7]. Upon activated,
the transcription factors may regulate the expression of type I In-
terferons which induce the expression of IFN-stimulated genes
(ISGs) and ultimately establish the antiviral function of the host
[4,8e10].
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Many important regulatory proteins in innate immune path-
ways may be modified by ubiquitin [11e13]. On the other hand,
Many de-ubiquitination (DUB) proteins may affect immunity. We
have found that the papain-like proteases (PLPs) encoded by
coronavirus (CoV) reduce the ubiquitinated modification of essen-
tial regulatory molecules of IFN innate immune pathway, such as
RIG-1, MAVS, STING, TRAF3, TBK1 and IRF3. Additionally, CoV PLPs
negatively regulate IFN expression of the host, acting as both
deubiquitinases and IFN antagonists [14e16].

The C-terminal phosphorylation and activation of IRF3 requires
noncanonical IkB kinases, TBK1 or IKK, which form signaling
complexes with TRAF family members that transmit upstream
signals to downstream effectors resulting in the expression of type I
IFN. Previous studies suggest that TRAF family members are
involved in the regulation of antiviral immune responses [17e20].
We have reported that SARS-CoV PLP blocks the ubiquitination of
STING-TRAF3-TBK1 complex and disrupts STING-TRAF3-TBK1
complex [21].

MCPIP1 (monocyte chemotactic protein-induced protein 1), a
negative regulator of macrophage activation, was also found to
negatively regulate JNK and NF-kB activity by removing ubiquitin
moieties from proteins including TRAFs [22]. In this study, we
observed that MCPIP1 inhibits the IFNb expression activated by
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RIG-I, STING, TBK1, IRF3. Additionally, MCPIP1 inhibits the nuclear
migration of IRF3. Furthermore, MCPIP1 interacts with TRAF3 and
disrupts TRAF3-TBK1-IKKε complex which is essential for the
activation of IFNb production pathway. This report suggests that
MCPIP1 may act as an IFN antagonist antiviral protein encoded by
the host and uncovers the mechanism undergoes by MCPIP1 to
inhibit IFNb innate immune pathway.

2. Materials and methods

2.1. Cell and plasmids

HEK293T and HeLa cells were cultured in Dulbecco's modified
Eagle's medium containing 10% (v/v) FCS supplemented with
penicillin (100 U/ml) and streptomycin (100mg/ml).

The plasmid expressing V5-MCPIP1 was cloned according to
NCBI Reference SequenceNM_025079.2. The reporter plasmids
IFNb-Luc, PRD (III-I)4-Luc, NF-kB-Luc, and plasmids NL63-PLP2-TM,
Myc-IRF3, Flag-IRF3, Flag-IRF7, Flag-IPS-1, Flag-STING, Flag-TBK1,
Flag-IKKε, Flag-RIG-IN, A20, HA-TRAF3 were described previously
[14,21,23,24].

2.2. SiRNA preparation

MCPIP1-target siRNA sequence (50-CCAGCGUGUAUA-
CUAAGCUTT-30) were designed and chemically synthesized by
Genescript Co. A siRNA with the sequence of 50-
Fig. 1. MCPIP1 inhibits the expression of IFNb in cells. a HEK293T cells were co-transfecte
(positive control). Twenty-four hours later, cells were harvested and subjected to a Dual-
MCPIP1 or NL63 PLP2-TM expressing plasmids (positive control). Twenty-four hours later,
transfected with the plasmids which expressing NF-kB -Luc and either MCPIP1 or A20 (po
luciferase assay. d HEK293T cells were respectively co-transfected with the plasmids whi
described in the text) was used as control. Twenty-four hours later, cells were harvested an
Western-blotting assay. The results were expressed as mean relative luciferase (firefly luc
representative experiment carried out in triplicate. Data were presented as mean ± SEM, n
UUCUCCGAACGUGUCACGU-30 was selected as the negative control
siRNA (NC-siRNA) as described previously [25,26].

2.3. Luciferase reporter gene assay

HEK293T cells were transfected with the indicated stimulator
plasmid DNA (Flag-IPS-1, Flag-STING, Flag-TBK1, Flag-IKKε, Flag-
RIG-IN), reporter plasmid DNA (pRL-TK, IFNb-Luc, or PRD (III-I)4-
Luc) and either V5-MCPIP1 or NL63PLP2-TM/A20 using Lipofect-
amine 2000 (Invitrogene) according to the manufacturer's protocol
and incubated for 24 h. Then, firefly luciferase and renilla luciferase
activities were assayed using the Dual Luciferase Reporter Assay Kit
(Promega). Data were shown as mean relative luciferase (firefly
luciferase activity divided by Renilla luciferase activity) with stan-
dard deviation from a representative experiment carried out in
triplicate. The luciferase assay was performed as described previ-
ously [14,15].

2.4. Immunofluorescence assay

HEK293T or Hela cells were grown to confluence in a six-well
plate. Plasmid DNA expressing V5-MCPIP1 and Flag-IRF3 (1.2 mg
per well) were transfected. Twenty-four hours later, the cells were
infected or mock-infected by SeV (100 HAU) and incubated for 18 h.
Fluorescence was examined by using a confocal microscope.
Immunoflurescence assay was performed as described previously
[15].
d with the plasmids which expressing IFNb-Luc and either MCPIP1 or NL63 PLP2-TM
luciferase assay. b HEK293T cells were transfected with PRD (III-I) 4-Luc and either
cells were harvested and subjected to a Dual-luciferase assay. c HEK293T cells were

sitive control). Twenty-four hours later, cells were harvested and subjected to a Dual-
ch expressing IFNb-Luc and MCPIP1-siRNA (25, 50, 100 nmol/L). Nc-siRNA (sequence
d subjected to Dual-luciferase assay. The expression of MCMIP1 was also detected by
iferase activity divided by Renilla luciferase activity) with standard deviation from a
¼ 3. *p< 0.05.
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2.5. Co-immuno-precipitation (Co-IP) analysis

HEK293T cells were seeded in 100-mm dishes at a density
of1� 106 cells/dish. Twelve hours later, cells were transiently
transfected with a total of 10 mg of empty vector or indicated
expression plasmids using Lipofectamine 2000 (Invitrogen). At 48 h
post transfection, cells were lysed in a buffer containing 0.5%
TritonX-100, 150mmol/L NaCl, 12.5mmol/L b-glycerolphosphate,
1.5mmol/L MgCl2, 2mmol/L EDTA, 10mmol/L NaF, 1 mmol/
LNa3VO4, 2mmol/L DTTand protease inhibitor cocktail (Sigma). Cell
extracts were clarified by centrifugation at5000� g at 4 �C for
10 min, and protein concentration of lysatedetermined using BCA
Protein Assay kit (Bio-med). The protein concentrations in cell ly-
sates were adjusted to 1 mg/mL, and 500 mL of each lysate wasused
for co-IP. Lysates were pre-cleared by adding 20 mL of proteinA þ G
Agarose (Beyotime) and 1 mg of normal IgGand incubating for 2 h at
4 �C, followed by spinning down the agarosebeads. The pre-cleared
supernatant was then incubated with theindicated primary anti-
body [anti-V5 (MBL) or anti-HA (MBL)/anti-Myc (MBL)/anti-Flag
(MBL)] with rocking overnight at 4 �C. Thereafter, the beads-
antibody-antigen complex was pelleted and washed 3 times with
1 mL of lysis buffer. The protein complexes were then eluted from
the beads in 30 mL of2 � SDS-PAGE sample buffer by boiling for
10 min. Samples were separated on SDS-PAGE and transferred to
PVDF membranes for Western-blotting. Co-IP assay was performed
as described previously [14,27].
Fig. 2. MCPIP1 negatively regulates the IFNb expression activated by RIG-I, STING, TBK1,
and IFNb-Luc. RIG-IN, STING, TBK1, IRF3, IFN7, IPS-1 or IKKε was co-transfected to activate IF
to a Dual-luciferase assay. Data were presented as mean ± SEM, n ¼ 3. *p< 0.05. b HEK293T
RIG-I, STING, IPS-1, TRAF3, TBK1 or IKKε. Twenty-four hours later, the cells were harvested
3. Results

3.1. MCPIP1 is an IFNb antagonist

According to the previous reports, MCPIP1 showed DUB activity
targeting to TRAFs [22]. Our previous work demonstrated that
several proteins encoded by viral, such as NL63 PLP2, PEDV PLP2,
SARS PLpro, and MERS PLpro, showed DUB activity and negatively
regulate IFN immune-response [14e16,21].

In order to further investigate the effect of MCPIP1 on IFNb
expression, HEK 293Tcells were co-transfectedwith IFNb-Luc, pRL-
TK reporter plasmids and MCPIP1 expression conduct. Twenty four
hours later, cell lysates were prepared and IFNb promoter-driven
luciferase activity was assessed. As shown in Fig. 1, it was
observed that MCPIP1 inhibits RIG-I activated IFNb expression
(Fig. 1A). Moreover, the SeV stimulated IFNb expression pathway
depending on IRF3 and NF-kB was also negatively-regulated by
MCPIP1 (Fig. 1B and C). Meaning while, this negative effect of
MCPIP1 could no longer be detected when its expression was
silenced by MCPIP1 targeting siRNA in our experiments (Fig. 1D).
These results suggest that MCPIP1 may be an IFNb antagonist.
3.2. MCPIP1 antagonizes RIG-I/STING/TBK1/IRF3/IRF7 mediated
IFNb expression

We have previously discovered that human coronavirus (NL63
and SARS) encoding anti-viral protein PLPs, which negatively
IRF3. a HEK293T cells were co-transfected with the plasmids which expressing MCPIP1
N expression pathway. Twenty-four hours later, the cells were harvested and subjected
cells were respectively co-transfected with the plasmids which expressing MCPIP1 and
and Co-IP detection was assayed.
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regulate innate antiviral immune response by disrupting STING-
mediated IFN induction [14,21]. Based on these findings, we hy-
pothesized that MCPIP1 inhibits the IFN expression pathway
through a similar mechanism. To test this hypothesis, we assessed
IFNb promoter activity level stimulated by several adaptor proteins,
i.e. RIG-I, IPS-1, STING, TBK1, IKKε, IRF3 and IRF7, in the presence of
MCPIP1. The results in Fig. 2 showed that RIG-I, STING, TBK1, IRF3
and IRF7mediated IFNb expression were significantly antagonized
byMCPIP1 IFNb expression (Fig. 2A). Moreover, Co-IP assay showed
that MCPIP1 may interact with IPS-1, TFAF3, TBK1 and IKKε
(Fig. 2B). These findings suggested the probable negatively regu-
lating sites of MCPIP1 on IFNb expression pathway.
3.3. MCPIP1 inhibits the nuclear translocation of IRF3

IFNb transcription requires the activation of transcription fac-
tors NF-kB and IRF3 resulting in their subsequent binding to the
IFNb promoter [8,28,29]. To investigate the mechanisms used by
MCPIP1 to inhibit antiviral IFNb expression, the transcriptional
activity of NF-kB and IRF3 was analyzed using the luciferase re-
porter gene detection and Co-IP assay. Luciferase reporter gene
detection showed that IRF3-dependent IFNb activation was signif-
icantly inhibited by MCPIP1 (Fig. 1B). It was uncovered by Co-IP
detection that cellular MCPIP1 interacts with IRF3 upon SeV
infection (Fig. 3A). Furthermore, to determine whether MCPIP1
prevents IRF3 migration from the cytoplasm to the nucleus,
HEK293T cells and Hela cells infected by SeV were transiently
transfected with MCPIP1 and IRF3 expression constructs and the
Fig. 3. MCPIP1 inhibits the nuclear translocation of IRF3. a HEK293T cells were co-trans
cells were infected with SeV (100 HAU) for another 18 h. Then cells were harvested and d
plasmids which expressing MCPIP1 and IRF3. Twenty-four hours later, cells were infecte
immunofluorescence assay.
subcellular localization of the protein was analyzed using confocal
microscopy. As shown in Fig. 3B, we observed that IRF3 was acti-
vated by SeV infection and migrated from the cytoplasm to the
nucleus. Moreover, when MCPIP1 was co-transfected, the nuclear
translocation of IRF3 was prevented.
3.4. MCPIP1 disrupts TRAF3-TBK1-IKKε complex

We have previously found that virus-encoded DUB proteins,
such as SARS-CoV PLpro-TM, may disrupt STING-TRAF3-TBK1
complex and inhibit IFNb expression [27]. In this research, we
detected the effect of MCPIP1 on TRAF3 complex. It was observed
that interaction of TRAF3 with TBK1 was disrupted in the presence
of MCPIP1 (Fig. 4A, lane 4). In agreement with this, luciferase ac-
tivity assay showed that the IFNb expression activated by TRAF3
and TBK1 were inhibited by MCPIP1 (Fig. 4B). Meaning while, the
interaction of TRAF3 with IKKε, as well as the subsequent IFNb
expression, was not disrupted by MCPIP1 (Fig. 4C and D). These
results suggest that MCPIP1 may negatively regulating IFNb
expression through disruption of TRAF complex.
4. Discussions

MCPIP1 was identified as a regulator of immunity and nega-
tively regulated JNK and NF-kB activity by removing ubiquitin
moieties from TRAFs [22]. However, the mechanisms underwent by
MCPIP1 to control immunity have not been deeply understood. In
this study, we uncovered a novel mechanism operated by MCPIP1
fected with the plasmids which expressing MCPIP1 and IRF3. Twenty-four hours later,
etected by Co-IP assay. b HEK293T cells and Hela cells were co-transfected with the
d with SeV (100 HAU) for another 18 h. Then cells were harvested and detected by



Fig. 4. MCPIP1 disrupts TRAF3-TBK1-IKKε interaction. a, b HEK293T cells were respectively co-transfected with the plasmids which expressing MCPIP1, IFNb-Luc, TRAF3 and
TBK1. Twenty-four hours later, the cells were harvested and subjected to Co-IP (a) or Dual-luciferase (b) assay. c, d HEK293T cells were respectively co-transfected with the plasmids
which expressing MCPIP1, IFNb-Luc, TRAF3 and IKKε. Twenty-four hours later, the cells were harvested and subjected to Co-IP (c) or Dual-luciferase (d) assay. Data were presented
as mean ± SEM, n ¼ 3. *p < 0.05.
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to negatively regulate IFNbinnate immune. We showed that (1)
MCPIP1 inhibits NF-kB activity and IFNb expression pathway acti-
vated by RIG-I, STING, TBK1 and IRF3 in a dose-dependent manner.
(2) MCPIP1 interacts with IRF3 and inhibits the nuclear trans-
location of IRF3 upon stimulation with virus. (3) MCPIP1 interacts
with the key modulators of IFNb expression pathway including
IPS1, TRAF3, TBK1 and IKKε. (4) MCPIP1 disrupts the interaction
between the components of TRAF3-TBK1-IKKε complex and in-
hibits the corresponding IFNb expression. These results collectively
suggest a potent mechanism through which MCPIP1 negatively
regulates IRF3 activation and IFNb expression.

MCPIP1, also known as ZC3H12A, was identified in human pe-
ripheral blood monocytes treated with MCP-1 [30,31]. Several
research groups have found that MCPIP1 is an immune response
modifier, however, the novel mechanism remain not fully under-
stood [32e36]. MCPIP1 protein curtains a CCCH Zn finger domain,
which is thought as one of the characteristic structure of antiviral
protein [37]. Matsushita et al. reported that MCPIP1 has RNase
activity and may control immune response through regulating in-
flammatory mRNA decay [38].

There is a functional ubiquitin association (UBA) domain at the
N terminus of MCPIP1. Liang et al. have discovered thatMCPIP1may
be a deubiquitinase and defined a novel DUB domain of MCPIP1
[22]. Ubiquitin and deubiquitin modification emerge as the key
mechanisms that regulate the virus-induced type I IFN signaling
pathways [39e42]. Several cellular DUB proteins play important
roles in negative regulation of host innate immunity. We previously
found that several CoV encoded proteins also negatively regulate
IFNb expression of the host through DUB activity [15,16,21]. Based
on these, we hypothesis that MCPIP1 may also inhibits IFNb innate
immune in cells. The results in this study that MCPIP1 inhibits NF-
kB activity and IFNb expression pathway activated by RIG-I, STING,
TBK1 and IRF3 in a dose-dependent manner yielded evidence for
our hypothesis.

Innate immune defense mechanism characterized by produc-
tion of type I interferons was launched by the host upon infection.
This innate antiviral response is initiated when viral PAMPs were
detected by the host via a number of cellular PRRs, such as the
membrane bound Toll-like receptors (TLRs), retinoic acid inducible
gene I (RIG-I), or melanoma differentiation-associated gene 5
(MDA5) [1e3]. These PRRs would recruit different adaptor mole-
cules upon engagement of their respective ligands, submitting
signals to downstream kinases that activate IRF3, NF-kB and other
transcription factors that coordinately regulate IFNb transcription
[2,7]. IRF3 is a constitutively expressed, latent transcription factor
that plays a pivotal role in type I IFN responses. The activation of
IRF3 requires specific C-terminal phosphorylation. IRF3 may be
activated upon phosphorylation mediated by TBK1 and IKKε, which
leads to its homodimerization, nuclear translocation, and collabo-
ration with activated NF-kB to induce IFNb synthesis [43e45].

IFNb innate antiviral response may be regulated by the host, as
well as the viruses. We have previously reported that PLP and
3CLpro encoded by CoVs negatively regulate IFNb expression of the
host [14,16]. In this study, we observed thatMCPIP1 inhibited NF-kB
activity and IFNb expression pathway activated by RIG-I, STING,
TBK1 and IRF3 in the host cells. Furthermore, the formation of
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TRAF3-TBK1-IKKε complex is an essential step in the activation of
IRF3 [46]. In this study, we found that when MCPIP1 was co-
expressed in the cell, the interaction between TRAF3 and TBK1
was significantly disrupted, suggesting the TRAF3-TBK1-IKKε
complex and the submitting signals to downstream kinases were
blocked. Upon stimulation with virus, IRF3 migrated towards the
nuclear. However, the nuclear translocation of IRF3 induced by viral
was inhibited when co-expressed with MCPIP1. Taking our previ-
ously foundation together with the report by Liang et al. [21,22], we
think that the DUB activation of MCPIP1 plays important role in its
negatively regulation of IFN expression pathway, which is similar to
A20 [12,47e49].

In summary, the results in this study uncovered a novel mech-
anism used by MCPIP1 to negatively regulated type I IFN antiviral
defense. These findingsmay provide plentiful evidences whichmay
be helpful to deeply understand the working mechanism employed
by the antiviral proteins to control innate immune regulation.
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