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Abstract
Synaptic activity can trigger gene expression programs that are required for
the stable change of neuronal properties, a process that is essential for
learning and memory. Currently, it is still unclear how the stimulation of
dendritic synapses can be coupled to transcription in the nucleus in a timely
way given that large distances can separate these two cellular compartments.
Although several mechanisms have been proposed to explain long distance
communication between synapses and the nucleus, the possible co-existence
of these models and their relevance in physiological conditions remain elusive.
One model suggests that synaptic activation triggers the translocation to the
nucleus of certain transcription regulators localised at postsynaptic sites that
function as synapto-nuclear messengers. Alternatively, it has been
hypothesised that synaptic activity initiates propagating regenerative
intracellular calcium waves that spread through dendrites into the nucleus
where nuclear transcription machinery is thereby regulated. It has also been
postulated that membrane depolarisation of voltage-gated calcium channels
on the somatic membrane is sufficient to increase intracellular calcium
concentration and activate transcription without the need for transported
signals from distant synapses. Here I provide a critical overview of the
suggested mechanisms for coupling synaptic stimulation to transcription, the
underlying assumptions behind them and their plausible physiological
significance.
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Introduction
Among the hundreds of distinct cell types that make up our bodies, 
neurons are the most morphologically complex, and also one of 
the most dynamic in their responsiveness and adaptability. Neurons 
contain structural specialisations, which allow the rapid processing 
and transmission of the thousands of synaptic inputs that they simul-
taneously receive. The vast majority of excitatory synapses involv-
ing the neurotransmitter glutamate are made into dendrites, which 
are extensions of the plasma membrane that can span hundreds of 
microns and cover broad fields in the tissue1. Release of glutamate 
into the synaptic cleft induces transient postsynaptic electrical 
and biochemical responses, which can eventually promote stable 
changes in the properties of the neuron2. At an excitatory synapse, 
glutamate acts on both metabotropic (mGluRs) and the ionotropic 
N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors3,4. mGluRs are  
G-protein coupled receptors (GPCRs) that are linked to heterotrim-
eric G proteins on the intracellular side of the membrane. Activation 
of mGluRs by glutamate modulates the activity of various signal 
transduction pathways through the change in concentration of intra-
cellular second messengers such as intracellular inositol 1,4,5-tri-
sphosphate (IP

3
) and cyclic adenosine monophosphate (cAMP), 

which controls the cAMP-dependent protein kinase (PKA)5.  
Glutamate binding to AMPA receptors (AMPARs) opens the ion 
channel and induces fast depolarisation of the postsynaptic mem-
brane, mainly through the influx of sodium (Na+) ions. By contrast, 
glutamate-gated channel opening of NMDA receptors enables cal-
cium (Ca2+) influx into the dendritic spine, which initiates a cascade 
of signalling events involving the stimulation of the Ca2+/calmod-
ulin-dependent protein kinase (CaMK) as well as the extracellular 
signal regulated kinase (ERK). The stimulation of CaMK and ERK 
triggers the phosphorylation-induced activation of a myriad of cel-
lular targets including ion channels and transmembrane receptors, 
which in turn modifies their conductance properties6,7.

Additionally, an important consequence of the activation of these 
signalling pathways upon excitatory neurotransmission is that they 
can regulate the activity of nuclear factors thereby triggering chang-
es in gene transcription8. The mechanism by which neuronal activi-
ty is conveyed to the nucleus for the induction of activity-dependent 
gene expression programs is one of the most investigated topics 
in neuroscience, since it is believed to be necessary for the estab-
lishment of memories. Indeed, mRNA synthesis inhibitors such as 
actinomycin D have been shown to prevent late long-term potentia-
tion in hippocampal slices and to impair retention of new memories 
in several species and learning paradigms9–13. Interestingly, former 
studies regarding activity-dependent regulation of transcription 
showed that induction of genes occurs within a few minutes after 
excitatory electrical and pharmacological stimulation14–17. These 
studies demonstrate that, in spite of the highly polarised morphol-
ogy of neurons, synaptic signals are rapidly conveyed to the nucleus 
to allow the immediate regulation of gene transcription.

Various mechanisms have been proposed that might couple synap-
tic activity to gene transcription18–20. The main difference among 
these models relies on the nature of the signal that carries the mes-
sage, i.e. synapto-nuclear messengers, IP

3
-triggered Ca2+ waves or 

action potentials. This review will critically discuss the primary 

experimental findings supporting the current models for commu-
nication between synapses and the nucleus and ascertain their po-
tential role in efficiently and timely coupling neuronal activity to 
gene expression.

Translocation of transcription regulators from 
synapses to the nucleus
The restriction of effector proteins to particular subcellular loca-
tions is a commonly employed strategy used by most known signal 
transduction cascades, and allows coordination of signalling events 
in space and time21–23. In many cases, the activation of signalling 
proteins by upstream regulators, or their activation of downstream 
effectors, involves their rapid and regulated translocation to spe-
cific subcellular compartments24. Indeed, nuclear translocation of 
signalling molecules is known to play a role in the timely expres-
sion of genes in response to extracellular stimuli25–27. For example, 
although PKA and ERK are preferentially distributed in the cyto-
plasm in resting conditions, the rise of intracellular second mes-
sengers drives their rapid accumulation in the nucleus, where they 
phosphorylate multiple nuclear targets28,29. Furthermore, transcrip-
tion factors can also relocate from the cytoplasm to the nucleus in 
response to stimuli that induce apoptosis, cell differentiation or 
proliferation30–32. There are several advantages of moving signalling 
proteins between neighbouring subcellular compartments upon cel-
lular activity, including the enhancement of the specificity as well 
as speed of signal transmission22–34. Interestingly, there is strong evi-
dence demonstrating that a variety of stimuli mimicking neuronal 
activity, such as bath application of neurotransmitters or electrical 
stimulation, also induce the cyto-nuclear translocation of signal-
ling proteins in primary neuronal cultures and brain slice prepara-
tions35,36. Moreover, the robust accumulation of gene transcription 
regulators in the nucleus is also observed in response to a wide 
variety of physiological and pharmacological stimuli in vivo. For 
example, immunohistological analysis of mouse brain sections have 
shown that the rapid nuclear accumulation of activated ERK in vari-
ous regions of the brain including the hippocampus, amygdala and 
projection neurons of the striatum, occurs in animals that have been 
trained to behavioural paradigms that underlie learning, or follow-
ing acute administration of addictive and non-addictive drugs37–41.

Synapse-to-nucleus protein translocation
Although the translocation of proteins has been demonstrated to 
occur between adjacent subcellular compartments i.e. from the 
cytoplasm to the plasma membrane or from the cytoplasm to the 
nucleus, it has been hypothesised that it can also occur between 
more distant compartments, linking dendritic terminals and axon 
tips with the nucleus42,43. Indeed, the retrograde transport of sig-
nals from distal axons to neuronal cell bodies by motor-dependent 
transport along microtubules is one of the best known mechanisms 
for long-distance communication44. So far, these mechanisms have 
been studied in the context of development, survival and axonal in-
jury45. However, recent studies have proposed that activity at excita-
tory synapses can also promote the movement of proteins from dis-
tant parts of the dendritic arbour to the nucleus (Reviewed in18,20,46). 
This idea of long distance rather than local signalling in response 
to synaptic inputs provides a tantalising model in which the trans-
port of transcription regulators from stimulated synapses serves to 
inform the genome about peripheral neuronal activity (Figure 1).
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Former experimental evidence supporting this hypothesis comes 
from early studies of brain cell fractionation that were published by 
different laboratories in the 1990s43,47,48. Intriguingly, it was report-
ed that the nuclear factor κ light chain enhancer of activated B-cells 
(NF-κB) can be detected in the synaptosomal fraction of cortical 
and hippocampal preparations, which contains pre- and post-syn-
aptic elements of neurons. Additional subsequent studies have later 
shown that other transcription factors are also located at synapto-
some preparations, including the cAMP response element-binding 
protein (CREB)49, CREB250 and CREB-regulated transcription 
coactivator 1 (CRTC1)51. Additionally, fluorescence microscopy 
analyses of endogenous proteins or fluorescently tagged chimeric 
constructs conducted to determine the subcellular localisation of 
these transcription regulators in neurons indicate that they are in-
deed not confined to the vicinity of the nucleus, but rather extend 
throughout the whole cytoplasm, reaching distant compartments 

like dendritic spines. Provided that the only recognised function of 
these transcription factors takes place in the nucleus where their 
known cellular targets belong, the intriguing question of how they 
can be efficiently and timely shuttled to the nucleus to influence 
transcription arises naturally.

Martin and colleagues have proposed a mechanism for the shipping 
of activated transcription regulators between synapses and the nu-
cleus52,53. It involves the participation of members of the karyopher-
in family of nuclear transport receptors, which are soluble carriers 
that mediate the regulated translocation of proteins across the nu-
clear envelope54,55. The active import of proteins from the cytoplasm 
to the nucleus is mostly driven by a heterodimeric carrier composed 
of importin-β and its adaptor importin-α. Importins discriminate 
their cargo from other cellular proteins by recognition of amino acid 
targeting sequences known as nuclear localisation signals (NLSs), 
which contain one or two clusters of basic residues. Monopartite 
NLSs, exemplified by the SV40 large-T antigen56, have a single clus-
ter of 4–5 basic residues (e.g. P KKKRKV), whereas bipartite NLSs, 
such as that of nucleoplasmin57, have a second basic cluster located 
10–12 residues downstream from the first cluster (e.g. KRPAATK-
KAGOA KKKLD). Interestingly, immunofluorescence studies have 
detected importins far away from the nucleus, including dendrites 
and the axon of mouse hippocampal and Aplysia sensory neurons, 
suggesting a role in long-distance trafficking of proteins towards 
the nucleus52. Furthermore, strong accumulation of importins in the 
nucleus is observed in response to stimuli that mimic synaptic ac-
tivity in neuronal primary cultures and hippocampal slice prepara-
tions. These observations led to the hypothesis that importins may 
direct the translocation of synaptic proteins to the nucleus53. In this 
line, a study by Holmes and co-workers reported that the cytoplas-
mic tail of the NR1-1a subunit of the NDMAR contains a puta-
tive bipartite NLS which is surrounded by four phosphorylation 
sites i.e. PDP KKKATFRAITSTLASSF KRRRSSKDT58,59. Based 
on these results, subsequent co-immunoprecipitation experiments 
by Jeffrey and colleagues showed that importin-α binds to NR1 in 
vitro, and that this interaction is disrupted by the activity-dependent 
phosphorylation of the residues flanking the NLS of NR1-1a60. The 
authors presented a model in which importins are normally teth-
ered to the NLS of the NMDAR in non-stimulated synapses, plac-
ing them in close proximity to synaptically localised transcription 
regulators. Upon stimulation, phosphorylation of the NR1-1a tail 
by PKA and protein kinase C (PKC) promotes the release of bound 
importins that are then free to bind soluble synaptic NLS-contain-
ing cargoes such as the transcription factor CREB250. In view of 
this appealing mechanism for the long-range transport of proteins 
to the nucleus, a series of proteomic and bioinformatic studies have 
been conducted in order to identify novel NLS-containing proteins 
undergoing importin-mediated synapto-nuclear translocation61. 
Surprisingly, around 166 out of 1100 proteins from postsynaptic 
density (PSD) purified fractions were predicted to contain putative 
NLSs62. Among them, there were found several proteins involved in 
RNA trafficking and splicing, as well as regulators of transcription  
factor activity61,63.

Limitations and challenges to the model
Although a number of arguments support the existence of  
synapto-nuclear protein messengers, there are many remaining 

Figure 1. Synapto-nuclear translocation of transcription 
regulators. a) In non-stimulated conditions, transcription regulators 
(TR, purple dots) are localised into distant dendrites as well as at the 
perinuclear zone. Some TRs are transported from the cytoplasm to 
the nucleus by importins (orange dots). Importins are also distributed 
across distant dendrites and at the postsynaptic density (PSD). 
b, c) Excitatory inputs that stimulate synapses (1) are believed to 
activate TRs, which are then transported to the soma along the 
neuron (2) through microtubule-based active transport b) or by 
passive diffusion c). Excitatory inputs are also proposed to activate 
importins at the PSD, which then associate to synaptic cargoes 
and facilitate their synapto-nuclear translocation c). Therefore, this 
model predicts that synaptic activity triggers the accumulation of 
TRs from distant synapses in the nucleus, promoting the induction 
of gene expression programs (3).
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concerns that challenge the synapto-nuclear translocation model. 
One important caveat to be considered regards the identification of 
potential synapto-nuclear messengers by mass spectrometry. It has 
been observed that due to the high sensitivity of protein identifica-
tion by this method, low-level contaminants introduced during the 
biochemical purification of brain fractions are commonly detected64. 
Moreover, searching for synapto-nuclear messengers by NLS iden-
tification may yield false positive results61, since similar clusters of 
basic residues are present in kinase and phosphatase docking sites 
and help to mediate protein-protein interaction65. For example, the 
consensus phosphorylation site for PKC is R/K

1–3
, X

2–0
-S/T whereas 

for PKA, it is R-R-X-S/T-Φ, where X is any amino acid and Φ is a 
hydrophobic residue which closely resembles the above mentioned 
NLS found in the NR1-1a subunit of the NMDA receptor66. Accord-
ingly, a detailed functional dissection of these motifs needs to be 
performed before concluding that they represent bona fide NLSs. 
Experiments tracking fluorescently tagged proteins through live-
cell imaging techniques as well as the use of nuclear import assays 
in permeabilised cells should be routinely used in order to confirm 
the possible nuclear translocation of these proteins67–69.

Another point that needs to be directly demonstrated is whether 
transcription regulators distributed at distant parts of the neuron ac-
tually shuttle to the nucleus. Recent experiments using cultured hip-
pocampal neurons that express a photoconvertible fluorescent form 
of the synapto-nuclear transcription factor CRTC1 indeed suggest 
that activation of distant dendrites by local glutamate uncaging can 
promote its accumulation to the nucleus51. However, the movement 
of single synaptic messengers on route to the nucleus has never been 
directly tracked, and therefore this point remains to be clarified. The 
combination of super-resolution fluorescence microscopy with live-
cell single-molecule-based imaging may provide new insights into 
the dynamics of the long-range transport of proteins in neurons70.

An important question regarding the long-range transport of 
proteins to the nucleus concerns the speed at which these mes-
sengers may travel towards the soma, which is crucial to explain 
their potential involvement in timely coupling of neuronal activa-
tion to the robust induction of gene programs71. It has been esti-
mated that a transcription factor involved in the rapid induction of  
activity-dependent genes should travel at nearly 75 microns per 
minute towards the nucleus, but NF-κB has been calculated to move 
at only 2 microns per minute72. It is currently unknown whether 
such a rapid movement of proteins from synapses to the nucleus 
may occur by diffusion, facilitated transport, signalling endosomes 
or whether it requires association with the microtubule network. 
Moreover, a significant limitation of long-range signalling by the 
synapto-nuclear shuttling of transcription factors is that the signal 
is not amplified nor regenerated on its way towards the nucleus. 
Distantly stimulated messengers are likely to be inactivated or lost 
in transit, thereby compromising the direct involvement of synaptic 
activity on the control of nuclear functions. For example, if a tran-
scription factor is activated by phosphorylation at the synapse, pro-
tein phosphatase activity will likely cause its inactivation on its way 
to the nucleus. Finally, a critical issue that needs to be addressed is 
to determine the advantage, if any, of mobilising transcription regu-
lators from distant synapses over those already located adjacent to 
the nucleus to control gene expression.

Despite the list of synapto-nuclear messengers is rapidly growing, 
there are considerable ambiguities in the synapse-to-nucleus trans-
location model that need to be clarified. Further research is essential 
to gain a more accurate understanding of the presumed role of these 
signalling mechanisms on the coupling of excitatory synaptic trans-
mission to gene induction during neuronal plasticity.

Propagation of calcium waves from synapses to the 
nucleus
It is now well documented that the rise of Ca2+ concentration in the 
nucleus represents an essential step for the activity-dependent in-
duction of gene expression programs19,73–75. Cytoplasmic Ca2+ con-
centration can increase via voltage- and ligand-gated channels as 
well as by release from intracellular Ca2+ stores76. The main internal 
Ca2+ store is the endoplasmic reticulum (ER), which acts both as 
a sink for Ca2+ that enters from the extracellular space, and as a 
source for Ca2+ release into the cytosol. The ER forms a continu-
ous vesiculo-tubular system that constitutes an elaborated network 
distributed throughout the cytoplasm77. In neurons, this network 
extends from the outer nuclear envelope in the soma into axonal 
processes and dendritic arborisations, including spines78,79. Release 
of Ca2+ from the ER can occur upon increase of intracellular IP

3
 

and adenosine diphosphate ribose (ADP-ribose), which bind to and 
open IP

3
 receptors (IP

3
Rs) and ryanodine-type receptors (RyRs), 

respectively80. As mentioned above, IP
3
 can be generated by the 

stimulation of mGluRs which can be coupled to phospholipase C 
(PLC), the enzyme that cleaves the membrane phospholipid phos-
phatidylinositol 4,5-bisphosphate to form IP

3
81,82. Moreover, Ca2+ 

itself activates the opening of RyRs and enhances the Ca2+-releasing 
action of IP

3
, therefore stimulating the efflux of more Ca2+ from the 

ER lumen83. This process of Ca2+-induced Ca2+ release (CICR) is 
believed to establish regenerative Ca2+ waves that spread bidirec-
tionally from their initiation site and was first discovered in skel-
etal muscle84,85. Indeed, CICR is considered to be the physiological 
mechanism of Ca2+ release in cardiac muscle, playing a major role 
in cardiac excitation-contraction coupling86.

The development of fluorescent Ca2+ indicator molecules, photoly-
sis techniques and laser-scanning microscopy has enabled the in-
vestigation of the Ca2+ dynamics in neurons at very fine temporal 
and spatial resolutions87–90. Synaptically activated, IP

3
-mediated 

propagation of Ca2+ release has been observed in pyramidal neurons 
in the rodent hippocampus (CA1 and CA3 regions), medial pre-
frontal cortex and principal neurons in the amygdala91–95. Depend-
ing on the neuronal cell type analysed and the stimulation protocol 
used, dendritic Ca2+ waves can be highly localised or can spread 
to a larger extent96. For example, when IP

3
 is generated by focal 

synaptic stimulation with metabotropic agonists, the generated re-
sponse is weak and restrained97–99. By contrast, when IP

3
 production 

is stimulated by bath application of such agonists, a higher response 
can be evoked and a rise in Ca2+ concentration can be observed in 
the nucleus99,100.

These observations have led to the hypothesis that excitatory in-
puts trigger IP

3
R-dependent CICR waves that are able to spread 

forward from the distant synapses towards the soma and mediate 
the release of Ca2+ from the inner membrane of the nuclear envelope 
into the nucleus (Figure 2)76. Therefore, it has been suggested that 
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the process of CICR may serve to communicate between distant 
cellular compartments in neurons and serve as a means to medi-
ate the coupling of synaptic activity to gene transcription. While 
this model has the advantage over the synapto-nuclear transloca-
tion model of being a regenerative process in which the synaptic 
signal does not decay over great distances, evidence for the distant 
communication by this mechanism is controversial. First, it is not 
well established whether functional Ca2+ channels are present in the 
nuclear envelope in neurons, and if they can indeed release Ca2+ into 
the nucleoplasm101–103. More detailed studies on the spatial distribu-
tion of receptors involved in Ca2+ release from the ER in neurons 
may resolve such discrepancies. Second, it is important to note that 
whereas Ca2+ alone is sufficient to cause its own release through 
RyRs104–106, it cannot do so through IP

3
Rs. In the case of IP

3
Rs, Ca2+ 

can cause self-release only in the presence of IP
3
, thus the availabil-

ity of IP
3
 in the cytoplasm is a major factor determining the extent 

of Ca2+ wave propagation107–109. Because of these findings, CICR is 
generally considered as an exclusive property of RyRs, but not of 
IP

3
Rs, even though IP

3
R exhibits the apparent CICR behavior in the 

presence of IP
3
86,110,111.

As noted above, experiments in different types of neurons suggest 
that the spread of IP

3
-mediated Ca2+ waves depends on the availabil-

ity of IP
3
 in the preparation96. Although IP

3
 has a fast diffusion con-

stant, it has a limited spatial range of action as it is rapidly metabo-
lised by 3-kinase and 5’-phosphomonoesterase and it is estimated to 
have a lifetime of a few seconds112,113. Moreover, during the past few 

years it has become clear that there are functional compartments ex-
isting within dendritic trees that control the diffusion of intracellular 
messengers, particularly within spines87,114. Hence, the restriction of 
mobilised IP

3
 to sites close to activated synapses makes it unlikely 

that synaptically triggered IP
3
-dependent CICRs spread to the soma 

and transport a message from the synapse. However, functional 
metabotropic receptors coupled to IP

3
 production are present at the 

level of the soma in the plasma and the inner nuclear membranes 
of several neuron types, raising the possibility that local rather than 
remotely generated IP

3
-dependent release of Ca2+ from the ER may 

contribute to the induction of gene transcription115–118.

Propagation of electrical signals along the plasma 
membrane
The models discussed in the previous sections are built on the as-
sumption that activation of postsynaptic glutamate receptors trig-
gers the transmission of intracellular messengers (i.e. transcription 
regulators and Ca2+ waves) from distant dendritic sites to the nu-
cleus. However, several lines of evidence have suggested that gene 
expression can be triggered by NMDAR and mGluR-independent 
mechanisms119,120. Experiments using dorsal root ganglion cell cul-
ture preparations, which are devoid of synapses, demonstrated that 
phosphorylation of nuclear factors and induction of genes could be 
induced with electrical stimulation121. Furthermore, electrophysi-
ological studies using hippocampal slice preparations have shown 
that somatic action potentials can trigger gene transcription with-
out the involvement of synaptic activation and in the presence of 
NMDAR antagonists119,120,122. However, NMDARs appeared to have 
a role in the activation of nuclear events through their contribu-
tion to action potential generation122. These results led to a third 
model proposed by Dudek and colleagues, which posits that the 
robust depolarisation of the somatic plasma membrane is sufficient 
to induce gene transcription without the involvement of transported 
biochemical signals from distant synapses71,72,123. According to this 
model, transmission of synaptic events from distant compartments 
to the soma is achieved through the propagation of electrical sig-
nals over long distances across the plasma membrane. There are 
several mechanisms of long-range electrical propagation that regu-
late the degree of depolarisation at the soma. A simplified expla-
nation of the process is briefly provided here, however the reader 
is referred to the excellent available reports fully addressing this  
topic124,125. On one hand, excitatory synaptic events lead to changes 
in the membrane conductance that can be forward-propagated to the 
soma in the form of dendritic spikes126,127. On the other hand, action 
potentials initiated at the axon initial segment can be retrogradely 
propagated into the soma and the dendritic tree, spreading back the 
electrical signal128. The range of propagation efficacies of dendritic 
spikes and backpropagated action potentials varies in different cell 
types and is influenced by multiple passive and active properties 
of the somatodendritic compartment, including dendritic geometry, 
voltage-gated channel densities and the spatial and temporal profile 
of synaptic excitation and inhibition125,129,130.

It is well established that membrane depolarisation in the soma 
causes the opening of voltage-gated Ca2+ channels (VGCCs), 
which allow the influx of Ca2+ from the extracellular space to the 
cytoplasm, thus coupling synaptic activity to intracellular signal-
ling14,131. Interestingly, it appears that, among the different classes 
of VGCCs, L-type VGCCs seem to be significantly involved in 

Figure 2. Calcium signal propagation from the synapse 
to the nucleus. The endoplasmic reticulum (ER) is distributed 
throughout the cytoplasm from the nuclear envelope to dendritic 
spines. Excitatory synaptic stimulation through glutamate causes 
membrane depolarisation and entry of Ca2+ (blue dots) from the 
extracellular space through NMDARs (1). Moreover, glutamate also 
activates mGluRs coupled to PLC thereby stimulating IP3 production 
(green dots). Ca2+ and IP3 stimulate receptors present at the ER 
membrane that open and release more Ca2+ from the ER lumen, 
establishing a Ca2+-induced Ca2+-release wave (2) that propagates 
from dendrites towards the soma. In the soma, Ca2+ release from the 
ER activates cytoplasmic Ca2+-dependent signalling cascades that 
convey the signal to the nucleus (3). Moreover, Ca2+ can be released 
to the nucleus from the ER, where it activates nuclear transcription 
regulators (4).
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regulating transcription since activity-dependent induction of genes 
is supressed by exposure to specific antagonists and increased by 
(-)BayK-8644, a VGCC agonist14,132,133. The differential ability of 
L-type VGCCs to preferentially convey signals to the nucleus over 
the other types of VGCCs may be due to their relatively slow inac-
tivation rate, high single-channel conductance for Ca2+ and relative 
localisation to Ca2+ intracellular sinks134,135. In addition, Ca2+ entry 
through L-type VGCCs has been suggested to trigger ER-directed 
Ca2+ waves that propagate from the plasma membrane of the soma 
to the nucleus without the involvement of cyto-nuclear transloca-
tion of proteins73,76. These findings suggest that L-type VGCCs at 
the soma are well suited for coupling synaptic excitation to activa-
tion of transcriptional events.

It is important to note that the degree of membrane depolarisation, 
and thus the opening of L-type VGCCs, is influenced by the imme-
diate electrical history of the neuron. Because postsynaptic events 
to individual synaptic inputs are usually small and transient, action 
potential initiation and dendritic spikes require strong synchronous 
synaptic activation to be generated124. Moreover, inhibitory inputs 
also affect the way in which excitatory synaptic inputs summate in 
space and time. Thus, the elaborate integration of excitatory and in-
hibitory inputs will govern the opening of VGCCs, thereby shaping 
the activation of Ca2+-dependent nuclear functions125. Taken togeth-
er, the model upheld by Dudek and colleagues provides a cellular 
mechanism by which synaptic activity is coupled to gene transcrip-
tion through VGCCs, which transduce electrical signals into bio-
chemical pathways (Figure 3). Through this mechanism, signalling 
molecules are only required to translocate between neighbouring 
subcellular compartments, as observed in many other cell types, 
conveying information timely and efficiently.

Importantly, this model predicts that action potentials will fail to 
induce gene transcription programs unless firing above a critical 
threshold, suggesting that intracellular mechanisms must exist to 
assess the degree of synaptic stimulation123. Knowledge of how the 
nucleus computes action potentials to promote gene transcription 
while avoiding background stimulation is therefore fundamental 
for understanding how synaptic inputs regulate activity-dependent 
gene transcription and neuronal plasticity.

Conclusion
Although it has been known for more than 25 years that gene induction 
upon excitatory transmission is a required step for neuronal plasticity, 
it is not yet clear whether a direct link between local synaptic activa-
tion and gene transcription exists. An increasing body of literature sug-
gests that there are at least three different pathways by which neurons 
may inform the nucleus about the events happening at distant den-
dritic compartments18–20. In addition to the unique feature of neurons 
of communicating messages over long distances by electrical signals, 
it has been recently proposed that the range physical translocation of 
proteins from remote dendritic sites towards the soma can convey in-
formation to the nucleus20,46. The current evidence for the synapto-nu-
clear translocation model shows that transcription regulators, which 
were previously considered to be largely localised in close proximity 
to the nucleus, may also be present at remote sites from the nucleus, 
in postsynaptic dendritic compartments. Moreover, different stimuli 
that promote neuronal excitation trigger the accumulation of these 

gene transcription regulators in the nucleus, although it is still unclear 
whether they are the same ones activated at distant parts of the neuron.  
Several critical questions remain enigmatic, as to how and how 
fast the synapto-nuclear messengers are shipped to the nucleus, 
and what their actual roles are on gene induction. Taken together, 
and given the experimental data now available, it is very unlikely 
that this mechanism participates significantly in the activity-de-
pendent regulation of gene transcription. Future experimental evi-
dence would help to clarify their involvement in other aspects of  
neuronal physiology.

The most plausible scenario for relaying synaptic activity to the 
nucleus involves the robust propagation of action potentials, which 
are initiated upon integration of excitatory, inhibitory and modula-
tory inputs123. Influx of Ca2+ from the extracellular space through 
ligand-gated receptors (e.g. NMDAR) and VGCCs triggers intra-
cellular signalling cascades that remain spatially confined and act 

Figure 3. Activation of nuclear functions by action 
potentials. Excitatory synaptic activity (arrowheads) generates 
local changes in membrane conductance, which causes the 
opening of voltage gated calcium channels (VGCCs). A rise in 
intracellular Ca2+ triggers the local activation of Ca2+-dependent 
signalling pathways thereby, coupling membrane depolarisation to 
intracellular signalling. a) When neurons receive weak excitatory 
inputs (small arrowheads), the signal spread is small (thin solid 
arrows) and the threshold to trigger action potentials is not 
reached, thus somatic L-VGCCs remain closed. b) When neurons 
receive strong synaptic inputs (big arrowheads), dendritic spikes 
can efficiently spread (thick solid arrows) in the forward direction 
and facilitate the initiation of action potentials at the axonal initial 
segment. Action potentials are backpropagated to the soma 
and dendrites (dashed arrows), locally generate intracellular 
Ca2+-dependent signalling cascades. Ca2+ entry in the soma 
through L-VGCCs will promote the activation of protein effectors 
that regulate the transcription of plasticity-related genes. In this 
diagram, the local signal intensity representing both the electrical 
activity of the membrane and its coupled intracellular signalling 
is coded by colour. Drawings are adapted from a reconstructed 
biocytin-filled layer V neuron in the rat cortex (courtesy of B. Chieng 
and J. Bertran-Gonzalez).
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locally to regulate cellular processes136. In the soma, the opening of 
L-type VGCCs causes a rise in intracellular Ca2+ and thereby acti-
vates Ca2+-dependent signalling molecules that shuttle from the cy-
toplasm to the nucleus such as activated ERK and NF-κB74. Moreo-
ver, it may also allow the generation of RyR- or IP

3
R-dependent 

Ca2+ waves that propagate along the ER from the plasma membrane 
to the nucleus inducing the increase of Ca2+ concentration within 
the nucleus76. In addition, it is anticipated that Ca2+-transduction 
pathways crosstalk with simultaneously activated signalling cas-
cades governed by other second messengers such as IP

3
 and cAMP 

that will promote or restrain the spread of the Ca2+ signal and will 
have a profound influence on the precise timing and extent of gene 
induction. Future research will need to determine how these coordi-
nated processes contribute to shape neuronal plasticity.
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