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Exome sequencing in dementia with Lewy bodies
MJ Keogh1, M Kurzawa-Akanbi1, H Griffin1, K Douroudis1, KL Ayers1, RI Hussein1, G Hudson1, A Pyle1, HJ Cordell1, J Attems2,3,
IG McKeith2,3, JT O’Brien2,3, DJ Burn2,3, CM Morris2,3, AJ Thomas2,3 and PF Chinnery1,2

Dementia with Lewy bodies (DLB) is the second most common form of degenerative dementia. Siblings of affected individuals are
at greater risk of developing DLB, but little is known about the underlying genetic basis of the disease. We set out to determine
whether mutations in known highly penetrant neurodegenerative disease genes are found in patients with DLB. Whole-exome
sequencing was performed on 91 neuropathologically confirmed cases of DLB, supplemented by independent APOE genotyping.
Genetic variants were classified using established criteria, and additional neuropathological examination was performed for
putative mutation carriers. Likely pathogenic variants previously described as causing monogenic forms of neurodegenerative
disease were found in 4.4% of patients with DLB. The APOE ε4 allele increased the risk of disease (P= 0.0001), conferred a shorter
disease duration (P= 0.043) and earlier age of death (P= 0.0015). In conclusion, although known pathogenic mutations in
neurodegenerative disease genes are uncommon in DLB, known genetic risk factors are present in 460% of cases. APOE ε4 not
only modifies disease risk, but also modulates the rate of disease progression. The reduced penetrance of reported pathogenic
alleles explains the lack of a family history in most patients, and the presence of variants previously described as causing
frontotemporal dementia suggests a mechanistic overlap between DLB and other neurodegenerative diseases.
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INTRODUCTION
Dementia with Lewy bodies (DLB) is the second most common
form of dementia. It affects 5% of the population over 75 years of
age,1 and has a greater impact on healthcare provision than
Alzheimer’s disease (AD).2 The neuropathological hallmark of DLB
is widespread α-synuclein-positive neuronal inclusions (Lewy
bodies and Lewy neurites) and in addition this is often associated
with amyloid deposition.3 Siblings of affected individuals have a
2.3-fold increased risk of developing the disorder,4 but little is
known about the genetic aetiology of the disease. Although
genetic variants in APOE,5 GBA,6 SNCA and SCARB2 (ref. 7) have
been associated with an increased risk of DLB, only a few families
have been described with more than two first-degree relatives,8

and no single highly penetrant gene defects have been shown to
cause familial forms of the disorder. Using exome sequencing in
91 autopsy-confirmed cases, here we determined whether
confirmed or putative pathogenic mutations in genes in known
neurodegenerative disease genes are found in patients with DLB.

MATERIALS AND METHODS
Subjects and sample preparation
We studied 91 post-mortem cases conforming to both the clinical and
post-mortem diagnostic criteria for DLB.3 Two patients were first-degree
relatives (mother and daughter) and two patients were siblings (brothers).
The remaining 87 patients had no recorded family history of neurode-
generative disease. Age of onset, disease duration, age of death,
neuropathological subtype of Lewy body disease according to McKeith/
Newcastle criteria3 and Braak neurofibrillary tangle stage were recorded9

(Figure 1). In addition, we assessed Lewy body Braak stages,10 Aβ phases11

and stages of cerebral amyloid angiopathy.12 Of note, none of the cases
showed intracytoplasmic TAR DNA-binding protein 43 (TDP-43) inclusions

indicative for frontotemporal lobar degeneration associated with TDP-43
pathology, nor were there neuropathological features consistent with
other types of frontotemporal lobar degeneration (see additional
Supplementary Methods).

DNA extraction and exome sequencing
DNA was extracted from cerebellum in all the cases. Illumina TruSeq 62 Mb
exome capture and sequencing (Illumina Hiseq2000, 100 bp paired-end
reads) was performed as described (see additional Supplementary
Methods).
Known disease genes were defined as those previously shown to cause

monogenic forms of Parkinson’s disease (PD), AD, frontotemporal lobar
dementia and amyotrophic lateral sclerosis (Table 1). Variants were
selected with a minor allele frequency of o0.01 international reference
databases. Variants were defined as (1) pathogenic, (2) likely pathogenic,
(3) of uncertain significance or (4) benign according to American College of
Medical Genetics criteria13 (Table 1).
For completeness, exonic variants in genes previously associated with

DLB (GBA, APOE, SNCA and SCARB2),5–7 AD (APOE, TREM2)14 or PD (LRRK2,
GBA)15 were also identified in DLB cases and compared with 93 in-house
unrelated disease control exomes.

RESULTS
The mean exome sequencing base coverage depth was 84-fold
(s.d. = 13) in the 91 DLB cases and 76-fold (s.d. = 12) in the 93
controls. There was no difference in the proportion of the exome
target covered at 430-fold depth between DLB cases and
controls (DLB 84%, s.d. = 5; controls 84%, s.d. = 3, P= 0.588).

1Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; 2NIHR Biomedical Research Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Campus
for Ageing and Vitality, Newcastle upon Tyne, UK and 3Institute for Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK. Correspondence: Professor
PF Chinnery, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE2 4HH, UK.
E-mail: pfc25@medschl.cam.ac.uk
Received 5 August 2015; revised 17 October 2015; accepted 13 November 2015

Citation: Transl Psychiatry (2016) 6, e728; doi:10.1038/tp.2015.220

www.nature.com/tp

http://www.nature.com/tp


Known mendelian disease genes
A total 18 rare heterozygous mutations in 25 patients were
observed in genes previously shown to cause autosomal
dominant forms of neurodegeneration (Tables 1, 2 and
Supplementary Table S1). Three of these variants have been
described in patients with AD, PD or frontotemporal lobar
degeneration and amyotrophic lateral sclerosis (Patient A:PSEN2
p.D439A;16,17 B:CHMP2B p.I29V;18 and C:SQSTM1 p.A33V,19,20). In
two additional cases (Patient E:EIF4G1 p.M1134V and F:SQSTM1 p.
P27L), variants in known disease genes affecting highly conserved
residues and predicted to be pathogenic by in silico software
algorithms, were deemed of uncertain significance. Two patients
also had variants of uncertain significance in GIGYF2, which is also
implicated in PD (H:GIGYF2 p.S66T; G:GIGYF2 p.S1029C, Table 2). In
genes causing autosomal recessive PD, AD or frontotemporal

dementia and amyotrophic lateral sclerosis, only one rare
compound heterozygous mutation in PARK2 was seen (Patient
D, p.R275W/p.G430D).
Only patient A had a relevant family history (father affected—

deceased and no tissue/DNA available). A clinical description of
these cases is shown in the Supplementary Information. All
showed typical DLB pathology with cortical LB being present and
moderate AD pathology (Table 2).
The mean age at the presentation for the four cases with

previously described pathogenic mutations (Patients A–D) was
78.25 years (s.d. = 8.05). Motor symptoms developed in three cases
(Patient A, B and D) at a mean of 1.33 years (s.d. = 0.58) after the
onset of cognitive symptoms. When patients E and F were
included, the mean age of onset was 78.6 (s.d. = 6.68), with motor
symptoms developing in four patients (A, B, D and E), and a mean
disease duration of 2.3 (s.d. = 1.16) years.

Major risk alleles
GBA, TREM2 and LRRK2 had 480% coverage at 30-fold depth in
both DLB cases and controls. APOE coverage was poor (DLB,
46.2%; controls 48.7% at 30-fold depth) and was therefore
genotyped independently (see additional Supplementary
Methods). After removing the previously described pathogenic
alleles, APOE ε4 was significantly associated with DLB compared
with controls (n= 87, P= 0.0001, Table 3). Ten DLB cases had one
of five heterozygous GBA variants, compared with only three
controls (P= 0.043). Two GBA variants known to be risk factors for
PD (p.L370P and p.N296S) were seen only in four patients and no
controls. Two patients had variants in SCARB2 compared with six
controls, and no SNCA variants were seen. There was no
association between DLB and variants in SCARB2, LRRK2 or TREM2
(Supplementary Table S2).
Although there was no difference in the age of onset of DLB in

APOE ε4 allele carriers when compared with non-APOE ε4 allele
carriers (P= 0.227), the APOE ε4 allele carriers had a shorter disease
duration following diagnosis (P= 0.036), and died at an earlier age
(P= 0.005) than non-APOE ε4 carriers (Figure 2, Table 3). There was
no association between the presence of variants in GBA, SNCA,
SCARB2, LRRK2, PARK2 or ATP13A2 and age of onset, disease
duration, age of death, neurofibrillary Braak stage or the presence
of motor symptoms.

Figure 1. Clinical and pathological characteristics of the 91 dementia with Lewy body (DLB) cases. Top left: frequency of each pathological
category (BS, brain stem; L, limbic; N, neocortical; UC, unclassified). Top right: BRAAK neurofibrillary tangle stage of patients (UC, unclassified).
Bottom: table of the clinical and pathological data for all the 91 cases of DLB. Data are mean (s.d.). Motor features were defined by
documented evidence of a Parkinsonian movement disorder by an assessing clinician.

Table 1. Genes causing monogenic forms of PD, AD, FTLD-ALS, which
were analysed for rare protein altering mutations in patients

Inheritance Disease

PD AD FTLD-ALS

Autosomal dominant SNCA
LRRK2
UCHL1
GIGYF2
Omi/HTRA2
EIF4G1

APP
PSEN-1
PSEN2

C9orf72
SOD1
MAPT
PGRN
TARDBP
OPTN
ANG
CHMP2B
SQSTM1
FUS
VCP

Autosomal recessive PARK2
PINK1
ATP13A2
PLA2G6
FBX07
DJ-1

OPTN

Abbreviation: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis;
FTLD, frontotemporal lobar degeneration; PD, Parkinson's disease.
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DISCUSSION
Exome sequencing of 91 cases of pathologically confirmed DLB
identified four patients harbouring previously described patho-
genic mutations neurodegenerative disease genes based on
current diagnostic criteria (PSEN2, CHMP2B, SQSTM1, PARK2);
possible pathogenic mutations in two (EIF4G1 and SQSTM1); and
two further cases with mutations in GIGYF2, which has previously
been associated with autosomal dominant PD. The central
question is: are these variants causing DLB, or are they co-
incidental findings? The role of GIGYF2 in PD remains
contentious,21 and the p.D439A variant in PSEN2 may have
incomplete penetrance,17 and is thus found in control databases
along with the CHMP2B and SQSTM1 variants. Providing definitive
proof of pathogenicity is therefore challenging, and there are
arguments in both directions.
On one hand, the variants detected in PSEN2, CHMP2B, SQSTM1

and PARK2 are exceptionally rare in the general population.22

Given the clinical, pathological and mechanistic overlap between
DLB and the neurodegenerative disorders where these disease
genes were first described, it is plausible that they are contributing
to the neuropathology. For example, in families with familial AD
due to PSEN2 mutations, up to 64% of cases have extensive Lewy
body deposition at autopsy.23 The CHMP2B protein has been
shown to be found in association with Lewy bodies in post-

mortem cases of DLB,24 and SQSTM1 deficiency has been shown
to enhance α-synuclein accumulation in mice.25 The SQSTM1 p.
A33V variant was previously described in five cases of fronto-
temporal dementia.19,20 Recently, this allele was also detected in a
patient with young-onset AD.26 Although seen in 0.0012% of
controls, the p.A33V variant has now been seen in 8/1060 (0.007%)
of patients with a neurodegenerative disease (including our
study)19,20,26 suggesting a broad association with neurodegenera-
tive disorders (P= 0.0037, chi squared with Yate’s correction).
These findings support the notion that rare, incompletely
penetrant pathogenic alleles cause overlapping syndromes of
neurodegeneration, perhaps explaining why previously ascribed
variants for frontotemporal dementia were also found in our DLB
cases. Pathogenic mutations with a reduced penetrance will also
be detected in healthy individuals (as for PSEN2 p.D439A17), and
their presence in a control cohort does not preclude their
potential to cause disease.22 This may explain why none of the
four patients harbouring established pathogenic mutations
reported a relevant family history.
On the other hand, the clinical and pathological phenotype of

these five cases was wholly typical of DLB: how can this be
reconciled with known pathogenic compound heterozygous
mutations in PARK2, which typically presents with dystonia in
early adult life? These findings highlight the challenges of using
exome or whole-genome sequencing in a clinical context: is rare
pathogenic mutation in a known disease gene more likely to be
causing a variant phenotype, or is the phenotype so unusual that
the variants must be a co-incidental finding? This will be difficult
to resolve in individual cases, but the ongoing reporting of rare
putative disease alleles, linked to rich phenotypic data, is an
essential step in generating global data sets, which will ultimately
provide definitive evidence of pathogenicity.22

Although the size of our study cohort limited the potential to
discover new disease genes and risk loci, and did not include
exclusion of repeat expansions such as C9orf72, we saw
enrichment of GBA alleles and APOE ε4 alleles in DLB. In total,
48 patients (55.2%) possessed an APOE ε4 allele, with 5 (5.7%)
having a variant in GBA, together with four (4.4%) having likely
pathogenic alleles (potentially with incomplete penetrance).
Therefore, 62.6% of patients harbour a risk factor or potentially
pathogenic allele. This could explain why DLB is a relatively
common disorder in the population, with an increased risk of

Table 3. APOE genotype of all cases (excluded confirmed pathogenic
variants) and controls

Study size APOE genotype

4/4 3/3 2/2 4/3 3/2 4/2 ε4
carrier

Controls 93 1 54 2 24 12 0 25
DLB
patients

87 3 33 0 45 6 0 49

P-value 0.35 0.0076 0.50 0.0004 0.22 1.0 0.0001

Abbreviation: DLB, dementia with Lewy body. Comparison between
groups (patients n= 87, controls n= 91) performed by Fisher’s exact test.
APOE ε4 carrier determined by the presence of at least one APOE ε4 allele.

Figure 2. Kaplan–Meier survival curves for DLB patients by APOE allele. Kaplan–Meier survival curves for DLB patients by APOE allele carrying
at least one APOE ε4 allele (n= 43, blue line), compared with non-APOE ε4 carriers (n= 39, green line). Despite there being no significant
difference in the age of onset of the DLB (see Results), APOE ε4 carriers (a) lived for a shorter period of time following diagnosis (P= 0.036, log
rank, Mantel–Cox test), and thus (b) died at a younger age (P= 0.005, log rank, Mantel–Cox test) that non-APOE ε4 carriers. DLB, dementia with
Lewy body.
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disease within families, but few pedigrees suggestive of highly
penetrant alleles. Finally, the association between APOE genotype
and clinical progression has, to our knowledge, not been
previously described, and has implications for cohort stratification
in treatment studies.
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