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INTRODUCTION

Template-based protein structure prediction is being increasingly used in

a variety of biological applications.1–3 The most accurate models are

obtained in cases where a template can be found in the Protein Data Bank

(PDB)4 with a high level of sequence similarity to a query protein. This

corresponds to comparative or homology modeling. However, in the general

and increasingly common situation, it is appropriate to splice together more

than one template or structural fragment to create a full model for a pro-

tein. In either case there will inevitably be parts of the structure that cannot

be modeled based on known structures or for which an appropriate tem-

plate, even if it exists, cannot be identified. In such cases, it is necessary to

use ab initio methods to predict the structure of the region in question.

These regions can correspond to long insertions or deletions or to short

loops that connect secondary structure elements. The latter situation is quite

common. It arises even for relatively straightforward cases of homology

modeling simply because homologous proteins often have loops of different

lengths so that the template and query loop conformations will often be dif-

ferent.

The loop modeling problem has a long history and the interest in its so-

lution goes beyond the prediction of small insertions and deletions in

homology models. Specifically, many of the problems encountered in loop

modeling are the same as those encountered in the larger problem of pro-

tein structure prediction; it is the scales of the two problems that are very

different. Both problems require extensive conformational sampling and

refinement and both depend on the quality of energy or scoring functions

used to identify stable conformations. In both cases, the standard test of a

method is in its ability to identify a native-like conformation, usually on the

background of a large number of incorrect conformations. Indeed, it can be

argued that the ability to predict loop conformations is a prerequisite for

predicting and refining protein structure. Moreover, there are many cases

where loops undergo functionally significant conformational changes whose

understanding in atomic detail is of particular interest.5–7 One might rea-

sonably expect that any approach used to study such changes would first be

tested on straightforward loop modeling problems.
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ABSTRACT

We describe a fast and accurate protocol,

LoopBuilder, for the prediction of loop

conformations in proteins. The procedure

includes extensive sampling of backbone

conformations, side chain addition, the

use of a statistical potential to select

a subset of these conformations, and,

finally, an energy minimization and rank-

ing with an all-atom force field. We find

that the Direct Tweak algorithm used in

the previously developed LOOPY program

is successful in generating an ensemble of

conformations that on average are closer

to the native conformation than those

generated by other methods. An impor-

tant feature of Direct Tweak is that it

checks for interactions between the loop

and the rest of the protein during the

loop closure process. DFIRE is found to be

a particularly effective statistical potential

that can bias conformation space toward

conformations that are close to the native

structure. Its application as a filter prior

to a full molecular mechanics energy min-

imization both improves prediction accu-

racy and offers a significant savings in

computer time. Final scoring is based on

the OPLS/SBG-NP force field imple-

mented in the PLOP program. The

approach is also shown to be quite suc-

cessful in predicting loop conformations

for cases where the native side chain con-

formations are assumed to be unknown,

suggesting that it will prove effective in

real homology modeling applications.
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Our goal in this work is to develop a loop modeling

procedure that is both computationally efficient and

accurate in its ability to predict native-like conforma-

tions. To this end we first evaluate approaches currently

used at different stages in the loop prediction process.

We begin with a summary of the recent literature with

goal of evaluating the current state of this field. It should

be recognized that most studies of the loop prediction

problem assume that the conformation of the rest of the

protein, except for the loop, is known. This does not cor-

respond to a realistic modeling situation but it does pro-

vide a well-defined control problem which can be used

to evaluate different methods.

Recent advances in ab initio loop modeling have

reached the point where predicting the conformations

of loops containing up to seven residues can usually

be done with considerable accuracy.8,9 Database ap-

proaches10,11 based on the extraction of loop structures

from the PDB have not, in general, reached the same

level of accuracy although significant progress has

recently been reported.10 Moreover, remarkably accurate

predictions can be made for longer loops if the crystal

contacts are taken into account and if extensive confor-

mational sampling is used (e.g., <1.5 Å RMSD from

native for loops 11–13 residues in length).12 This is an

important result because it shows what is possible given

enough constraints. It also demonstrates that there may

be inherent limits to the accuracy of loop modeling for

the simple reason that the conformation in the reference

crystal structure may be determined in part by packing

constraints. Still, the steady progress that has been

reported suggests that we may have not reached these

limits. Table I reports prediction accuracy taken from the

literature, in chronological order, of methods that have

been reported in the past few years. The methods were

not applied to the same loop set, so that caution must be

exercised in making direct comparisons. Note that the

most accurate results are from the papers of Jacobson

et al.9 and Zhu et al.,12 in which crystal contacts were

taken into account. It should be pointed out that Rohl

et al.13 predict the conformations of all side chains in a

protein in their procedure whereas other methods use

the experimental conformations for all side chains except

those in the loop.

The methods summarized in Table I are quite different

from one another in detail, but most methods begin by

sampling a large number of sterically feasible backbone

conformations with side chains added in a separate step.

In contrast, the loop prediction program in Modeller

constructs and samples loop conformations, including

side chains, with a bond-scaling and relaxation method

that uses a combination of conjugate gradient minimiza-

tion and molecular dynamics with simulated anneal-

ing.14 The LOOPY algorithm8 (see also later) is based on

a modified version of the Random Tweak algorithm16

that carries out loop closure while avoiding steric clashes.

RAPPER samples conformational space using a fine-

grained set of / u, states while avoiding steric clashes.17

Rosetta uses a combination of database-derived frag-

ments of protein structure from the PDB and assembles

them with a Monte Carlo procedure followed by simu-

lated annealing.13 PLOP samples conformational space

using a systematic dihedral-angle based build-up proce-

dure that constructs fragments from the N-terminal and

C-terminal stems that meet in the middle.9,12

Each of the methods in Table I relies on the use of a

scoring function aimed at selecting the most energetically

favorable conformations from the ensemble of loops that

are generated. Here again there is considerable diversity

in the approaches that are taken. The LOOPY algorithm

uses a simple heuristic scoring function that accounts

approximately for van der Waals interactions, hydrogen

bonding, and hydrophobicity, and includes a ‘‘colony

energy’’ term that attempts to account for conforma-

tional entropy.8 The RAPPER algorithm uses the

RAPDF18 statistical potential to filter loop ensembles fol-

lowed by all-atom energy minimization on a subset of

loops from the ensemble using the AMBER force field

with a generalized Born solvation term.15 The combina-

tion of ab initio loop generation with subsequent molec-

ular mechanics energy minimization has been used for

some time in loop modeling.19,20 PLOP uses the all-

atom OPLS force field with a generalized Born solvation

term. Rosetta uses its own scoring function which has

both statistical and physico–chemical features.21

The computational demands posed by the different

methods also vary greatly. LOOPY makes a full predic-

tion for an eight residue loop in about 20 min on a 1.3

MHz processor while the other methods require hours or

more. In contrast PLOP is extremely accurate but very

slow, taking hours to days for a comparable problem.

A number of conclusions emerge from an analysis of

the results summarized in Table I. The PLOP results

show that truly high-quality results are obtainable given

Table I
Loop Prediction Accuracy of Published Methods

RMSD (�)

Loop length Modellera LOOPYb RAPPERc Rosettad PLOPe PLOP IIf

8 2.5 1.45 2.28 1.45 0.84 NA
9 3.5 2.68 2.41 NA 1.28 NA
10 3.5 2.21 3.48 NA 1.22 NA
11 5.5 3.52 4.94 NA 1.63 1.00
12 6.0 3.42 4.99 3.62 2.28 1.15
13 6.5 NA NA NA NA 1.25

aData taken from Figure 9 of Fiser et al.14

bData taken from Table I of Xiang et al.8

cData taken from Table III of de Bakker et al.15

dData taken from Tables IV and VV of Rohl et al.13

eData taken from Table IV of Jacobson et al.9

fData taken from Table II of Zhu and Pincus et al.12
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an accurate molecular mechanics force field and suffi-

cient computer time to carry out extensive conforma-

tional sampling. However, we do not know how well this

procedure would work if crystal contacts were not taken

into account. Moreover, the procedure is quite slow

and becomes increasingly inefficient for longer loops.

LOOPY’s heuristic function appears to work quite well

but the quality of the results also degrades for long loops

and its use of an approximate heuristic potential function

limits its ultimate accuracy. The Rosetta procedure is

hard to compare with other methods because it repacks

side chains on the entire protein (not just the loop resi-

dues) so that its results as reported in Table I are for a

harder problem than attacked by the other algorithms

(see, however, later). Finally, RAPPER appears to be less

accurate than the other procedures but its use of a statis-

tical potential allows a fast conformational energy evalua-

tion that should prove increasingly useful for predictions

on longer loops.

The goal in this work is to develop a loop prediction

protocol that approaches the level of accuracy obtained

by PLOP but that is computationally efficient. To this

end we first consider a number of loop closure proce-

dures that have recently been reported in the literature

and evaluate them in terms of their ability to generate

sterically reasonable native-like loop conformations. We

then test the ability of statistical potentials to identify

native-like conformations guided in large part by recently

reported successes of the DFIRE potential.22,23 On the

basis of our results, we describe a loop prediction proto-

col (LoopBuilder) that is similar in principle to the one

used in RAPPER, but is different in the details. Specifi-

cally, we use the LOOPY program to generate a starting

ensemble of sterically reasonable conformations including

side chains, DFIRE to select a subset of these conforma-

tions, and, finally, an all-atom energy minimization. The

results that we obtain improve upon those reported in

Table I (except for those obtained from PLOP) and the

calculations do not involve significant computational

cost. Moreover, the protocol is modular thus allowing for

the introduction of new algorithms and scoring functions

at any stage of the process.

MATERIALS AND METHODS

Loop datasets

Much of our analysis is carried out on loops used in

the study of Jacobson et al.9 which is a filtered set taken

from 8–12 residue data sets compiled by Fiser et al.14

and Xiang et al.8 We also used a set of 11,12, and 13-res-

idue loops taken from the study of Zhu et al.12 Both

Jacobson et al. and Zhu et al. filtered out loops whose

structures were crystallized at a nonstandard pH, con-

tained any atom in the loop region within some 4.0 Å of

any neutral ligand or 6.5 Å of any metal ion and whose

average b-factor summed over N, Ca, C, O, Cb was

larger than 35 Å2. In total, we considered 63 eight, 56

nine, 40 ten, 54 eleven, 40 twelve, and 40 thirteen-residue

loops.

In all cases, we used the global root-mean-square devi-

ation (RMSD) measure using the N, Ca, C, and O atoms

to compare the structural similarity of a predicted loop

conformation with the native loop conformation. The

global RMSD is measured after optimal superposition of

the body of the protein (i.e., all backbone heavy atoms

excluding those atoms belonging to the loop).

Loop closure methods

The algorithms compared in this section include cyclic

coordinate descent (CCD)24, Wriggling25, PLOP-build9

(version 4.0), LOOPY, and two algorithms used in

LOOPY, Random Tweak and Direct Tweak. We used in-

house implementations of CCD and Wriggling (imple-

menting published algorithms and convergence criteria),

while the other programs either originated in our lab

(LOOPY, Random Tweak and Direct Tweak) or were

obtained from their authors (PLOP-build9). In the case

of CCD, we modified the published algorithm so that

closure conditions used for the C-terminal stem were

changed from the (N, Ca, C) atoms to (Ca, C, O)

atoms. This was necessary to facilitate comparisons with

the other algorithms. CCD, Wriggling, and Random

Tweak generate closed loops without accounting for steric

overlaps as does PLOP-build as used here (steric clash fil-

ter turned off). The Random Tweak algorithm is the one

used in LOOPY26 which avoids the chirality issues that

were present in Shenkin and Levinthal’s original imple-

mentation.16 Random Tweak generates loop conforma-

tions that are open at one end and then closes them by

making small changes to F/C angles of the loop to

enforce distance constraints between corresponding

atoms between the flying and fixed stems. This is done

using an iterated Lagrange multiplier method that satis-

fies distance constraints imposed by the stem residues.

‘‘Direct Tweak’’ is similar to Random Tweak but also

includes a nonbonded energy term in the iterated

Lagrangian formulation that simultaneously enforces dis-

tance constraints while avoiding steric clashes.8,26 Direct

Tweak differs from the other algorithms used here in that

its minimization procedure accounts for steric interac-

tions between loop atoms and atoms in the rest of the

protein. The LOOPY algorithm8,26 uses both Random

Tweak and Direct Tweak. Closed loops are generated

with Random Tweak and are then filtered for steric

clashes with a heuristic scoring function. Side chains are

then added with a modified version of the SCAP27 algo-

rithm and the loop conformations that survive the filter

are energy minimized with Direct Tweak. This is the

method that is used in LoopBuilder (see later) but in

order to allow comparisons with the other loop closure

C.S. Soto et al.
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methods, in this section we skip the side chain addition

step. We refer to this algorithm as LOOPYbb where ‘bb’

indicates backbone atoms only. LOOPYbb thus involves

loop closure with Random Tweak followed by minimiza-

tion in torsion angle space of backbone atoms with

Direct Tweak. Here we compare Direct Tweak and

LOOPYbb with loop closure methods such as CCD,

Wriggling, Random Tweak, and PLOP-build that do

not account for steric hindrance during the closure

procedure.

A loop conformation was considered successfully

closed if the RMSD between the Ca and C atoms at the

C-terminus of the open loop conformation (i.e., flying

stem) and the corresponding atoms on the fixed stem

was less than 0.25 Å. Since PLOP-build generates frag-

ments starting from the N-terminal and C-terminal

residues that meet in the middle, the above closure con-

dition could not be used for this algorithm. Instead, we

checked the bond lengths between the backbone atoms

belonging to the three central residues in each loop. Any

bond length that differed by more than �0.25 Å from

the standard value was discarded. Standard bond lengths

were obtained from the published values of Engh and

Huber.28

A van der Waals (VDW) clash filter was applied to all

closed loops. The VDW clash filter uses a three-dimen-

sional grid to screen all loop atoms for clashes with the

protein body in linear time. We used the ratio of the dis-

tance between two nonbonded atoms to the sum of their

van der Waals radii (taken from the XPLOR-NIH29

implementation of the CHARMM22 force field) to define

a filter. Any loop conformation that contained an atom

for which this ratio is smaller than a defined cutoff was

rejected. Since many of the loop conformations contained

moderate clashes that could be fixed using energy mini-

mization, we used a lenient cutoff of 0.5 so that any two

atoms would be allowed to approach each other to

within half the sum of their van der Waals radii.

To determine how each method would perform in the

context of a real loop prediction strategy, we defined a

measure of efficiency as the time in minutes, Tusable,

required to generate 10,000 closed loop conformations

that do not contain steric clashes (which we term ‘‘usa-

ble’’ loops). Tusable is given by:

Tusable ¼ 10; 000

fpass
3Ttotal ð1Þ

where fpass is the fraction of loops that are closed and

not rejected by the VDW clash filter and Ttotal indicates

the total time required to both close and screen a loop

conformation. To calculate Ttotal, we added the values for

the average closure time over 100 loop conformations for

each algorithm at each loop length to the average time

required to screen a loop conformation for clashes. Since

PLOP-build uses a different strategy for loop closure, we

obtained closure times for this algorithm by dividing the

time to generate all the loop conformations (which can

vary from one loop target to the next—see previously)

by the total number of loop conformations. Screening

times for PLOP-build were obtained by taking the aver-

age time to screen all closed loop conformations at each

loop length.

Scoring functions

Loop conformations with added side chains were eval-

uated with the RAPDF18 and DFIRE22 statistical poten-

tials and a simplified energy function used in LOOPY.

The RAPDF potential was obtained from http://software.

compbio.washington.edu/ramp/ramp.html. The DFIRE

potential used here was an in-house version of the pub-

lished potential22 that was rederived using a recent high-

resolution protein structure data set.30 The softened van

der Waals potential in LOOPY [see Eq. (10) from Xiang

et al.8] was also tested. This empirical scoring function

accounts in a rough way for van der Waals interactions,

hydrogen bonding, and hydrophobicity. Its functional

form is:

DE ¼ h � 61:66e�2r2 1

r
� 1:12

r0:5

� �
ð2Þ

where r is the ratio of the distance between two non-

bonded atoms to the sum of the van der Waals radii

taken from the CHARMM2231 force field, h is a param-

eter used to account for hydrogen bonding and hydro-

phobic energy that is scaled according to atom charge,

polarity, and the sign of the energy.26 If two atoms are

negatively and positively charged, h is set to 1.25 or 0.75

depending on whether DE is negative or positive. Simi-

larly, if the two atoms are both nonpolar, h is set to 1.25

or 0.75 depending on whether DE is negative or positive.

If two atoms are polar and nonpolar, h is set to 0.85 to

penalize the interaction. We denote this form of

LOOPY’s energy function as ‘‘LOOPY-sVDW1’’ where

‘‘s’’ indicates the use of a softened van der Waals expres-

sion and ‘‘1’’ indicates that hydrogen bonding and

hydrophobicity are implicitly incorporated into the van

der Waals expression. The original version of LOOPY

used a more detailed scoring function than that given in

Eq. (2) and included a surface area-dependent hydropho-

bicity term and an explicit hydrogen bonding potential.

The previous procedure is significantly slower than the

one based on Eq. (2) and the results obtained are only

marginally improved. It should be noted that while the

colony energy8 is used during the generation of the loop

ensembles, this option is turned off when scoring the

ensembles with LOOPY-sVDW1.

Loop Modeling
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RESULTS

Assessing the performance of loop
closure methods

We evaluate CCD, Wriggling, Random Tweak, Direct

Tweak, LOOPYbb, and PLOP-build in terms of the com-

puter time required to generate sterically reasonable

closed loop conformations. These evaluations are carried

out on loops that do not include side chain atoms.

We first generate ensembles of open-loop conforma-

tions for a subset of the 8, 11, and 12-residue loop tar-

gets considered later on in this study. Specifically, we

considered 53 eight, 17 eleven, and 10 twelve-residue

loop targets (see supplementary materials for details). In

each case the N-terminus of the loop was anchored and

/ u, angles were randomly selected from a backbone

conformer library.8 Five thousand open loop conforma-

tions were generated for each of the 8, 11, and 12-residue

loop targets. PLOP-build does not permit the number of

desired closed loops to be specified in advance since this

value is controlled by the sampling resolution. However,

PLOP-build does permit the minimum number of loops

that will be generated to be specified in advance. Thus,

we set the minimum number of loops output by PLOP-

build to 5000 for the 8, 11, and 12-residue loop targets.

Table II summarizes a number of performance charac-

teristics of the various loop closure methods. All methods

succeeded in closing 90% or more of the open loop con-

formations (data not shown). All methods except Direct

Tweak do not account for interactions between loop

atoms and the rest of the protein during the course of

the closing procedure. For this reason, most of the loops

do not pass the steric filter and would have to be dis-

carded at the next step of a loop prediction protocol.

There is little difference between the various procedures

(other than Direct Tweak and LOOPYbb) in terms of the

fraction of loops that pass the filter, ƒvdw, or in terms of

the value of RMSDmin, the closest structure to native that

is generated. For the 11 and 12-residue loops, only Direct

Tweak and LOOPYbb generate structures with RMSDmin

values below 2 Å.

All methods are quite fast and loop closure does not

appear to be a rate-limiting step in loop prediction. The

times reported for CCD are longer than those for the

other algorithms but this may be due to limitations in

our local implementation of CCD. Indeed an implemen-

tation we obtained from the Dunbrack lab is about seven

times faster than our own. CCD has an advantage of

algorithmic simplicity and indeed we have recently used

it in a study of protein segment refinement.30

Direct Tweak and LOOPYbb are much slower than

most of the other loop closure algorithms but, since they

account for interactions between the loop and the rest of

the protein as part of the closure procedure, most of the

structures they generate pass the steric filter. In addition

the RMSDmin values of these conformations are signifi-

cantly smaller than those of the other algorithms. To

compare all algorithms on an equivalent footing, we

summarize in Table III the estimated time required to

close 10,000 loops that pass the steric filter. Here the per-

formance of Direct Tweak and LOOPYbb are in the range

of the other methods but they offer the advantage of

producing loop conformations with lower RMSDmin. Of

course the greater efficiency of the other loop closure

algorithms suggests that one could use them to generate

a much larger number of conformations than generated

with Direct Tweak so as to arrive at comparable values of

RMSDmin. However, we have found (data not shown)

that this would require generating about a million con-

formations for 8-residue loops and many more for longer

loops. Any loop prediction procedure would then have to

add side chains to each of these loops and evaluate them

with some scoring function. Thus, the use of Direct

Tweak appears to provide a far more effective strategy.

Table II
Performance Characteristics of Loop Closure Procedures

Algorithm

Loop lengths

8 11 12

fVDW
a RMSDmin

b fVDW RMSDmin fVDW RMSDmin

Random Tweakc 0.19 1.22 0.06 2.22 0.06 2.64
CCDd 0.17 1.20 0.05 2.11 0.05 2.57
Wrigglinge 0.14 1.43 0.03 2.24 0.04 2.68
PLOP-buildf 0.17 0.99 0.02 2.18 0.01 2.69
Direct Tweakg 0.82 0.69 0.74 1.20 0.78 1.48
LOOPYbb

h 0.83 0.89 0.66 1.51 0.69 1.80

aFraction of closed and sterically feasible loop conformations.
bRMSD averaged over loop conformations from each ensemble with the smallest

RMSD to native.
cImplementation of Xiang et al.8,26

dImplementation of Zhu et al.30

eIn-house implementation of the Wriggling algorithm.25

fDihedral angle based build up procedure of Jacobson et al. 9 obtained from the

author.
g,hImplementation of Xiang et al.8,26

Table III
Estimated Time in Minutes Required to Generate 10,000 Closed and Sterically

Feasible Loop Conformations

Algorithm

Tusablea

Eight Eleven Twelve

Random Tweak 1.99 8.47 10.17
CCDb 159.46 511.10 527.77
Wriggling 5.67 28.50 22.50
PLOP-build 3.39 35.00 71.67
Direct Tweak 34.00 73.44 75.65
LOOPYbb 22.86 62.21 59.15

aSee Equation 1.
bThe implementation of Canutescu and Dunbrack24 is about seven times faster.
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As mentioned earlier the LOOPYbb algorithm to gener-

ate sterically reasonable closed loops exploits both Ran-

dom Tweak and Direct Tweak.8,26 As can be seen in

Tables II and III, the performance of LOOPYbb is compa-

rable with that of Direct Tweak. It seems clear that the

ability of Direct Tweak to perform an energy minimiza-

tion in torsion space while accounting for interactions

within the entire protein is responsible for its success,

whether or not the starting conformation is generated

randomly, or with a fast loop closure algorithm.

Scoring loop ensembles with simple
scoring functions

A full loop prediction protocol requires the addition of

side chains and a subsequent ranking with some scoring

function. Of the methods summarized in Table I, LOOPY

is the most efficient and is reasonably accurate as well.

Moreover, as can be seen in the previous section, it is

based on a particularly efficient approach to loop closure.

However LOOPY uses a heuristic scoring function which

may not be optimal in terms of its ability to identify

native-like conformations. In Table IV LOOPY’s scoring

function is compared with two widely used statistical

potentials, DFIRE and RAPDF, in terms of their ability

to rank the native conformation as the best among a

LOOPY-generated decoy set. These sets included 1000

conformations for eight-residue loops, 2000 for nine-resi-

due loops, 5000 for ten, eleven, and twelve residue loops,

and 8000 for thirteen-residue loops. Loop ensembles are

generated using LOOPY for each loop target and then

the different energy functions are used to score each con-

formation, including the native. It is clear that DFIRE is

significantly more successful than the other methods in

identifying the native conformation.

Of course, in a real modeling application the native

structure is not available so that a more important test of

a scoring function is how well it selects low RMSD con-

formations from an ensemble of conformations generated

by a loop closure method. In Figure 1 we show box plots

to indicate how well each scoring function succeeds in

selecting low RMSD conformations from a set of

LOOPY-generated loops. The top of each vertical line

shows the RMSD of the worst prediction of a given scor-

ing function and the point on the bottom shows the best

prediction. The bottom and top horizontal line on each

box shows the RMSD of the 25th and 75th percentile

prediction, respectively, while the line through the middle

shows the median. The average RMSD prediction accu-

racy for each scoring function is displayed on the graph

as a point inside the box. It is clear from the figure that

DFIRE is the best of the three scoring functions tested.

Its best predictions are almost universally better than

those of the other functions and the range of RMSD val-

ues within the box tends to be smallest, that is it makes

fewer bad predictions. RAPDF appears to be the least

effective of the three scoring functions, at least on the

loop test set generated here.

The dashed line in Figure 1 shows the average value of

RMSDmin for each loop set. As can be seen, most

RMSDmin values are below 1.5 Å whereas the majority of

the RMSD values for conformations selected by the scor-

ing functions are above this value, even when DFIRE is

used. Thus, there is significant room for improvement in

terms of the consistent selection of low RMSD conforma-

tions. One approach is to use more accurate scoring

functions, for example from atomic level force fields that

include solvation effects. However, these tend to be too

slow and too sensitive to small structural variations to

apply to a large ensemble of conformations. Figure 2

contains a plot of RMSDBest, the average value of the

lowest RMSD conformation among the N top scoring

loops ranked by DFIRE, as a function of N. For all loop

lengths, the plots appear to level off at about 50–100

low-energy loops. This suggests that it might be produc-

tive to apply a detailed potential function to a subset of

loops that have been selected by a more simplified scor-

ing function. This approach is the basis of the hybrid

loop prediction protocol that is described in the next

section.

LoopBuilder

The general protocol described in this section includes:

(1) The generation of an ensemble of closed loop confor-

mations with side chains added; (2) Filtering the ensem-

ble with a simple scoring function and retaining only the

N top scoring loop conformations; and (3) Using an all

atom energy function to minimize and then to rank

these N conformations.

On the basis of speed of the Random Tweak algorithm

used in LOOPY, and the success of Direct Tweak and

LOOPYbb in generating conformations with low values of

RMSDmin, we have adopted the complete LOOPY strat-

egy to obtain an ensemble of starting conformations.

Specifically, we use LOOPYbb to generate backbone con-

Table IV
Numbers of Cases Where Scoring Functions Rank the Native Loop as Lowest in

Energy for Loop Ensembles Generated With LOOPY

Loop length Na

Scoring functions

DFIREb LOOPY-sVDW1c RAPDFd

8 63 48 18 17
9 56 37 26 20
10 40 28 18 10
11 54 35 26 13
12 40 28 23 13
13 40 32 23 8

aNumber of loop targets studied.
bZhu et al.30 implementation of the DFIRE statistical potential.
cModified softened van der Waals scoring function.26

dRAPDF18 statistical potential.
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formations, add side chains with a modified version of

the SCAP27 algorithm, and then carry out a torsional

energy minimization with Direct Tweak As earlier, the

number of closed loop conformations generated was

1000 for eight-residue loops, 2000 for nine-residue loops,

5000 for ten, eleven, and twelve-residue loops, and 8000

for thirteen-residue loops. We have found that increasing

the ensemble size to 10,000 leads only to a marginal

improvement in accuracy for all loop lengths. We retain

50 loop conformations from each ensemble for further

analysis based on the results in Figure 2.

Each of the top 50 conformations was subjected to an

energy minimization is Cartesian space using the PLOP

program (Version 12).9 PLOP uses the OPLS-AA force

field and a surface generalized Born solvation model with

a nonpolar estimator (OPLS/SBG-NP). We used 1000

steps of truncated Newton energy minimization (or until

an RMS gradient of 0.001 kcal/mol/Å was reached). Only

atoms in the loop were allowed to move. Energy evalua-

tions were carried out using an internal dielectric con-

stant of 1 and an external dielectric constant of 80.

Table V contains average and median prediction accura-

cies over the entire set of loop targets using different

approaches to ranking. It is clear from the table that the

results using LoopBuilder are significantly better than

those obtained from LOOPYor from a ranking with DFIRE

alone. Moreover, the results obtained by minimizing the

top conformations ranked by DFIRE are significantly better

than those obtained by carrying out a molecular mechanics

energy-minimization on the 50 top conformations ranked

by LOOPY. This shows the value of using a more accurate

scoring function at the loop filtering stage.

The predictions of LoopBuilder are clearly superior to

those reported in Table I, with the exception of PLOP.

The average execution time of the hybrid approach over

30 eight-residue loop targets was less than 1 h on a sin-

gle-dual Xeon processor operating at 1.4 GHz. The aver-

age time for 10 twelve-residue loop targets was less than

4.5 h. Thus, LoopBuilder is about three times slower

than LOOPY but yields predictions with significantly

improved accuracy.

To better simulate the problem of predicting loop con-

formations in a homology modeling application, we have

assumed knowledge only of the backbone conformations

and have used the SCAP27 program to add side chains

to all residues in all of the proteins studied in this article.

We then use LoopBuilder to predict the loop conforma-

Figure 2
The lowest RMSD to native conformation as a function of the number of top

scoring loops (RMSDBest) according to DFIRE. The curves represent averages

taken over each loop length.

Table V
Average and Median Prediction Accuracies Using Loop Ensembles Generated

With LOOPY

Loop length

Average (median) prediction accuracy

LOOPYa LOOPY/PLOPb DFIREc Loop builderd

8 1.89 (1.59) 1.96 (1.72) 1.69 (1.40) 1.31 (0.97)
9 2.71 (2.04) 3.67 (3.69) 2.52 (1.97) 1.88 (1.17)
10 2.42 (2.18) 3.40 (3.16) 2.41 (2.22) 1.93 (1.64)
11 3.02 (2.48) 4.36 (3.66) 3.43 (2.68) 2.50 (1.95)
12 3.15 (2.71) 4.11 (3.95) 3.15 (2.74) 2.65 (2.41)
13 4.44 (3.46) 5.84 (5.68) 4.35 (3.63) 3.74 (2.85)

aLOOPY prediction.
bPrediction based on a PLOP energy minimization of the 50 low energy loop con-

formations according to LOOPY.
cPrediction based on a DFIRE ranking of the loops generated using LOOPY.
dPrediction obtained from LoopBuiulder which applies a PLOP energy minimiza-

tion to the 50 low energy loop conformations selected by DFIRE.

Figure 1
Box plot for various RMSD values obtained from different scoring functions.

See text for details.
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tion over the entire set of targets. In Table VI we com-

pare these results with those obtained when side chains

are fixed in the native conformation. Two sets of ensem-

ble sizes were used so as to determine if larger sampling

improved results. As can be seen from the table, there is

some degradation of the quality of the results when side

chains are repacked relative to the results obtained using

X-ray coordinates for all side chains. In addition, the ta-

ble shows that when side chains are repacked, increasing

the numbers of loops that are generated offers a signifi-

cant improvement in prediction accuracy. Using the

larger ensemble size increases the computational cost by

about a factor of 4 (data not shown).

Rohl et al.13 used Rosetta to carry out predictions on

a set of 8 and 12-residue loop targets using native pro-

tein structures with repacked side chains and they

obtained prediction accuracies of 1.45 and 3.62 Å for a

set of 8 and 12-residue loops, respectively (see Table I).

As can be seen in Table VII, application of LoopBuilder

to this data set* yielded similar average RMSDs for 8-res-

idue loops of 1.63 and 1.35 Å using ensemble sizes of

1000 and 10,000, respectively. For 12-residue loops the

corresponding numbers are 3.70 and 3.54 Å for ensemble

sizes of 5000 and 10,000, respectively. Thus, the perform-

ance of LoopBuilder is essentially equivalent to that of

Rosetta when both are applied to the modified Rohl

et al.13 dataset but the computational cost of Loop-

Builder is likely to be significantly less since it does not

involve an extensive Monte Carlo procedure.

DISCUSSION

In this article, we have studied a number of aspects of

the loop modeling problem with the goal of developing a

computationally efficient protocol for the prediction of

loop conformations that can be easily modified and

improved. To this end, we have investigated two issues

that are common to many problems in protein structure

prediction, sampling and scoring. Most approaches to

loop modeling begin with the generation of a large num-

ber of loops and then use some scoring function to select

those that are energetically favorable. If there were a

method available that could refine structures from con-

formations that are far from native, then sampling would

not be so important. However the current reality is that

many scoring functions do a good job in identifying

native-like conformations if they are sampled, but that

refinement from conformations that are not very close to

the native does not at this stage offer a general purpose

solution to the problem.

For this reason, it is important to determine how suc-

cessful a particular sampling method will be in generat-

ing native-like conformations and then to ask whether a

particular scoring function will be able to identify these

conformations. For the specific case of loop modeling

with ab-initio methods, which is the subject of this work,

we have tested the ability of loop closure methods to

generate native-like conformations. Most of the methods

that ignore steric clashes perform comparably in terms of

speed in the sense that the loop closure step is not rate-

limiting in the context of the entire loop prediction pro-

tocol. Direct Tweak is a method that generates closed-

loop conformations while accounting for interactions

between the loop and the rest of the protein. It offers sig-

nificant improvement in the RMSDmin values of the con-

formations it generates and, in addition, the entire distri-

bution is shifted towards conformations with lower

RMSD. This is hardly surprising since a large fraction of

the conformations generated by the other methods are

not sterically feasible. Thus, one might, in principle,

expect that using a faster method which, for the same

amount of computer times allows the generation of

many more conformations than does Direct Tweak,

would yield comparable RMSDmin values. However, as

pointed out above, an unacceptably large number of con-

formations would have to be generated with other meth-

ods for them to be competitive with LOOPYbb in terms

of generating low RMSDmin conformations.

As in previous work,30 we have found that DFIRE is a

particularly effective statistical potential both in terms of

Table VI
Average and Median Loop Prediction Accuracies Obtained With Loop Builder

Using Both Native and Repacked Side Chains

Loop length

Average (median) prediction accuracy

Nativea Repacka Repackb

8 1.31 (0.97) 1.37 (1.17) 1.17 (0.79)
9 1.88 (1.17) 1.99 (1.53) 1.69 (0.91)
10 1.93 (1.73) 2.22 (1.90) 1.82 (1.48)
11 2.50 (1.95) 2.94 (2.69) 2.52 (2.28)
12 2.65 (2.41) 3.21 (2.81) 2.71 (2.28)

aEnsemble sizes of 1000 for eight, 2000 for nine, and 5000 for ten, eleven, and

twelve-residue loops.
bEnsemble size of 10,000 loop conformations was used for all loop lengths.

Table VII
Prediction Accuracies for 8 and 12-Residue Data Set of Rohl et al. Using

LoopBuilder With Repacked Side Chains

Loop length

Average (median) prediction accuracy

LoopBuildera LoopBuilderb Rohl et al.c

8 1.63 (1.14) 1.35 (0.99) 1.46 (1.20)
12 3.70 (2.77) 3.54 (3.11) 3.56 (3.28)

aEnsemble size of 1000 for eight and 5000 for twelve-residue loops.
bEnsemble size of 10,000.
cAverage and median prediction accuracies for Rohl et al.13 were computed over

the same set of loop targets considered in Columns 2 and 3.

*The following loops belonging to Rohl et al. data set were not considered

because they were either obsolete entries in the PDB (4fxn, 3b5c, and 4ilb) or we

could not energy minimize the loop (1hfc, 1lst).
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its ability to identify native-like conformations, and in

the fact that its use as a filter enriches ensembles with

conformations with lower RMSD values than the two

other scoring functions we tested (Fig. 1). One expects

then that any improvement in the development of fast

scoring functions will lead to improvements in loop pre-

diction accuracy. The strategy of filtering conformations

with a statistical potential and then carrying out a refine-

ment with an MM force field,9 is found to be quite effec-

tive. In principle, one could just ignore the filtering step

and carry out molecular mechanics energy minimizations

on all the conformations generated with a given loop clo-

sure procedure. For example, we have found that mini-

mizing all conformations belonging to the 8-residue

LOOPY-generated ensembles (i.e., >60,000 loops), yields

an average RMSD prediction of 1.36 Å. LoopBuilder

yields an average RMSD prediction over the same set of

loop targets of 1.31 Å. For the 9 and 10-residue loops,

energy minimization of all the LOOPY-generated confor-

mations results in an average RMSD prediction of 2.31

and 2.08 Å. In comparison, LoopBuilder yields an aver-

age RMSD prediction of 1.88 and 1.93 Å for the 9 and

10-residue loops, respectively. It thus appears that the fil-

tering step with DFIRE somewhat improves prediction

accuracy, and of course it reduces the computational cost

of the entire loop prediction process by orders of magni-

tude. Apparently, ‘‘turning on’’ a molecular mechanics

force field at too early a stage in the protocol produces

incorrect local minima that can be filtered out with

DFIRE.

LoopBuilder is similar in many ways to the procedure

reported by de Bakker et al. which uses RAPPER to

generate loop conformations, RAPDF as a filter and all-

atom molecular mechanics energy minimization with

the AMBER force field with a continuum treatment for

the solvent.15 The reported prediction accuracy using the

RAPPER-based procedure is 2.28–4.99 Å for the Fiser

et al. 8–12 residue loop targets.14 Our results for a differ-

ent set of loops of comparable length range between 1.31

and 2.65 Å. It is possible that much of the difference

between the two methods is due to the apparent sup-

eriority of DFIRE over RAPDF (see e.g., Table IV and

Ref. 16).

The combined use of a filtering step followed by a mo-

lecular mechanics-based energy minimization appears to

be an effective general strategy for structure refinement.

We have recently described an iterative, modular optimi-

zation (IMO) procedure, for the refinement of protein

segments containing secondary structure elements.30

IMO also filters conformations with DFIRE and then

subjects them to an MM energy minimization step. We

have found, in agreement with Zhu et al., that varying

DFIRE parameters can affect filtering performance.30

However, after energy minimization, the average RMSD

over loop sets is fairly insensitive to the specific DFIRE

parameterization that is used.

In terms of performance, LoopBuilder offers significant

improvement in accuracy over the methods summarized

in Table I, with the exception of PLOP9,12 which, as

pointed out above, accounts for crystal contacts. A com-

parison of Table I to Table V reveals that the results of

Jacobson et al.9 are about 0.3–0.9 Å more accurate than

the corresponding results obtained using LoopBuilder

depending on loop length and ensemble size. Results

from Zhu et al. (i.e., PLOP II) are clearly superior to

those obtained using LoopBuilder. However, obtaining

results of this quality can require weeks of computer

time on a single processor. Some of the discrepancy in

accuracy is due to the inclusion of the crystal environ-

ment and some of it may be due to the extensive hier-

archical refinement procedure in PLOP that provides an

effective means for densely sampling the conformational

space of a loop using a detailed all-atom energy function.

In addition, the inclusion of the recently developed

hydrophobic contact potential significantly improves the

prediction accuracy for longer loops.12

There are many practical applications for a fast and

accurate loop prediction methodology. In cases where

one is interested in finding as accurate a conformation as

possible for a particular loop, as in structure-based drug-

design, computer time is not necessarily an issue. Thus,

methods like PLOP may be the most appropriate. How-

ever there are many cases where speed is an issue. For

example, when trying to score alternate template-based

models for a given protein, it is essential that the loop

regions be refined in a consistent way; otherwise there

may be a bias towards a particular model simply because

the loops were better built in that model. A fast and

accurate loop prediction methodology avoids this prob-

lem. Moreover, there may be no point in applying a slow

method that involves an extensive sampling procedure

when there is uncertainty as to the conformation of the

rest of the protein, as there often is in homology model-

ing. In such cases one is generally interested in generat-

ing as accurate a loop conformation as possible with a

method that does not significantly extend the computa-

tion time required for the construction of the entire

model. LoopBuilder seems ideally suited for such appli-

cations. Moreover, when used in conjunction with related

methods, such as our IMO procedure, that sample and

score regions of proteins that contain secondary structure

elements, it is possible to develop a local refinement pro-

cedure for homology models that focuses on regions of a

protein whose conformations are most uncertain. These

in turn might be identified based on sequence align-

ments, or from some local scoring function that identi-

fies regions that appear to be energetically unfavorable.

ACKNOWLEDGMENTS

We would like to thank Professor Matt Jacobson for

helpful discussions and for supplying us with the PLOP-

C.S. Soto et al.

842 PROTEINS DOI 10.1002/prot



build routine. We would also like to thank the Dunbrack

lab for supplying us with their implementation of the

CCD algorithm.

REFERENCES

1. Petrey D, Honig B. Protein structure prediction: inroads to biology.

Mol Cell 2005;20:811–819.

2. Wang Z, Moult J. SNPs, protein structure, and disease. Hum Mutat

2001;17:263–270.

3. Fiser A. Protein structure modeling in the proteomics era. Expert

Rev Proteomics 2004;1:97–110.

4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig

H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic

Acids Res 2000;28:235–242.

5. Xiang BQ, Jia Z, Xiao FX, Zhou K, Liu P, Wei Q. The role of loop

7 in mediating calcineurin regulation. Protein Eng 2004;16:795–798.

6. Shi L, Javitch JA. The second extracellular loop of the dopamine

D2 receptor lines the binding-site crevice. Proc Natl Acad Sci USA

2004;101:440–445.

7. Nikiforovich GV, Marshall GR. Modeling flexible loops in the dark-

adapted and activated states of rhodopsin, a prototypical G-pro-

tein-coupled receptor. Biophys J 2005;89:3780–3789.

8. Xiang Z, Soto CS, Honig B. Evaluating conformational free ener-

gies: the colony energy and its application to the problem of loop

prediction. Proc Natl Acad Sci USA 2002;99:7432–7437.

9. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE,

Friesner RA. A hierarchical approach to all-atom protein loop pre-

diction. Proteins 2004;55:351–367.

10. Michalsky E, Goede A, Preissner R. Loops in proteins (LIP)—a

comprehensive loop database for homology modelling. Protein Eng

2003;16:979–985.

11. Lessel U, Schomburg D. Importance of anchor group positioning in

protein loop prediction. Proteins 1999;37:56–64.

12. Zhu K, Pincus DL, Zhao S, Friesner RA. Long loop prediction

using the protein local optimization program. Proteins 2006;65:

438–452.

13. Rohl CA, Strauss CE, Chivian D, Baker D. Modeling structurally

variable regions in homologous proteins with rosetta. Proteins

2004;55:656–677.

14. Fiser A, Do RK, Sali A. Modeling of loops in protein structures.

Protein Sci 2000;9:1753–1773.

15. de Bakker PI, DePristo MA, Burke DF, Blundell TL. Ab initio con-

struction of polypeptide fragments: accuracy of loop decoy discrim-

ination by an all-atom statistical potential and the AMBER force

field with the generalized Born solvation model. Proteins 2003;51:

21–40.

16. Shenkin PS, Yarmush DL, Fine RM, Wang HJ, Levinthal C. Predict-

ing antibody hypervariable loop conformation. I. Ensembles of

random conformations for ringlike structures. Biopolymers 1987;26:

2053–2085.

17. DePristo MA, de Bakker PI, Lovell SC, Blundell TL. Ab initio con-

struction of polypeptide fragments: efficient generation of accurate,

representative ensembles. Proteins 2003;51:41–55.

18. Samudrala R, Moult J. An all-atom distance-dependent conditional

probability discriminatory function for protein structure prediction.

J Mol Biol 1998;275:895–916.

19. Smith KC, Honig B. Evaluation of the conformational free energies

of loops in proteins. Proteins 1994;18:119–132.

20. Liu Z, Mao F, Li W, Han Y, Lai L. Calculation of protein surface

loops using Monte-Carlo simulated annealing simulation. J Mol

Modeling 2000;6:1–8.

21. Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure pre-

diction using Rosetta. Methods Enzymol 2004;383:66–93.

22. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state

improves structure-derived potentials of mean force for structure

selection and stability prediction. Protein Sci 2002;11:2714–2726.

23. Zhang C, Liu S, Zhou Y. Accurate and efficient loop selections

by the DFIRE-based all-atom statistical potential. Protein Sci 2004;

13:391–399.

24. Canutescu AA, Dunbrack RL, Jr. Cyclic coordinate descent: a

robotics algorithm for protein loop closure. Protein Sci 2003;12:

963–972.

25. Cahill S, Cahill M, Cahill K. On the kinematics of protein folding.

J Comput Chem 2003;24:1364–1370.

26. Xiang Z. Advances in Homology Modeling. PhD thesis, Columbia

University; 2000.

27. Xiang Z, Honig B. Extending the accuracy limits of prediction for

side-chain conformations. J Mol Biol 2001;311:421–430.

28. Engh RA, Huber R. Accurate bond and angle parameters for X-ray

protein structure refinement. Acta Cryst 1991;47:392–400.

29. Schweiters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH

NMR molecular structure determination package. J Magn Reson

2003;160:66–74.

30. Zhu J, Xie L, Honig B. Structural refinement of protein segments

containing secondary structure elements: local sampling, knowl-

edge-based potentials, and clustering. Proteins 2006;65:463–479.

31. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S,

Karplus M. CHARMM: a program for macromolecular energy,

minimization, and dynamics calculations. J Comp Chem 1983;4:

187–217.

Loop Modeling

DOI 10.1002/prot PROTEINS 843


