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Detection of the state of self-motion, such as the instantaneous heading direction, the
traveled trajectory and traveled distance or time, is critical for efficient spatial navigation.
Numerous psychophysical studies have indicated that the vestibular system, originating
from the otolith and semicircular canals in our inner ears, provides robust signals for
different aspects of self-motion perception. In addition, vestibular signals interact with
other sensory signals such as visual optic flow to facilitate natural navigation. These
behavioral results are consistent with recent findings in neurophysiological studies. In
particular, vestibular activity in response to the translation or rotation of the head/body
in darkness is revealed in a growing number of cortical regions, many of which are
also sensitive to visual motion stimuli. The temporal dynamics of the vestibular activity
in the central nervous system can vary widely, ranging from acceleration-dominant to
velocity-dominant. Different temporal dynamic signals may be decoded by higher level
areas for different functions. For example, the acceleration signals during the translation
of body in the horizontal plane may be used by the brain to estimate the heading
directions. Although translation and rotation signals arise from independent peripheral
organs, that is, otolith and canals, respectively, they frequently converge onto single
neurons in the central nervous system including both the brainstem and the cerebral
cortex. The convergent neurons typically exhibit stronger responses during a combined
curved motion trajectory which may serve as the neural correlate for complex path
perception. During spatial navigation, traveled distance or time may be encoded by
different population of neurons in multiple regions including hippocampal-entorhinal
system, posterior parietal cortex, or frontal cortex.
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INTRODUCTION

Accurate and precise detection of displacement of our head and body in space is critical for
important functions including balance, posture control, gait, spatial orientation and self-motion
perception. It can be accomplished through the vestibular pathway that starts from two small
but elegant organs embedded in our inner ears: the otolith and semicircular canals, which
detect linear and angular acceleration of our head, respectively (Goldberg and Fernandez, 1971;
Fernández and Goldberg, 1976a,b). The encoded inertial motion signals in the peripheral system
are propagated to the central nervous system for further processing. While the neural circuits
mediating automatic process such as vestibulo-ocular reflex (VOR) for maintaining visual stability
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and body balance are well known (Takakusaki, 2017), less is
clear about how vestibular signals are coded by the brain for
perception of self-motion and spatial orientation (Lopez, 2016).
Recent neurophysiological studies have discovered that robust
vestibular signals are distributed broadly in sensory cortices,
suggesting that the vestibular system may be involved in higher
cognitive functions (Gu, 2018).

In this review article, we summarized recent progress on
the involvement of the vestibular system in higher cognitive
functions, particularly for self-motion. We will focus on three
topics: (1) how vestibular signals may contribute to estimating
of one’s heading direction through space; (2) how a more
complex path trajectory may be coded by convergent translation
and rotation signals arising independently from the otolith and
horizontal canals; and (3) how traveled distance or time is
possibly coded by the vestibular system. For each topic, we first
reviewed results from psychophysical studies on humans and
monkeys, and then pointed to the neurophysiological studies that
may provide insights for the underlying neural mechanisms. We
finally discussed remained issues that need to be addressed in
future studies. Note that we have focused primarily on recent
progress in the cortical system. Numerous studies conducted
in subcortical areas including thalamus, hippocampus, and the
limbic system including the entorhinal cortex, retrosplenial
cortex can be referred elsewhere, and are only briefly mentioned
in the current review article.

HEADING

Both human andmonkey can judge heading directions accurately
and precisely based on vestibular cues (Telford et al., 1995;
Ohmi, 1996; Gu et al., 2007; Fetsch et al., 2009, 2011;
Crane, 2012; Drugowitsch et al., 2014). The intact vestibular
system is crucial for heading estimation. For example, bilateral
labyrinthectomy led to dramatic increase in the psychophysical
threshold in a vestibular heading discrimination task, in which
the monkeys were instructed to report their perceived heading
directions delivered through a motion platform under a two-
alternative-forced-choice experimental paradigm (Gu et al.,
2007). However, psychophysical threshold decreased gradually
after labyrinthectomy, suggesting that the animals may learn
to use other sensory inputs, for example, somatosensory
or proprioceptive cues to compensate the deficiency in the
vestibular system. This hypothesis is consistent with the
phenomenon that the animals began to lean their hands against
the wall of the cage when moving around after labyrinthectomy.
Note that, the psychophysical threshold remained about
10 times worse than the baseline (i.e., before labyrinthectomy),
demonstrating that the function of the vestibular system could
not be fully compensated by other sensory systems (Gu et al.,
2007).

Other sensory inputs, in particular, visual cues, do help the
vestibular system formore accurate and precise heading estimate.
Provided with congruent vestibular and visual optic flow cues,
both humans (Butler et al., 2010, 2011, 2015; Crane, 2017;
Ramkhalawansingh et al., 2018) and monkeys (Gu et al., 2008;
Fetsch et al., 2009; Chen et al., 2013) can judge smaller heading

directions compared to the condition when only one sensory
input is available. Interestingly, the decrement in psychophysical
threshold during cue combined condition is consistent with the
prediction from the optimal cue integration theory (Ernst and
Banks, 2002), indicating that our brain makes full use of the
information when summing sensory evidence from different
sensory modalities. The optimal performance is verified under
conditions when a conflict heading angle between vestibular
and visual cues is introduced (Fetsch et al., 2009; Butler et al.,
2015), or when subjects performed a reaction-time version of
the task in which they do not have to wait and accumulate
sensory evidence for a long and fixed duration (Drugowitsch
et al., 2014).

The neural substrate for heading perception has been
extensively explored within the last three decades. Most of
the studies have largely focused on areas within the cerebral
cortex because neurons in many of these areas are modulated
by complex optic flow that is typically experienced during
natural navigation. For example, Duffy and colleagues have
shown that neurons in the dorsal portion of the medial superior
temporal sulcus (MSTd) are sensitive to global-field optic flow
simulating real self-motion (Duffy and Wurtz, 1991, 1995), as
well as to transient whole body movement in darkness (Duffy,
1998; Page and Duffy, 2003). Later on, Angelaki and DeAngelis
further characterized heading selectivity of MSTd neurons in
three-dimensional (3D) space using a six degree of freedom
(6-DOF) motion platform (Gu et al., 2006; Takahashi et al.,
2007; Morgan et al., 2008). They found that nearly all MSTd
neurons are significantly modulated by optic flow and two thirds
are significantly tuned to vestibular stimuli. Labyrinthectomy
largely diminished the vestibular activity but not visual activity
in MSTd, suggesting the responses measured during the physical
motion condition in darkness really arise from the vestibular
source (Gu et al., 2007; Takahashi et al., 2007). Interestingly,
for neurons significantly modulated by both optic flow and
inertial motion, about half prefers congruent heading direction,
and these ‘‘congruent’’ neurons typically exhibit higher heading
selectivity when both cues are provided in a congruent way,
constituting an ideal substrate for more robust heading estimate
during natural navigation. However, note that the other half
neurons tend to carry conflict visual and vestibular heading
information, producing weaker heading selectivity during cue
combination. Thus, this population of neurons is unlikely to
account for more robust heading estimate under congruent
vestibular-visual inputs. The exact functional implications of
these neurons remain a mystery at this stage.

Using the same paradigm, researchers have examined a
number of areas in the cerebral sensory cortices and cerebellum.
Many of these areas exhibit similar neuronal properties as those
found in MSTd, including the ventral parietal area (VIP; Chen
et al., 2011c), the smooth eye movement area of the frontal
eye field (FEFsem; Gu et al., 2016), the visual posterior sylvian
area (VPS; Chen et al., 2011b), and the cerebellar nodulus and
uvula (Yakusheva et al., 2013). However, some areas exhibit
different properties. For example, most neurons in the posterior
insular vestibular cortex (PIVC) are only tuned to vestibular
stimuli, but not to optic flow (Chen et al., 2010). By contrast,
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most neurons in the middle temporal area (MT; Chowdhury
et al., 2009) and V6 (Fan et al., 2015) only respond to visual
stimuli, but not to inertial motion. Taken together, we can
sketch a map with each area serving as a node in the network
for heading perception (Figure 1A; see review by Gu, 2018).
Note in this map, sensory information is hypothesized to further
transmit to decision-related areas such as the frontal and parietal
lobes (e.g., FEFsac and LIP) in which the evidence of sensory
inputs is accumulated and transformed to form decision and
generate motor output. How momentary vestibular evidence is
accumulated during this process is still unverified. For example,
is the vestibular acceleration accumulated for heading estimate
(Drugowitsch et al., 2014)? Future physiological experiments
need to be conducted to examine this hypothesis.

The exact information flow across the heading network
is currently unknown. However, there are hints from
some properties of the neurons recorded from these areas
(Figures 1B,C). First, the strength of vestibular heading
selectivity tends to increase from visual dominant areas (e.g., V6)
to vestibular dominant areas (e.g., PIVC; Figure 1B). Second, the
vestibular temporal dynamics are heterogeneous in the brain. In
the peripheral otolith organs, vestibular signals predominantly
encode the acceleration component of the inertial motion.
Yet these signals are integrated more or less after propagating
to the central nervous system, leading to temporal dynamics
varied from acceleration to velocity dominant profiles (Laurens
et al., 2017; see review by Gu, 2018). Across sensory cortices,
the proportion of velocity dominant neurons tends to decrease
gradually from area MSTd to PIVC, whereas the proportion of
acceleration dominant neurons shows an opposite trend (Chen
et al., 2011a). These results suggest that PIVC may lie most
proximally to the vestibular periphery, followed by VPS and
FEFsem, and then VIP and MSTd.

Although the vestibular and visual heading signals are broadly
distributed within the brain network, it is unclear about which
areas are really involved in heading estimate. Recently some
studies were conducted to address this issue. In these studies,
animals were required to actively report their experienced
heading directions (Gu et al., 2007, 2008; Fetsch et al., 2009,
2011; Liu et al., 2010; Chen et al., 2013). At the same time,
neural activities in certain areas were artificially manipulated
to test their causal roles in heading perception. For example,
researchers injected chemical drugs (such as muscimol) into the
brain to suppress neuronal activity, and found that inactivation of
PIVC greatly diminishes the animals’ heading performance based
on vestibular cues, but not much in the optic flow condition
(Chen et al., 2016). On contrary, inactivation of MSTd greatly
diminishes the animals’ heading performance based on optic
flow, but not much in the vestibular condition (Gu et al., 2012).
These results suggest that the vestibular-dominant area PIVC
plays a critical role in heading perception based on inertial
motion, whereas the visual-dominant area MSTd is key to
heading based on optic flow.

Different from PIVC and MSTd, inactivation of area VIP
does not generate significant effects on the animals’ heading
performance based on either the vestibular or visual cues (Chen
et al., 2016). Such a result is surprising because VIP is similar

to MSTd in many aspects (Britten, 2008; Maciokas and Britten,
2010). For example, both areas carry robust vestibular and visual
heading signals (Chen et al., 2011c). In addition, neuronal activity
in VIP also co-varies with the animal’s choice on a trial to trial
basis, and this choice-correlation effect is even larger compared
to that in MSTd (Chen et al., 2013; Zaidel et al., 2017; Yu
and Gu, 2018). Hence, the exact functional implications of the
motion directional signals in VIP remain unclear and require
further investigation, probably by using other techniques or other
behavioral paradigms. For example, by delivering weak electrical
currents into the brain to selectively activate a cluster of neurons,
researchers examine whether the animals’ perceptual judgments
are biased in the direction that is predicted from the artificially
stimulated neurons (e.g., Salzman et al., 1992). Such an effect
implies that the examined area plays a sufficient role in the
perceptual decisionmaking task. Using this technique, researcher
found that microstimulation in MSTd produces significant
effects on the animals’ heading performance based on optic flow
(Gu et al., 2012; Yu and Gu, 2018; Yu et al., 2018), but not for
VIP (Yu and Gu, 2018). However, this effect becomes significant
when smooth eye movements were simultaneously accompanied
the presented heading stimuli (Zhang and Britten, 2011). In
another study, electrical stimulation in VIP could even directly
evoke complex facial movements (Cooke et al., 2003). Thus,
compared to other sensory cortices (e.g., MSTd), VIP seems to
carry more motor-related signals and may causally contribute to
behavior only when more complex behavior is involved.

TRAJECTORY OF SELF-MOTION

Our motion trajectory through the space can be complex,
typically composed of both translation and rotation components
rather than only one of them. For example, when animals run
away from their predators, they may make turns while remain
heading forward at the same time, resulting in a curved motion
trajectory. Curved motion also frequently happens in human
world, for example, vehicle driving, ski and running race in
sports. How could complex motion trajectories be represented
by the vestibular system?

Recent studies begin to address this issue by focusing on
interactions of translation and rotation signals arising from
otolith and semicircular canals respectively, particularly in
the horizontal plane. For example, researcher have designed
experiments in which human subjects were instructed to navigate
along a curved motion trajectory through passive driving or
active walking (Ivanenko et al., 1997; Israël et al., 2005; Nooij
et al., 2016). The subjects were then required to reproduce
the experienced path by drawing, walking or driving a vehicle.
This is not a trivial task because to reproduce the exact profile
of the experienced motion trajectory, the subjects need to
discriminate the relative translation and rotation components
over time during navigation (Li and Cheng, 2011). It showed
that the blindfolded subjects were quite good at recovering
the traveled path either under the straight or curved motion
conditions, suggesting that similar to visual optic flow cues (Li
and Cheng, 2011), vestibular signals could also be reliable enough
for path perception. However, subjects could not effectively
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FIGURE 1 | Cortical regions involved in heading perception and their spatial and temporal tuning properties. (A) Possible cortical network involved in heading
perception revealed by recording neurons in macaques during translating the whole body using a motion platform system. Arrows represent possible information
flow based on previous neurophysiological findings. PIVC, parieto-insular vestibular cortex; VPS, visual posterior sylvian area; VIP, ventral intraparietal area; MSTd,
the dorsal portion of medial superior temporal area; FEFsem, smooth eye movement region of frontal eye field; FEFsac, saccade region of frontal eye field; V6, area V6;
MT, middle temporal area; LIP, lateral intraparietal area. Blue: vestibular dominant area or pathway; Red: visual dominant area or pathway; Magenta: areas with
converged visual and vestibular signals; Green: sensory-motor transformation areas involved in oculomotor decision tasks. (B) The spatial tuning strength quantified
by a direction discrimination index (DDI). DDI value ranges from 0 to 1, with 0 indicating no selectivity and 1 indicating high selectivity (Takahashi et al., 2007). Gray:
DDI values measured under the vestibular condition; Black: DDI values measured under the visual condition. Redrew using data from Fan et al. (2015) and Gu et al.
(2016). (C) The temporal tuning property under the vestibular condition quantified by the proportion of single-peaked neuron (navy blue) and double-peaked neuron
(spring green). Redrew using data from Chen et al. (2010, 2011a,b,c) and Gu et al. (2016). The temporal dynamics of the single-peaked neurons follow more closely
with the velocity profile of the vestibular stimuli, whereas temporal dynamics of the double-peaked neurons match more with the acceleration profile.

distinguish real curved self-motion from a straight motion
trajectory accompanied by a yaw rotation of the head or
whole body at the same time (i.e., illusorily perceived curved
motion; Ivanenko et al., 1997; Israël et al., 2005). Thus, signals
arising from horizontal canals seem to play a critical role in
complex path perception. Indeed, a recent study examined the
detection threshold for head translation and rotation respectively
during combined, i.e., curvilinear motion (MacNeilage et al.,
2010). It is found that the detection threshold for rotation
was unaffected under the presence of translation, while the
detection threshold for translation was significantly increased
under the presence of rotation. In a different study, researcher
found that yaw rotations could significantly bias the subjects’
perceived sway of the body, but a reversed effect did not
happen (Crane, 2016). Finally, when asked to reproduce a
triangle path, some patients with vestibular deficits could

replicate the traveled distance, but not the traveled angle
(Glasauer et al., 2002), indicating a causal role of the vestibular
signals, particularly for the rotation signals in complex path
perception.

How do neurons in the brain carry out computations
that could underlie the curvilinear self-motion perception? To
address this issue, researchers recorded single-unit activity from
neurons in the central nervous system of macaques under
translation only, yaw rotation only and convergent translation
plus yaw rotation conditions. In the vestibular nucleus (VN) in
brainstem, neurons integrate translation and rotation inputs in a
sub-additive (Carriot et al., 2015) or near additive way (Newlands
et al., 2018) when both signals co-exist in the curvilinear
motion condition. Researchers also have examined several
cortical areas including MSTd, VIP and VPS, and found that
a group of convergent neurons receiving both translation and
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FIGURE 2 | Identify cortical neurons responding to curvilinear self-motion.
(A) Top panel: schematic illustration for three types of self-motion; middle
panel: measured linear acceleration (Blue curve) and angular velocity (Red
curve) for forward translation, CCW rotation and their corresponding
curvilinear motion; Bottom panel: PSTH to forward translation,
counter-clockwise (CCW) rotation and curvilinear motion with combined
forward translation and CCW from an example convergent neuron in area
VPS. (B) Firing rate pattern of convergent neurons from areas VPS, VIP and
MSTd during curved-path-with-rotation, straight-path-with-rotation, and
curved-path-without-rotation. Green curves: the translation only condition;
black curves: curvilinear condition with preferred rotation; gray curves:
curvilinear conditions with non-preferred rotation. Plots were made and
modified with permission from Cheng and Gu (2016). (C) Trajectories drew by
blinded-folded subjects after experiencing curved-path-with-rotation,
straight-path-with-rotation and curved-path-without rotation delivered by a
vehicle. Plots were made and modified with permission from Ivanenko et al.
(1997).

rotation inputs tended to integrate the two signals sub-additively
(Figure 2), suggesting that this property may arise from the
subcortical areas, e.g., the brainstem (Cheng and Gu, 2016).
However, the weight assigned to the translation and rotation
signals in cortices is not consistent with what has been reported
in the brainstem, suggesting that additional integration may
also happen when the vestibular signals are propagated to the
cortex.

Curved motion trajectory in the horizontal plane would
potentially produce centripetal force that may also mediate
curvilinear self-motion perception. However, using a straight
linear path with simultaneous head rotation paradigm (Ivanenko
et al., 1997), researchers found that human subjects reported
almost the same ‘‘curved’’ motion experience as in the curved
path condition with head rotation (Figure 2C, middle panel
vs. left panel). Because the magnitude of the centripetal force
is quite different between these two experimental conditions, it
is unlikely that the centripetal force would be a key to curved
motion sensation. Indeed, in a third experimental conditions
in which subjects experienced curved motion path but without
head rotations, they did not report curved self-motion any more
although the centrifugal force was now present as in the curved
path condition with head rotation (Figure 2C, right panel vs.
left panel). On the neural level, recently researcher recorded
neurons in a number of cortical areas under a similar paradigm
as in the above psychophysical study (Cheng and Gu, 2016).
Interestingly, similar to the behavior, the firing patterns of the
cortical neurons are analogous under the curved-path-with-
rotation condition and straight-path-with-rotation condition,
but are different from the condition when yaw rotation is absent
(Figure 2B). Thus, neurons receiving inputs from both otolith
and horizontal canals in the brain may mediate curvilinear
self-motion perception. Note, that physiological properties
including the proportion of different types of neurons, tuning
strength and sensory summation rules are similar across the
examined cortical areas, suggesting that the complex motion
trajectory may be widely represented in the brain. However,
future work is required to dissect the exact role of individual areas
in self-motion.

TRAVEL DISTANCE

From the mathematical point of view, double integration of the
vestibular acceleration signals provides information about the
distance we have traveled, which appears to be more challenging
than estimating heading direction during spatial navigation.
Researchers have investigated the role of vestibular signals in
distance perception by requiring blindfolded human subjects
to report their linear or angular displacement of the body
through a number of methods including pointing (Ivanenko
et al., 1997; Nooij et al., 2016), saccade (Berthoz et al., 1987;
Israël and Berthoz, 1989), pressing button (Israël et al., 1993;
Harris et al., 2000), walking (Mittelstaedt and Mittelstaedt,
2001; Campos et al., 2010, 2012, 2014), or controlling vehicles
(Grasso et al., 1999; Tremblay et al., 2013). Normal human
subjects could accurately recover their traveled distance, as well
as the motion velocity profile regardless of reporting methods.
By contrast, performance from vestibulopathy subjects were
typically impaired in estimating time and distance when they
were instructed to walk forward and make turns at a particular
point under a blindfolded condition (Cohen, 2000), suggesting a
causal role of vestibular signals in distance perception.

Similar to heading perception, information from other
sensory modalities such as visual and proprioceptive
cues, also contribute to the estimation of traveled distance
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(Jürgens et al., 2003; Jürgens and Becker, 2006). For example, a
number of studies have illustrated that subjects can accurately
estimate the traveled distance from optic flow (Bremmer and
Lappe, 1999; Redlick et al., 2001; Frenz and Lappe, 2005;
Dacke and Srinivasan, 2007). When different sensory inputs are
provided at the same time, information from different sources
is summed with a weight that is proportional to the reliability
of each cue (Sun et al., 2004; Campos et al., 2010, 2012, 2014;
ter Horst et al., 2015). However, some work proposed that the
vestibular signals could dominate the visual signals (Harris et al.,
2000), similar to a prior of the vestibular signals as observed in
heading discrimination tasks (Fetsch et al., 2011; Butler et al.,
2015).

Unlike the extensive studies exploring the contribution of
vestibular signals in heading perception, little is known about
the role of vestibular signals underlying distance perception.
There is evidence suggesting that the temporoparietal junction,
which carries prominent vestibular signals, may be involved in
distance perception. For example, patients with lesions in the
temporoparietal region tended to underestimate the traveled
distance and stimulus duration, whereas the ability to detect
onset of motion was unaffected (Kaski et al., 2016). When using
repetitive transcranial magnetic stimulation (rTMS) to interfere
the temporoparietal junction, subjects could replicate the motion
velocity profile, but could not replicate the traveled distance
(Seemungal et al., 2008a,b, 2009; Ventre-Dominey, 2014). This
result suggests that temporoparietal junction plays an important
role in distance perception, and moreover, distance perception
(related to integration of velocity information over time) and
heading perception (related to detection of motion direction over
time) are two separate processes implemented in the brain.

How exactly vestibular signals in cortex contribute to
the estimation of traveled distance or time remains unclear.
Recently a study characterizing the spatial-temporal properties
of vestibular responses in MSTd found that nearly half of the
neurons exhibited a statistically significant position component,
yet it was much weaker compared to the velocity as well as
the acceleration component (Chen et al., 2011a). More works
need to be conducted in the future to characterize how neurons
in different cortical areas (see Figure 1) may encode the
moving distance. For example, neurons in the sensory-motor
transformation areas including the parietal and frontal lobes
exhibit ramping activity over time (Kim and Shadlen, 1999; Gold
and Shadlen, 2000; Shadlen and Newsome, 2001; Ding and Gold,
2012), which may serve as a neural correlate for distance coding.
Indeed, it has been indicated that parietal neurons may encode
the elapsed time (Jazayeri and Shadlen, 2015), thus, these neurons
may also encode the traveled distance as the product of the
time and moving speed. Such neurons have also been reported
in subcortical areas such as the rodents’ hippocampus when
the animals performed a spatial navigation task (Kraus et al.,
2013).

In fact, via the anterior part of thalamus, vestibular peripheral
inputs project to the limbic system which has been illustrated
to be critical for self-motion based path integration (Cullen and
Taube, 2017). For example, rotation signals arising from the
semicircular canals are necessary for formation of head direction

cells (Valerio and Taube, 2016). Translation signals from otolith
may be critical for place cells, grid cells, and speed cells in
the hippocampal-entorhinal system (Yoder and Kirby, 2014). It
remains unclear how exactly the cortical self-motion system is
connected with the subcortical and limbic systems, for example,
through retrosplenial cortex (Vann et al., 2009). Future studies
need to be conducted to fully understand how a complete neural
network in the brain code self-motion during spatial navigation.

CONCLUSION

Convergent evidence from behavioral, neurophysiological and
computational studies reveals that the vestibular system plays a
critical role in different aspects of self-motion perception, such
as heading, path, and traveled distance or time. Particularly
for heading estimation, a series of physiological studies have
been conducted in recent years to address the underlying neural
mechanisms. These studies have provided us with valuable
information about how the brain may code motion signals
to guide spatial navigation. At the same time, these studies
also provoke many important issues to be addressed in the
future.

First, vestibular signals are widely distributed in the central
nervous system. Recent studies have revealed many areas
conveying robust vestibular signals in the cerebral cortex. It
is likely that more areas will be continually discovered in the
future. Thus, it is important to address both the homogeneity
and heterogeneity of the functional implications of each area in
self-motion perception.

Second, the temporal dynamics of vestibular signals,
especially those arise from the otolith organs, vary broadly in
the central nervous system. Future studies need to identify exact
functions of the neurons with different temporal dynamics. For
example, it has been proposed that the momentary vestibular
acceleration evidence could be accumulated by decision making
neurons e.g., LIP neuron to generate the final behavioral output
for heading discrimination task (Drugowitsch et al., 2014). In
contrast, velocity information may be used for other functions
such as distance perception, or maintenance of visual stability
during head or body movements.

Third, vestibular signals arising from the inner ears are
encoded in a head-centered reference frame, yet spatial
navigation in the environment is basically a body-centered
behavior. Recent neurophysiological studies have provided
evidence suggesting that vestibular reference frame may be
gradually transformed along the signal propagation pathway, for
example, from largely head-centered in the rostral regions of the
VN (Shaikh et al., 2004), to mixed head- and body-centered in
the cerebellar rFN (Kleine et al., 2004; Martin et al., 2018) and
the cerebral PIVC (Chen et al., 2013a), and to predominantly
body-centered in the cortical area of VIP (Chen et al., 2013a).
Future studies need to explore the possible role of neurons
with gain modulated activity in reference frame transformation
(Zipser and Andersen, 1988; Siegel, 1998; Xing and Andersen,
2000; Gu et al., 2006; Pesaran et al., 2006; Fetsch et al., 2007; Chen
et al., 2013b; Hadjidimitrakis et al., 2014; Fan et al., 2015; Yang
and Gu, 2017).

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 November 2018 | Volume 12 | Article 456

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Cheng and Gu Vestibular Self-Motion

Fourth, vestibular signals have been recently discovered in a
number of sensory cortices that also carry robust visual motion
signals, suggesting that interactions between sensory modalities
may exist. It is possible that vestibular and visual signals are
integrated by the brain for more robust heading estimate. In
addition, it is also possible that these signals may interact with
each other for other functions such as maintaining visual stability
when smooth pursuit eye movements are accompanied during
head or body movements. Future works need to explore these
potential functions, as well as the computational rules underlying
the integration or interaction process.

Finally, the current review article focuses data mainly
collected in the passive self-motion conditions. However,
researchers have shown that active self-motion largely diminishes
vestibular activity in the brainstem and cerebellum (see review
Cullen and Taube, 2017). Recent theoretical studies suggest that
a single sensory internal model can combine motor commands

with the vestibular and proprioceptive signals optimally to
recover accurate self-motion during active head movements
(Laurens and Angelaki, 2017). Thus, it would be important to
explore the vestibular signals in the cerebral cortex, including
sensory cortices, sensory-motor transformation areas, and motor
areas under active self-motion conditions.
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