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ABSTRACT

Third-generation sequencing technologies provided
by Pacific Biosciences and Oxford Nanopore Tech-
nologies generate read lengths in the scale of kilo-
basepairs. However, these reads display high error
rates, and correction steps are necessary to real-
ize their great potential in genomics and transcrip-
tomics. Here, we compare properties of PacBio and
Nanopore data and assess correction methods by
Canu, MARVEL and proovread in various combina-
tions. We found total error rates of around 13% in
the raw datasets. PacBio reads showed a high rate
of insertions (around 8%) whereas Nanopore reads
showed similar rates for substitutions, insertions
and deletions of around 4% each. In data from both
technologies the errors were uniformly distributed
along reads apart from noisy 5′ ends, and homopoly-
mers appeared among the most over-represented
kmers relative to a reference. Consensus correction
using read overlaps reduced error rates to about 1%
when using Canu or MARVEL after patching. The low-
est error rate in Nanopore data (0.45%) was achieved
by applying proovread on MARVEL-patched data in-
cluding Illumina short-reads, and the lowest error
rate in PacBio data (0.42%) was the result of Canu
correction with minimap2 alignment after patching.
Our study provides valuable insights and bench-
marks regarding long-read data and correction meth-
ods.

INTRODUCTION

Sequencing technologies have developed toward high-
throughput generation of long sequencing reads at the kilo-
basepair (kbp) scale using single molecules as templates. For
de novo genome assembly and gene prediction such data are
of great value. Long-read data allow to obtain improved
contiguity as compared to short-read assemblies (1), facil-
itate the detection of structural variants between genomes

(2,3) and can be used to generate full-length transcript se-
quences (4,5). The two most prominent platform providers
are Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) (6,7). The generated sequencing reads
achieve peak lengths of about 10–20 kbp (PacBio and ONT)
(8,9) and a maximum length of 2272 kbp (ONT) (10). How-
ever, such reads exhibit high error rates and need to be cor-
rected before de novo assembly. Elevated error rates are ex-
pected whenever a single molecule is sequenced, in contrast
to highly parallel short-read sequencing where local clusters
of the same molecule are sequenced simultaneously, com-
pensating for individual errors or out-of-phase templates
and achieving very low error rates (11,12).

On a PacBio Single Molecule Real-Time sequencing de-
vice a single DNA molecule is immobilized in a zero-mode
waveguide. The four nucleotides are added, each labeled
with a differently colored fluorophore. When a base is in-
corporated by a DNA polymerase, the emitted light signal
is detected, the corresponding base is called, and the fluo-
rophore is cleaved off. In an ONT flowcell, a motor protein
drags a DNA molecule through a nanopore. The current in
the pore is measured during this process and bases are called
according to the current profile. The R9.4 pore provides a
signal for six nucleotides (nt) at a time, of which the central
bases in the middle of the pore contribute the most.

The quality of reads and their error rates are monitored
throughout the sequencing and base calling process and
checked afterwards. Tools for quality control are for exam-
ple the nanopore built-in MinKNOW, or fastQC (13), pro-
viding metrics such as per-base quality, distributions of read
length, and counts of over-represented k-mers. With a refer-
ence sequence available, NanoOK (14) can assess the num-
ber of substitutions, insertions, and deletions. In the current
state, long reads from these platforms display error rates of
approximately 15% (15,16), hence have to be corrected dur-
ing the assembly process in order to join them accurately
into longer contigs.

The main approach for correction is the consensus cor-
rection either with a subset of the long-read data or with
additional short reads. The first approach is applied in the
correction step of the Canu assembler based on all-versus-
all read overlaps (17). Also the tool MARVEL (18) uses this
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approach, but there is a preceding correction step that per-
forms ‘patching’ of reads. The process of patching is sup-
posed to repair large-scale errors (such as highly erroneous
regions, missed adapters, or missing sequence information)
based on comparisons with other reads from the dataset.
The idea is that splitting of reads at erroneous regions will
be prevented and long continuous reads remain intact to
allow the generation of longer contigs during the assembly
process. The second approach uses additional high-quality
short-read data (e.g. generated by Illumina sequencing) in
order to correct the long reads based on short-read map-
ping, as applied by nanocorr (19) or proovread (20).

For consensus correction by overlapping of long reads the
device-dependent differences in the error distribution have
to be taken into account. PacBio sequencing is expected to
produce reads that have errors uniformly distributed across
the read (6). ONT sequencing results are especially error
prone in homopolymeric regions, mainly due to the design
of the nanopore. Furthermore, the accuracy of ONT se-
quencing depends on the GC content (19). These differences
are often already accounted for, e.g. Canu allows to set pa-
rameters to indicate from which sequencing platform the
reads originate. Still, different long-read alignment meth-
ods deal better or worse with data from different platforms
(21), potentially introducing biases (22). This may affect the
results when assessing the quality of assembled contigs by
aligning them to a reference (e.g. using mummer (23)) or
searching for conserved genes (e.g. using BUSCO (24)).

Read correction is highly dependent on the applied meth-
ods and their specific parameters and is under constant de-
velopment, since both the sequencing technologies and the
alignment methods are evolving. Therefore it is important
to assess the read quality and the error rates not only in raw
reads, but also in corrected reads before they get assembled.

Here, we compare the correction steps implemented
in two long-read assembly programs (Canu, MARVEL)
and a correction procedure using additional short-read
data (proovread). Our input data were generated from Es-
cherichia coli using PacBio, Oxford Nanopore, and Illu-
mina technologies. We compare error rates and k-mer oc-
currences in raw data and corrected data and determine
changes in read lengths, read numbers, and maximum
match lengths. We provide conclusions how to combine the
tested correction steps in order to achieve lowest error rates.

MATERIALS AND METHODS

Input data

PacBio long-read data (RS II P6C4 chemistry) and
Illumina paired-end data (2 × 100 nt, GA IIx instru-
ment) from the E. coli strain K12 substrain MG1655
were obtained from public resources (Illumina data:
NCBI SRA accession number ERX008638; PacBio data:
https://github.com/PacificBiosciences/DevNet/wiki/E.
-coli-Bacterial-Assembly accessed 6 September 2018).

For E. coli strain K12 substrain DH5� we generated
Illumina paired-end data (2 × 125 nt, HiSeq 2500 in-
strument) as well as long-read data using the Oxford
Nanopore Technology (ONT) with its MinKNOW base
caller and the SQK-RAD004 sequencing kit. We ran the
MinION sequencing instrument using an R9.4 flowcell

(FLO-MIN106) for 48 hours. Base calling was performed
using MinKNOW version 1.13.1. The raw data have been
deposited in the NCBI Sequencing Read Archive under
BioProject PRJNA610591, BioSample SAMN14306692.

The total coverage of 784× ONT data and 161× PacBio
data were aligned to the E. coli references of DH5� (NCBI
nucleotide accession number CP017100) and MG1655
(NCBI nucleotide accession number NC 000913.3), respec-
tively, using minimap2 (25) with parameters –secondary =
no -L –MD -x map-ont (or -x map-pb, respectively). For
each dataset the matching fraction of reads was downsam-
pled to 50× coverage for further analysis using seqtk sample
with -s 23 as seed (https://github.com/lh3/seqtk/ accessed
2016 Feb 22). Only reads larger than 200 bp were con-
sidered. Illumina data of both strains were trimmed for
adapter sequence using trimmomatic v. 0.35 (26) and the
setting ILLUMINACLIP:TruSeq3-PE.fa:2:30:10, aligned
to the respective E. coli reference using bowtie (27) with
parameters –nomaqround -v 3 –best, and downsampled to
320× coverage of matching reads for each sample using se-
qtk.

The alignment of ONT reads indicated that our version
of E. coli K12 substrain DH5� differed from the public ref-
erence labeled as ‘NEB 5-�, a derivate of K12 DH5�’ by
a deletion of ∼1300 bp. To avoid biases regarding the error
rates we removed ONT reads that were affected by this dele-
tion before downsampling. For K12 substrain MG1655 no
such deletion was found compared to the reference.

K-mer counting

The k-mers in the reference genomes were counted using
jellyfish (28) version 2.2.10 using both forward and reverse
strands taking into account the circular nature of the E. coli
genome (i.e. k-mers bridging the end and start of the linear
fasta-string were counted, too). Raw, patched and corrected
reads were treated as linear sequences. Since nanopore se-
quencing on the MinION device provides a signal for 6 nt
at a time, we focused on the analysis of k-mers of size k =
6.

Sequence logos were generated at https://weblogo.
berkeley.edu/logo.cgi (accessed 6 February 2020) with the
option ‘frequency plot’. The input was the list of the 30
most over-represented six-mers in ONT or PacBio data,
respectively, from which homopolymers were removed
before logo generation. In the case of PacBio data, all four
homopolymers were among the top 30 over-represented
six-mers, whereas in case of the ONT data polyC was not
contained. Thus, the sequence logos were generated based
on 26 six-mers (PacBio data) and 27 six-mers (ONT data),
respectively.

Alignment methods

Alignments were performed using NanoOK (14) (version
1.34), calling the methods graphmap (version 0.5.2), last
(version lastal 921) and minimap2 (version 2.12-r827). For
minimap2, the sequencing platform was provided as pa-
rameter (-x map-ont, -x map-pb) otherwise default param-
eters were chosen, leading to slight differences compared
to the initial selection of reads. For graphmap, the param-
eter for the circular nature of the E. coli genome was set

https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/lh3/seqtk/
https://weblogo.berkeley.edu/logo.cgi
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(–circular) and –alg anchor. As a fourth method blasr (29)
(version 5.3) was used with parameters –bestn 1 –hitPolicy
randombest –randomSeed 42 –sam –header –printSAMQV.
The error rate statistics were extracted from NanoOK out-
put for graphmap, last and minimap2 alignments; both
blasr output analysis and the calculation of error distribu-
tion was done by custom scripts written in python 2.7.

Correction methods

For patching and correction of ONT and PacBio
reads, MARVEL (18) (version 1.0, commit
1f693baf8420c2121cc40d18ed2088c6e81a713b) was used.
Parameters for PacBio and ONT data were applied on E.
coli data as provided in the program’s example files. The
differences between the treatment of ONT and PacBio data
consisted of higher quality thresholds for quality trimming
and fixing of the ONT data. The patched reads before
further correction were analyzed separately (provided by
MARVEL as intermediate files).

The correction step of Canu (17) (version 1.6) was ap-
plied both to the raw and patched reads of both datasets.
Canu provides a parameter setting for specific sequenc-
ing data (nanopore-raw/pacbio-raw). Correction parame-
ters were set as advised by the manual (correctedErrorRate
= 0.105), which affect the reads in the assembly steps after
the initial correction. As overlapper tools both the in-built
MHAP and minimap2 were applied.

As hybrid correction method, proovread (20) (version
2.13.11) was applied on raw and patched reads, using the
Illumina short-read datasets of DH5� or MG1655, respec-
tively.

All programs and analyses were run on a high-
performance Linux cluster using machines with 128 GB of
RAM and 24–32 cores.

RESULTS

Error rates of raw reads

The analyses were performed using long-read and short-
read data from E. coli strain K12 substrains DH5� and
MG1655. We generated long-read data using the Oxford
Nanopore technology (ONT) and Illumina short-read data
for DH5� and obtained PacBio data and Illumina data for
MG1655 from public sources (Figure 1). The ONT data
generated comprised 346 489 reads (3.60 Gbp) correspond-
ing to ∼784-fold coverage of the E. coli genome, and the av-
erage read length was 10 377 bp with a maximum of 136 180
bp. After alignment of the four datasets to the E. coli refer-
ences of either DH5� or MG1655, respectively, only 50-fold
coverage of long-read data and 320-fold coverage of short-
read data of the matching fraction for each reference were
kept for further analysis (Table 1).

We estimated the rates of substitutions, insertions, and
deletions in the raw reads based on mapping results of
four different alignment methods. The tools blasr (29),
graphmap (30), last (31) and minimap2 (25) were used
to align ONT and PacBio reads (50-fold coverage each)
against the respective reference genomes. The alignments
showed similar total error rates for ONT (average 12.56%,
standard deviation 0.34) and PacBio reads (average 12.88%,

standard deviation 0.76), respectively, whereas the rate of
the specific error types differed across alignment tools
as well as across sequencing methods (Table 2). PacBio
data contained lower rates of substitution errors but much
higher rates of insertions than ONT data, and deletions oc-
curred slightly less frequently in PacBio reads than in ONT
reads. The highest error rates were observed when using
graphmap, the lowest error rates resulted from using last for
ONT reads and from using minimap2 for PacBio reads. For
both datasets, last showed higher rates of substitutions and
lower rates of insertions/deletions (indels) than the other
alignment programs; blasr, in contrast, resulted in lower
rates of substitutions and a higher rate of indels.

Despite similar overall error rates, ONT data had better
metrics than PacBio data regarding the read match lengths
when mapping against the reference. The longest perfectly
matching sequence and the longest alignment were both
about two times longer in ONT reads than in PacBio reads;
the latter can be attributed to the lack of reads larger than
42 kbp in PacBio data.

The longest of all alignments for the ONT dataset was
achieved with graphmap, aligning the longest read (length
= 136 180 bp) with a high rate of deletions to a region of
142 108 bp. The other alignment tools aligned only 80 000
bases of this read and introduced soft-clipping at one end.
The second longest alignment of graphmap was the longest
of the three other tools using the second longest read (length
= 95 545 bp) of the dataset. All alignments exceeded the
length of the read by 3.0–3.8% (Table 2).

For PacBio data the alignments of blasr, last and min-
imap2 did not exceed the length of the reads as much as in
ONT data. The longest read in the dataset (length = 42 279
bp) was stretched by 700 bp (+1.6%) in the longest blasr
alignment. Again, graphmap provided the longest align-
ment and stretched the read by 7000 bp (+16.6%). The read
was mapped to the same region in the reference sequence by
all alignment methods.

Assessing substitution errors in the read data is especially
important for variant calling. We compared substitution
rates for transversions and transitions in ONT and PacBio
reads based on alignments of the four different alignment
tools (Figure 2). While ONT seemed to have a few top
candidates for substitution errors, PacBio substitutions ap-
peared to be more balanced, but not completely random,
as assumed previously (6). In ONT reads, substitution rates
for the transitions A↔G and C↔T were clearly elevated. In
PacBio reads, substitution rates for the transversions A↔C
and G↔T were slightly elevated. All the tested alignment
tools confirmed this tendency.

In order to further asses the resulting sequence accu-
racy of the specific sequencing technique, k-mer occur-
rences in the reference genomes were counted and com-
pared to the respective occurrences in the raw read datasets
(Figure 3 and Supplementary Figure S1). Nanopore’s
known problems with sequencing homopolymers became
apparent for the homopolymers of ‘A’ and ‘T’, whereas
‘G’-homopolymers were less strongly affected and ‘C’-
homopolymers did not even appear in the list of 30 most
over-represented k-mers (Table 3 and Supplementary Ta-
ble S1). PacBio data were affected by homopolymer over-
representation as well, in fact for all four kinds of ho-
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Figure 1. Read length distributions up to 50 kbp for ONT (A) and PacBio (B). The longest ONT read was 136 kbp.

Table 1. Initial datasets after downsampling (matching reads only)

Technology E. coli strain Number of reads Coverage Mean read length [bp] Longest read [bp]

ONT (R9.4, 1D) DH5� 22 000 50× 10 508 136 180
Illumina HiSeq DH5� 11 763 308 320× 125 125
PacBio (RS II P6C4) MG1655 26 300 50× 8899 42 279
Illumina GAIIx MG1655 14 750 994 320× 101 102

Table 2. Error rates as obtained from raw read alignments against E. coli K12 DH5� (ONT reads) and K12 MG1655 (PacBio reads)

Dataset
Alignment
tool

Aligned
reads [%]

Substi-tutions
[%]

Insertions
[%]

Deletions
[%]

Total error
[%]

Longest perfect
match [bp]

Longest alignment
[bp]

ONT blasr 99.76 3.50 4.01 4.94 12.45 369 99 183
ONT graphmap 99.72 4.38 3.94 4.76 13.08 373 142 108
ONT last 100.00 5.12 3.23 4.00 12.35 373 98 422
ONT minimap2 99.83 4.33 3.59 4.47 12.39 371 98 780
ONT average 99.83 4.33 3.69 4.54 12.56 372 109 623
PacBio blasr 98.35 1.07 8.33 3.43 12.83 191 42 971
PacBio graphmap 98.18 1.81 8.82 3.32 13.95 189 49 318
PacBio last 100.00 2.07 7.40 2.89 12.36 192 42 468
PacBio minimap2 98.01 1.75 7.60 2.98 12.33 189 42 737
PacBio average 98.89 1.68 8.04 3.16 12.88 190 44 373

Figure 2. Base substitution rates of aligned reads by four alignment methods for ONT (A) and PacBio (B) sequencing data. Rates were determined by
NanoOK and in-house scripts.
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Figure 3. Comparison of occurrences of six-mers in the reference genomes and the raw read datasets of ONT (A) and PacBio (B). The diagonal blue line
stands for perfect representation. The two red lines show the 3-fold standard deviation (ONT stddev = 0.0039, PacBio stddev = 0.0066).

Figure 4. Sequence logos of the top 30 over-represented (A) six-mers (excluding homopolymers) and top 30 under-represented (B) six-mers in the raw read
datasets of ONT (left) and PacBio (right) compared to the reference.

Table 3. The ten most over- and under-represented six-mers in the raw
read datasets compared to the reference

ONT PacBio

6-mer
difference

in rate 6-mer
difference

in rate

over-represented TTTTTT 0.0573 TTTTTT 0.1699
AAAAAA 0.0260 AAAAAA 0.0977
GCACGG 0.0224 GTTTTT 0.0575
CGGGCG 0.0221 TTTTTG 0.0439
CGGCGG 0.0186 GGGGGG 0.0432
CACGGC 0.0174 CCCCCC 0.0341
CAGCGG 0.0169 TTTTTC 0.0335
GGGCGG 0.0166 TTTTGG 0.0323
CGGTGG 0.0164 TGTTTT 0.0315
CCGGGC 0.0164 GGTTTT 0.0309

under-represented GCCTGG −0.0347 CGCCAG −0.0418
CCTGGC −0.0345 CCAGCG −0.0346
CAAAAA −0.0311 GCCAGC −0.0334
AAAAAG −0.0292 CCAGCA −0.0305
AAAAAT −0.0282 CACCAG −0.0278
GAAAAA −0.0260 CCGCCA −0.0272
CCAGGC −0.0258 TGCCAG −0.0263
ACCTGG −0.0257 TCGCCA −0.0263
TAAAAA −0.0252 ACCAGC −0.0263
GCCAGG −0.0250 ATCGCC −0.0261

mopolymers (Table 3). T-rich six-mers were found to be
over-represented in PacBio data but were among the under-
represented six-mers in ONT data; in contrast, G and C
were more often in over-represented six-mers of ONT data
(Figure 4 and Supplementary Table S1).

Under-represented six-mers of PacBio data were C-rich,
and there was a tendency to contain two C-nucleotides next
to each other (Figure 4 and Supplementary Table S1). In
ONT data under-represented six-mers were often composed
of 5 nt A or T plus one of the respective other three bases
(Supplementary Table S1).

In general, the standard deviation (stddev) for all six-
mers with respect to their occurrence in the reference was
lower for the ONT than for the PacBio dataset (ONT: std-
dev = 0.0039, PacBio: stddev = 0.0066).

For k greater than 6, k-mers occurring in low frequencies
in the reference tended to be over-represented in both raw
read datasets, whereas k-mers occurring in high frequencies
in the reference tended to be under-represented in the raw
read datasets (Supplementary Figure S1).

Error distribution and correction by ‘patching’

During the ‘patching’ process of the tool MARVEL (18),
reads are compared to each other and to the adapter se-
quence, and highly erroneous regions are substituted with
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Table 4. Error rates after alignment of patched and corrected reads against the respective reference genome using blasr

unpatched MARVEL patched

Consensus correction None
Canu
MHAP

Canu
minimap2 Proovread None MARVEL

Canu
MHAP

Canu
minimap2 Proovread

ONT ONT
Substitution % 3.50 0.20 0.19 0.25 3.19 0.21 0.17 0.16 0.10
Insertion % 4.01 0.19 0.18 0.22 3.81 0.26 0.17 0.16 0.10
Deletion % 4.94 1.65 1.67 0.78 4.21 0.89 1.25 1.21 0.25
Total error % 12.45 2.04 2.04 1.25 11.21 1.36 1.59 1.53 0.45
Longest perfect match (bp) 369 1694 1845 84 881 369 1275 1819 1833 92 302

PacBio PacBio
Substitution % 1.07 0.08 0.07 0.15 0.93 0.05 0.08 0.07 0.08
Insertion % 8.33 0.30 0.22 1.19 7.22 0.35 0.28 0.17 0.55
Deletion % 3.43 0.26 0.24 0.23 3.02 0.21 0.26 0.18 0.09
Total error % 12.83 0.64 0.53 1.57 11.15 0.61 0.62 0.42 0.72
Longest perfect match (bp) 191 14 682 14 756 33 315 191 4398 18 450 12 712 39 811

Figure 5. Error distribution along raw PacBio reads (green) and raw ONT reads (purple) for substitutions (A, D), deletions (B, E) and insertions (C, F).
Error rates slightly decreased after MARVEL patching (pink). The error rates were determined in sliding windows of length 1 kbp with 0.5 kbp overlap
for positions 1–7500 of reads longer than 7500 bp. Error bars show the standard deviation per window.

Figure 6. Workflow of the applied correction steps.
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Figure 7. Alignments of ONT reads against two example regions of the Escherichia coli DH5� reference sequence as raw reads and after applying correction
steps. Red asterisks indicate deletions, red characters indicate insertions, characters highlighted in red indicate mismatches. Left side: positions 1816110–
1816169, right side: positions 1813540–1813599. Ref: reference, raw: raw read, mp: MARVEL patched, cmh: Canu MHAP, cmm: Canu minimap2, pr:
proovread.

information from other reads of the dataset. The aim is to
obtain uniform quality across reads to prevent splitting of
the long reads into smaller pieces, which would occur when
cutting out low-quality regions.

We applied the patching step of MARVEL on the 50-fold
coverage datasets of ONT and PacBio reads and compared
patched and unpatched read data. Apart from a slight de-
crease of overall error rates (Table 4) the patching resulted in
differences in read lengths and number of reads. The longest
patched read in the ONT data was longer than the longest
raw read (raw: 136 180 bp, patched: 136 895 bp). In PacBio
data, the longest patched read was shorter than the longest
raw read (raw: 42 279 bp, patched: 41 257 bp). After patch-
ing, the number of reads longer than 20 kbp increased in
the ONT dataset from 3388 to 3417, and decreased from
2173 to 2033 in the PacBio dataset. The patching process
removed ∼4000 reads of lengths <2000 bp from each of the
datasets, i.e. all reads shorter than 2000 bp from the ONT
data and 98% of reads shorter than 2000 bp from the PacBio
data.

The MARVEL patching only slightly changed the occur-
rences of non-homopolymer six-mers in ONT data (std-
dev = 0.0003 between patched reads and raw reads) and in
PacBio data (stddev = 0.001) (Supplementary Figure S2).
However, the number of over-represented homopolymers
decreased due to patching.

We assessed whether there was a bias in the distribution
of errors along the reads and compared the error distribu-
tion after patching. Considering positions 1–7500 of reads
longer than 7500 bp we found for both types of sequencing
data that substitutions, insertions and deletions were rather
uniformly distributed apart from noisy 5′ ends (Figure 5).
Error rates in ONT data ranged around 4% (substitutions,
deletions) and 4.5% (insertions). The larger differences be-
tween error types in PacBio became obvious in the error dis-
tributions with substitutions ranging around 1%, deletions
around 3% and insertions around 8%. Additionally, inser-
tions in PacBio data showed a high error peak at the begin-
ning of reads. After MARVEL patching the error rates only
slightly decreased along the reads (Figure 5).

Consensus correction

The main step to improve the quality of long reads is based
on read overlapping to generate corrected consensus se-
quences. Since the patching step of MARVEL affects only
particular regions of the reads we tested both unpatched
and patched read datasets as input for consensus correction

(Figure 6). Three consensus correction methods were com-
pared: Canu (17), MARVEL and proovread (20) (Figure 7).

Canu and MARVEL perform a consensus correc-
tion using exclusively the dataset of long reads, whereas
proovread makes use of complementary Illumina sequenc-
ing data. In contrast to polishing tools like Quiver/Arrow
(https://github.com/PacificBiosciences/GenomicConsensus
accessed 30 October 2019) or Pilon (32) that are applied on
assembled contigs, proovread uses Illumina data to match
them against the unassembled raw reads.

The two long-read-only correction methods Canu and
MARVEL decreased the total error rate of ONT reads on
average from 12.45 to 1.71% and the error rate of PacBio
reads from 12.83 to 0.56%, respectively (Table 4). The Canu
parameter for the origin of the data was set (-pacbio-raw,
-nanopore-raw) and seemed to be better adapted to PacBio
data than to ONT data. The higher remaining error rate in
corrected ONT reads was mostly due to deletions, which
could only be decreased to 1.33% on average, in contrast
to a decreased deletion rate of 0.23% in corrected PacBio
reads. The two different alignment programs used by Canu
internally, MHAP (33) and minimap2 (25), resulted in sim-
ilar results whereby the consensus correction based on min-
imap2 achieved slightly lower error rates than the correc-
tion based on MHAP alignments (up to 0.2% for patched
PacBio reads, see Table 4).

Usage of additional Illumina sequencing data with
proovread correction resulted in error rates of 0.85% for
ONT and 1.15% for PacBio, respectively. Thus, interest-
ingly, for ONT data the error rates after short-read correc-
tion were lower than using long-reads only, but for PacBio
data the error rates were higher after short-read correc-
tion than after long-read correction. Short-read data with
proovread achieved the lowest error rates for deletions in
ONT data as compared to Canu and MARVEL; insertion
rates in PacBio data remained the highest after short-read
correction compared to long-read correction (Table 4).

The error rates along the reads (unpatched raw input
data) after consensus correction by Canu and proovread
were rather uniformly distributed except for the proovread
correction of PacBio insertion errors which showed stronger
variation (Figure 8).

The length of the longest perfect match increased dras-
tically after short-read correction. The PacBio longest per-
fect match of raw reads (191 bp) increased after long-read
correction to a length between 4 and 18 kbp depending on
the correction method, but short-read correction achieved
longest perfect matches of 33 to 40 kbp. The difference was

https://github.com/PacificBiosciences/GenomicConsensus


8 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

Figure 8. Error distributions along unpatched PacBio and ONT reads before (green and purple, respectively) and after (pink) consensus correction by
Canu (A–F) or proovread (G–L) for substitutions, deletions and insertions. Reads were analyzed as in Figure 5.
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Figure 9. Read length distributions for raw PacBio reads and after
proovread correction.

even more pronounced for ONT data where the longest per-
fect raw-data match of 369 bp was increased on average to
1693 bp (range 1275–1845 bp) after long-read correction
and to 85 kbp (unpatched ONT input) and 92 kbp (patched
ONT input), respectively, after short-read correction.

After MARVEL correction we observed an increase in
average read lengths and decreased read numbers. The
MARVEL correction starts with concatenating the reads
based on sufficiently supported overlaps. This generates a
set of extended reads, and the number of corrected reads
is much smaller than the number of initial input reads. For
ONT, the number of 17 934 patched reads was reduced by
MARVEL to 110 concatenated reads, containing in total
6 430 965 bases. The mean length of the reads increased
from 10 508 to 58 463 bp. For PacBio, the number of 22 586
patched reads was reduced to 285 concatenated reads (in to-
tal 6 889 188 bp), and the mean length of the reads increased
from 8899 to 24 172 bp. The sets of concatenated reads
showed lower error rates than the Canu-corrected reads for
both sequencing technologies, but a shorter perfect match
length (Table 4).

In general, patched read data as input resulted in lower
error rates than unpatched read data, with all correction
methods. This was observed for ONT data as well as for
PacBio data.

In the patching phase, MARVEL removed most reads
shorter than 2000 bp. Further reads were removed from
the datasets during correction. Canu removed most raw
reads of length <7500 bp from ONT data and reads <4500
bp from PacBio data. From patched reads, Canu removed
reads <8000 bp from ONT data and reads <5500 bp
from PacBio data, respectively. During proovread correc-
tion reads were only removed from PacBio raw reads, and
most of these removed reads had a length below 10 kbp

(Figure 9). For ONT and patched reads, no reads were re-
moved by proovread.

K-mer occurrences after correction

As expected, the occurrence of k-mers in corrected reads
was much more strongly correlated to the k-mer compo-
sition of the reference than without correction. The cor-
rection by proovread using Illumina data improved k-mer
occurrences similarly well in both datasets, slightly better
in ONT than in PacBio reads (Figure 10). This slight su-
periority of ONT data was mainly due to remaining over-
represented homopolymers in PacBio data. The Canu cor-
rection in PacBio data resulted in a larger number of cor-
rect k-mers than in ONT data. For ONT reads, many six-
mers occurring in the reference genome and also being
present in the raw data showed reduced numbers after Canu
correction; there was a tendency that six-mers which were
already slightly under-represented in the raw reads, were
even more depleted by Canu correction (Figure 11). Only
a few of these under-represented six-mers were changed by
the Canu correction towards a correct representation, this
was observed for both Canu-supported alignment methods
(MHAP or minimap2) and for both unpatched and patched
input reads. In numbers, 61 of 4096 ONT six-mers (1.48%)
occurred more than 3*stddev further off the diagonal ( =
perfect representation) after the Canu correction step.

DISCUSSION

With the advancement of extended read lengths in third-
generation sequencing data, high error rates are the main
challenge when working with long-read data. We observed
total error rates around 13% in PacBio and ONT raw data
in agreement with previous studies. When assessing sub-
stitution rates and insertion/deletion rates separately we
obtained slightly different results depending on the align-
ment tool. Also, the total number of aligned reads and
the length of the longest alignment were dependent on the
choice of the alignment method. Considering average val-
ues of all methods, we found error rates around 4% (±0.5%)
for each type of errors (substitutions, insertions, deletions)
in ONT data, whereas PacBio data showed low substitu-
tion rates (1.7%), medium deletion rates (3.2%) and high in-
sertion rates (8.0%). Another difference between ONT data
and PacBio data was the type of substitutions: transitions
(A↔G, C↔T) were the most prominent substitutions in
ONT data, whereas transversions (A↔C, G↔T) were ele-
vated in PacBio data. Homopolymers were among the most
over-represented six-mers in both datasets. In PacBio data,
the four homopolymers appeared at positions 1 (polyT), 2
(polyA), 5 (polyG), 6 (polyC) in the list of the most over-
represented six-mers. In ONT data, polyA and polyT were
at the top two positions, while polyG appeared at position
13, and the polyC six-mer appeared far down in the list
at position 974, i.e. was the only homopolymer that was
close to perfect representation. The sequence composition
of over-represented six-mers also differed clearly between
ONT and PacBio data: C and G were more often in over-
represented ONT six-mers than T and A, whereas T was the
dominating nucleotide in over-represented PacBio six-mers.
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Figure 10. Frequencies of six-mers after correction by proovread and Canu (MHAP), respectively, in ONT reads (left) and PacBio reads (right) compared
to the reference. Unpatched input reads were used. The diagonal blue line stands for perfect representation. The two red lines indicate the 3-fold standard
deviation (proovread: ONT stddev = 0.0004, PacBio stddev = 0.0017, Canu: ONT stddev = 0.0035, PacBio stddev = 0.0005).

After applying patching (MARVEL), consensus correc-
tion (Canu, MARVEL), and short-read -assisted correc-
tion (proovread) in various combinations we found that
(i) patched input data achieved lower error rates than un-
patched input data, (ii) long-read consensus correction
achieved lower error rates than short-read-assisted correc-
tion for PacBio data, (iii) short-read-assisted correction
achieved lower error rates than long-read consensus cor-
rection for ONT data, (iv) in PacBio data, Canu consensus
correction after MARVEL patching achieved lower error
rates than MARVEL consensus correction after MARVEL
patching, whereby Canu using minimap2 achieved lower er-
ror rates than Canu using MHAP as alignment method.

Long-read consensus correction methods applied on
PacBio data resulted in error rates below 1% no matter if
patched or unpatched input data were used. For ONT data,
error rates below 1% could only be achieved by using addi-

tional Illumina data with proovread and only for patched
input data.

The lowest error rate for ONT data was 0.45% using
proovread after MARVEL patching. The lowest error rate
for PacBio data was 0.42% using Canu with minimap2 after
MARVEL patching.

The post-correction error rates achieved for PacBio data
were similar to the ones obtained after self-correction using
PacBio high-fidelity data (34). Contrasting to PacBio where
the creation of a circular consensus sequence nowadays is
an option even for genomic templates, no such possibility
exists for ONT sequencing reads.

Taken together, we provide an evaluation of the outcome
of different correction procedures applied on noisy long-
read data as generated by PacBio and ONT sequencing plat-
forms, respectively. In order to obtain most benefit from
long sequencing reads, corrected reads are of high impor-
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Figure 11. Change in frequencies of six-mers when applying the Canu (MHAP) correction on ONT raw reads (left) and PacBio raw reads (right) in relation
to the reference frequencies. The top 50 six-mers with the greatest change in frequency are displayed.

tance. Our study provides valuable insights in the charac-
teristics of uncorrected and corrected sequencing reads and
shows how to achieve lowest error rates using different cor-
rection methods.
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