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INTRODUCTION

Liver transplantation remains the only definitive therapy 
for end-stage liver disease. Despite its success, timely access 
to this lifesaving procedure is limited by a significant organ 

shortage. As a result, up to 30% of waitlisted patients die 
before a suitable donor liver becomes available.1 One 
factor contributing to the shortage is the prevalence of 
hepatocellular macrosteatosis, or fatty liver, due to donor 
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scope. Biopsy samples from 80 patients undergoing liver transplantation were included. An automated digital algorithm 
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relationship was found between steatosis estimates of the algorithm compared with expert liver pathologists, though the 
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metabolic syndrome or alcohol use. The presence of his-
tologic macrosteatosis (also called large-droplet steato-
sis) in hepatocytes beyond a 20% to 30% threshold has 
been associated with decreased graft survival, as well as 
increased early allograft dysfunction and postreperfusion 
syndrome.2-4 Despite reported case series of successful 
transplantation of livers with moderate (30%–60%) or 
severe (60+%) macrosteatosis5-7 and efforts at enhanced 
donor–recipient matching,8,9 steatotic grafts are still com-
monly discarded because of  concern about poor graft 
outcomes.10-12 Moreover, the organ shortage is likely to be 
exacerbated as the prevalence of obesity, metabolic syn-
drome, and nonalcoholic fatty liver disease continues to 
increase.13

The subjective nature of evaluating donor liver steatosis 
during the course of organ procurement further contributes 
to the high discard rate of these grafts. Visual assessment of 
liver color and contour can be unreliable,14,15 and although 
liver biopsy with rapid frozen section assessment by an expe-
rienced liver pathologist has been considered the gold stand-
ard, several technical and interpretive factors directly affect its 
accuracy. In the latter scenario, frozen sectioning with hema-
toxylin and eosin (H&E) stain is often limited by the presence 
of processing artifacts that can mimic lipid droplets resulting 
in overestimation of macrosteatosis. In addition, because of 
the unpredictable and time-sensitive nature of organ procure-
ment, frozen sections are often assessed by pathologists at 
donor hospitals without specialist training in liver pathol-
ogy. As a result, there is poor interobserver agreement even 
when multiple liver pathologists score the same biopsy slide.16 
To address this limitation, intense research in automating 
the assessment of liver steatosis has been undertaken in the 
last decade. Several groups have reported impressive results 
with the use of artificial intelligence or machine-learning 
(ML) algorithms trained to score the degree of steatosis using 
whole-slide images.17-21

To improve the expediency of the donor liver assessment 
workflow, we hypothesized that a non-ML algorithm could 
accurately assess liver steatosis in frozen sections using 
smartphone-based images taken in tandem with a simple 
light microscope. This would simulate the real-time assess-
ment of liver steatosis during organ procurement with frozen 
section biopsy but with the added benefit of providing an 
automated steatosis score from user-captured smartphone 
images at low cost. Using a cohort of 80 transplanted livers 
with available histology, we created and validated an image 
segmentation algorithm and compared its accuracy against 
steatosis scores from pathologists with a range of expertise 
in liver pathology. Unlike artificial intelligence systems that 
train a model on pathologist annotations, our approach 
primarily relies on non-ML computer vision algorithms to 
detect steatotic regions, thereby avoiding interobserver dis-
crepancies due to subjective visual estimates.

MATERIALS AND METHODS

Cohort Selection
An algorithm development image cohort was derived 

from 21 human liver biopsies with macrosteatosis ranging 
from 0% to 80% from a previously reported study cohort.11 
Both formalin-fixed paraffin-embedded and separately fro-
zen section tissue biopsies were available for this cohort. 

For algorithm validation, 91 H&E-stained frozen donor 
liver biopsies from 80 livers undergoing transplantation at 
Massachusetts General Hospital (MGH) between January 
2014 and December 2019 were obtained from the MGH 
Pathology department. Macrosteatosis ranged from 0% to 
30% in this cohort. The MGH Institutional Review Board 
approved this study (#2019P002930).

Smartphone-Based Imaging
Tissue slide images were captured on a light microscope 

(Nikon Eclipse E400, Nikon, Melville, NY). An iPhone 
6 (Apple, Cupertino, CA) or Pixel 3 (Google, Mountain 
View, CA) smartphone was attached to the ocular lens of 
the light microscope using a NexYZ 3-axis universal smart-
phone adapter (Celestron, Torrance, CA). Liver tissue images 
were captured at 10x, 20x, and 40x across the entire slide 
specimen in nonoverlapping concentric circles. Deidentified 
images were downloaded in TIFF format into a central 
repository.

Image Segmentation Algorithm Development
We applied an automated series of image processing tech-

niques to each biopsy image to segment fat globules and 
quantify the ratio of fat to total liver area.

Conversion to Binary Color Format
Steatotic droplets, tissue disruption or tears, vascular lumen, 

and slide background do not stain positively with H&E and 
present as white or white-adjacent (Figure 1A). A black cir-
cular outline indicates the border of the smartphone image 
through the ocular lens of the microscope. These distinctions 
in color were used to convert the red-green-blue (RGB) smart-
phone images to binary format, where white pixels designate 
regions of possible steatosis and black pixels represent liver 
tissue.

Conversion from RGB to binary with minimal information 
loss is dependent on finding an ideal RGB threshold value: 
pixels with values above the threshold become white, whereas 
pixels with values below that threshold become black. To 
handle high variance in color across images, we calculated a 
unique threshold for each image by representing the RGB val-
ues of all pixels in an image as a histogram, then calculating 
the mean of the two highest peaks above an experimentally 
determined lower bound for green and blue values separately 
(red values had no effect) (Figure 1B).

Binary Image Enhancement
After obtaining a binary image, morphological ero-

sion was performed to reduce sparsely occurring noise by 
shrinking white regions and enlarging black regions. This 
step was necessary because tiny white or black regions 
may appear in the binary image depending on image qual-
ity. These regions are more likely to not represent stea-
tosis but may mimic steatotic droplets. In addition, large 
nontissue background regions in the image were removed 
(Figure  2A and B). This was performed by setting a size 
value threshold of white regions to be greater than the 
largest fat droplet. The contour area (CA) was defined as 
the number of pixels in a contiguous white region of the 
image. The minimum enclosing circular area (MECA) was 
defined as the area of the smallest circle that encloses the 
contiguous white region. The circularity (C1) was defined 
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as CA divided by MECA (Equation 1). For the 640 × 480 
pixel histology images at 20x magnification, contiguous 
white regions with CA >2000 pixels, or with CA >600 pix-
els and circularity <0.3, were defined as nontissue back-
ground regions and filtered out. These threshold values 
were determined experimentally to be larger than any mac-
rosteatotic droplet.

  C1 =
CA

MECA
  (1)

In certain livers, steatotic droplets were tightly clustered to 
the extent that they were not visually distinguishable and 
presented instead as a unified white mass. These regions 
are prone to misinterpretation by the algorithm as histo-
logic artifacts like tearing or vascular lumen. To address 

this issue, a watershed transformation was applied, which 
separated clustered fat regions into individual globules 
(Figure 2C).

Fat Segmentation
Area and circularity were used to determine which white 

regions in the binary image represented steatotic droplets. In 
images at 20x magnification, a region was potentially classi-
fied as a steatotic droplet if it had an area between 2 and 1999 
pixels, inclusive, with a circularity above 0.2. The same defini-
tion for circularity was used as in Equation 1. Morphological 
dilation, a process that adds pixels to object boundaries, was 
then applied to restore the pixels of the fat regions that were 
previously removed during morphological erosion. The result-
ing image after dilation is the mask image, which contains 

FIGURE 1. Representative cellphone-captured images of frozen liver biopsies. A, Biopsy images can vary significantly in appearance depending 
on the device used to capture the image, natural variation in the liver samples, and processing methods. B, To handle high variance in color 
across images, conversion from RGB to binary (black and white) was performed by calculating a unique RGB threshold for each image. For each 
individual image, pixels with blue or green intensity below the calculated threshold representing liver tissue (excluding black pixels representing 
the image border) are redefined as black pixels in the binary image. Pixels with blue or green intensity above the threshold representing white 
space such as steatosis were designated as white pixels in the binary image. RGB, red-green-blue.
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regions of the original image that correspond to identified 
steatotic droplets (Figure 2D).

Additional Watershed and Filtering Step
An additional processing step was performed as some stea-

totic regions remained connected to nonsteatotic regions. The 
second watershed and filtering step allow separation of these 
connected regions and stricter filtering of nonsteatotic regions 
by using a higher circularity threshold. In this step, for 20x 
magnification images, a region was classified as a steatotic 
droplet if it had an area between 2 and 499 pixels, inclusive, 
with a circularity >0.7. The circularity C2 of a region was cal-
culated using Equation 2, where A is the area of the region 
and P is the perimeter of the region.

   C2 =
2π
»

A
π

P
 (2)

Calculation of Histologic Steatosis
Both the original unedited biopsy images and the final 

binary masked images for each individual liver were used to 
calculate a steatosis score. The sum of the number of white 
pixels in the mask image equates to the number of pixels of 
identified steatotic droplets. Because the size of the individual 
original images and the masked images are equal, the esti-
mated percent steatosis for each image was calculated as the 
number of white pixels in the masked image divided by the 
number of liver tissue pixels in the original image. The final 
percent steatosis for each liver represents the mean of the stea-
tosis estimates for all biopsy images for that individual liver, 
omitting outliers (±1 SD).

Open Access Code Sharing
All software code along with examples of deidentified 

liver images are available at https://github.com/mit-quest/
mgh-liver-segmentation.

Statistical Analysis
Interobserver agreement between pathologists was meas-

ured using the intraclass correlation (ICC) with a 2-way 
mixed-effects model. ICC is a statistical measure of rater 
agreement on the same targets. An ICC <0.5 indicates poor, 
0.5  to 0.75 moderate, 0.75  to 0.9 good, and >0.9 excellent 
agreement. Correlation between pathologists and algorithm 

estimates was measured using Pearson’s correlation coefficient 
and linear regression. Stata 15.1 (StataCorp, College Station, 
TX) and Prism 9 (GraphPad Software, San Diego, CA) were 
used for statistical analysis and visualization. The threshold 
for significance was set to P < 0.05.

RESULTS

Interobserver Agreement of Pathologists
Intraclass correlation was performed to measure interob-

server (pathologist) agreement of liver steatosis scores. ICC 
between 3 pathologists of diverse training backgrounds (P1–
3) for all 91 imaged frozen section slides was 0.20 (95% CI, 
0.074-0.34), indicating poor agreement. However, the major-
ity of livers included had minimal (<5%) or no steatosis (0%). 
From a clinical perspective, pathologists had a significant dis-
agreement on 28 of 91 (30.8%) livers, indicating discrepant 
scores above and below the presumed 30% steatosis thresh-
old for transplant. In practice, almost one third of these trans-
planted livers could have been discarded as a result, depending 
on which pathologist’s score was used. When the analysis was 
restricted to the 20 grafts with the most apparent steatosis, 
agreement worsened (ICC 0.026; 95% CI, 0-0.34). Replacing 
the least experienced pathologist (P1) with an expert liver 
pathologist (P4) only marginally improved interobserver 
agreement (ICC 0.26; 95% CI, 0-0.56) (Figure  3A and B). 
When the steatosis estimates of pathologists P1 through 4 for 
the 20 livers with the most apparent steatosis were correlated 
with the algorithm’s estimates, the estimates of the 2 most 
experienced pathologists demonstrated statistically significant 
but relatively weak correlations (R2 = 0.26, P < 0.05 for both) 
(Figure 3C). From a clinical perspective, only 3 of 20 livers 
(15%) had no disagreement between scores, indicating that 
17 of 20 (85%) livers could have been discarded depending 
on which pathologist’s score was used for decision making.

Correlation of Algorithm Estimates with 
Standardized Slide Estimates

Given the remarkable discrepancy among pathologists’ 
estimates of liver steatosis, an additional set of control images 
was created to evaluate the inherent variability in interob-
server agreement. Ten control images were created with fat 
segmentation based on liver biopsies, where regions represent-
ing fat are colored green, regions representing liver tissue are 
colored black, and regions representing neither liver tissue 

FIGURE 2. Representative image process techniques for identifying steatosis. A, Initial unprocessed image of frozen liver biopsy is shown. 
B, Converted raw image to binary format with morphological erosion. C, Binary image after watershed processing further separates steatotic 
droplets in proximity. D, Final image after fat segmentation with mask overlay demonstrating steatotic droplets in green.
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nor fat are colored gray (Figure 4A). In this binary mode, the 
calculation purely counts green and black pixels, so the algo-
rithm’s estimate of the steatosis content serves as the “ground 
truth.” For each image, 3 expert liver pathologists (LP 1–3) 
provided a strict estimate and a gestalt estimate of fat content, 
considering each image independently. For the strict estimate, 
pathologists were instructed to use Equation 3:

Strict estimate=
Sum of green areas

Sum of green areas + Sum of black areas (3)

For the gestalt estimate, the pathologist considered not 
only the factors in the strict estimate but also the extent 
and distribution of the liver tissue in an image affected 
by fat, which more closely approximates the assessment 
of steatosis in practice. Interobserver agreement was mod-
erate in this setting for strict (ICC 0.65; 95% CI, 0.29-
0.89) and gestalt estimates (ICC 0.72; 95% CI, 0.40-0.91) 
(Figure  4B and C). However, when compared with the 
algorithm’s ground truth calculations, the pathologists’ 
strict and gestalt estimates of percentage macrosteatosis 
were categorically higher (Table 1). Figure 5 demonstrates 
the linear relationship between pathologist and algorithm 
steatosis estimates. It is worth noting that each pathologist 

has their own slope, or factor, by which their estimate can 
be correlated with the algorithm. This indicates a tendency 
for some pathologists to score higher at the same rate and 
others to score lower.

DISCUSSION

In this study, we created a non-ML digital vision algorithm 
using only smartphone-captured images of liver biopsy his-
tology. This unique approach mimics the real-world practice 
of obtaining frozen sections of liver biopsies at the time of 
organ procurement. This would allow the procurement sur-
geon to image the frozen section using a smartphone and 
standard light microscope to obtain an estimate of liver 
steatosis instantaneously. In addition, our algorithm’s stea-
tosis estimates correlate strongly with those of expert liver 
pathologists.

In creating the vision-based algorithm, we were able to 
avoid the subjective pitfalls of steatosis scoring. Primarily, 
this is the result of differing interpretations of steatosis as 
the percentage of the available tissue biopsy. This is vividly 
apparent in the recently published Banff consensus study for 
assessment of donor liver steatosis.22 Even among this group 
of expert liver pathologists, there was notable disagreement 

FIGURE 3. Wide variation in pathologist and algorithm interpretation of clinical biopsy samples. A, Two representative raw and processed 
images from the same liver biopsy are shown. Four pathologist macrosteatosis scores of the image slide were 70%, 55%, 25%, and 80%. 
The algorithm estimate was 11.4%. B, Heatmap of Pearson correlation between individual pathologists for 20 clinical biopsy slides with the 
greatest steatosis. ICC scores among various pathologist cohorts are provided. C, Correlation of individual pathologist steatosis estimates with 
algorithm estimates. The 2 most experienced pathologists (P3 and P4) had significant score correlation with algorithm estimates. ICC, intraclass 
correlation; P, pathologist.
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on steatosis scores in livers with more than minimal (>5%) 
steatosis. Moreover, discordant expert scores were demon-
strated to negatively affect graft utilization rates because 
overestimation leads to graft underutilization. This further 
highlights a significant real-world problem leading to high 
rates of graft discard. Donor procurement is often performed 
at local institutions without subspecialty pathologists to inter-
pret frozen section liver biopsies, resulting in wide variability 
in assessment. This is similarly borne out in this study, where 
ICC was quite poor when pathologists of varying experience 
were asked to score the same set of liver slides. Automated 
steatosis scoring at the point-of-care would greatly impact the 
ability to make accurate estimates of steatosis and is likely to 
improve graft utilization rates.

Similar progress has been achieved with the use of ML algo-
rithms. Several studies have applied ML for the assessment of 
fibrosis and inflammation in livers from patients with nonal-
coholic fatty liver disease and nonalcoholic steatohepatitis.18,20 
Other groups have also applied deep learning to accurately 
score steatosis in a cohort of donor liver biopsies.17,21,23,24 
However, these published studies often use whole-slide images 
or formalin-fixed paraffin-embedded tissue as the basis for 
algorithm testing and validation, which makes the application 
of these technologies less viable to real-world situations. Often, 
whole-slide imaging is not available at the time and location 
of organ procurement, and it is rarely feasible to return to the 
recipient hospital for further imaging analysis. In this respect, 
the vision algorithm reported here avoids these limitations by 

FIGURE 4. Manually generated examples of steatosis and pathologist agreement. A, Ten images were manually generated to mirror examples 
of liver biopsies with steatosis. Fat droplets are shown in green and liver tissue in black. The algorithm estimate of percentage steatosis is shown 
in the top right corner of each image. Heatmaps of ICC among expert liver pathologists when providing (B) strict vs (C) gestalt estimates of 
steatosis for the 10 images in (A). LP, liver pathologist; ICC, intraclass correlation.
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TABLE 1.

Expert LP strict and gestalt estimates of binary control steatosis images

Image 
Algorithm  
Estimate 

LP 1 strict  
estimate 

LP 1 gestalt  
estimate 

LP 2 strict  
estimate 

LP 2 gestalt  
estimate 

LP 3 strict  
estimate 

LP 3 gestalt  
estimate 

1 5.8 20 25 15 15 20 15
2 10.3 35 40 20 20 25 25
3 10.0 35 40 20 25 30 25
4 13.8 40 45 20 20 40 40
5 7.7 20 30 15 10 30 30
6 16.8 50 70 40 35 55 50
7 6.2 10 15 5 5 20 20
8 13.1 25 40 15 15 50 45
9 11.6 20 45 20 20 40 35

10 10.2 20 45 20 20 40 40

LP, liver pathologist.
Each cell is conditionally shaded to represent distance between algorithm’s pixel-based calculation and the pathologist’s estimate. Darker shading indicates larger divergence.

FIGURE 5. Expert liver pathologist estimate correlations with algorithm estimates. Graphs demonstrating correlation between (A) strict and (B) 
gestalt estimates of 3 expert LPs with algorithm estimates of manually generated images from Figure 4A. LP, liver pathologist.
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using relatively low-resolution smartphone-captured images of 
frozen biopsies as the input for analysis, allowing the procuring 
surgeon to make timely decisions. Additionally, this algorithm 
circumvents a limitation faced by many ML systems in obtain-
ing a sufficiently diverse dataset for training. It can therefore 
be used to generate training data at scale for ML models to 
further refine the segmentation, either by incorporating its out-
put directly or as a starting point to facilitate manual labeling 
using the segmented image output along with a steatosis score 
that the algorithm produces.

An additional finding of significance was that pixel-based 
steatosis scoring resulted in lower absolute steatosis scores, 
though there was a linear correlation with pathologist esti-
mates. This finding demonstrates the difference between how 
the human brain ascribes a visual estimate of fractions com-
pared with  the absolute pixel count of a computer. Another 
contributor may be that pathologists tend to characterize stea-
tosis by the percentage of hepatocytes containing lipid droplets 
and not by the overall percentage of the slide having steato-
sis.25 To best account for this, the algorithm removed sinusoi-
dal blank space, vascular lumens, and processing artifacts from 
the calculation of total liver tissue. In practice, this finding 
indicates that 30% steatosis looks different to one pathologist 
compared with another. Moreover, what is considered 30% 
steatosis by a pathologist may translate to a lower percent-
age assessment by the algorithm. The human to algorithm 
difference is noteworthy because percentage steatosis thresh-
olds for graft utilization may change if the algorithm’s score 
is used. Clinicians who intend to use the digital algorithm 
must be aware of this discrepancy and incorporate it into their 
decision-making process. Alternatively, the algorithm can be 
calibrated to output an adjusted score based on an individual 
institution’s cohort of pathologist estimates using the “ground 
truth” images (Figure  4A). This linear score discrepancy is 
a limitation of creating a vision-based algorithm without 
pathologist biopsy annotations. A recently published study by 
Narayan et al using an ML-based vision algorithm similarly 
showed a large discrepancy between algorithm steatosis scores 
and pathologist scores (median 3% versus 20%, respectively, 
P < 0.001). Notably, the ML algorithm scores distinguished 
grafts at risk of developing early allograft dysfunction.26

Other limitations include the combination of both 
microsteatotic and macrosteatotic droplets in the algorithm 
steatosis assessment. Distinguishing between the 2 would pro-
vide a more accurate representation of a graft’s quality and 
better help the surgeon in determining suitability for trans-
plant because microsteatosis has less of an impact on liver 
transplantation outcomes.27 Future studies should incorpo-
rate prospective analysis of donor biopsy slides by both the 
digital algorithm and a liver pathologist to better understand 
score discrepancies and its implications for clinical deci-
sion making. Furthermore, we were unable to correlate stea-
tosis scores with clinical outcome parameters, such as early 
allograft dysfunction, as most of the available archived liver 
biopsy slides predated the transition to our current electronic 
medical record system. These analyses in subsequent studies 
would provide insight into the utility of the digital algorithm 
in graft selection. In addition, the accuracy of the algorithm 
assessment was unable to be rigorously validated, though the 
strong linear relationship with experienced liver pathologist 
scores is supportive. Future work could include manual com-
parison of the algorithm’s mask overlays with slides annotated 

by pathologists or oil-specific staining of biopsy slides for 
comparison. In our study, additional tissue samples for the 
archived slides were not available for reprocessing.

To conclude, this study demonstrates proof of the concept 
that smartphone-captured images can be used in conjunc-
tion with a digital algorithm to measure steatosis. Additional 
software development and prospective studies are needed to 
allow its use at the point-of-care in clinical transplantation.
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