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ABSTRACT 8 

Biological systems may be biased in the phenotypes they can access by mutation1–7, but the 9 
extent of these biases and their causal role in the evolution of extant phenotypic diversity 10 
remains unclear. There are three major challenges: it is difficult to isolate the effect of bias in the 11 
genotype-phenotype (GP) map from that of natural selection in producing natural diversity6,8–11, 12 
the universe of possible genotypes and phenotypes is so vast and complex that a direct 13 
characterization has been impossible, and most extant phenotypes evolved long ago in species 14 
whose GP maps cannot be recovered. Here we develop exhaustive multi-phenotype deep 15 
mutational scanning to experimentally characterize the complete GP maps of two reconstructed 16 
ancestral steroid receptor proteins, which existed during an ancient phylogenetic interval when a 17 
new phenotype—specific binding of a new DNA response element—evolved12. We measured all 18 
possible DNA specificity phenotypes encoded by all possible amino acid combinations at sites in 19 
the protein’s DNA binding interface. We found that the ancestral GP maps are structured by 20 
strong global bias—unequal propensity to encode the various phenotypes—and extreme 21 
heterogeneity in the phenotypes accessible around each genotype, which strongly affect 22 
evolution on both long and short timescales. Distinct biases in the two ancestral maps steered 23 
evolution toward the lineage-specific functional phenotypes that evolved during history. Our 24 
findings establish that ancient biases in the GP relationship were causal factors in the 25 
evolutionary process that produced the present-day patterns of phenotypic conservation and 26 
diversity in this protein family.   27 
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MAIN TEXT 28 
Countless conceivable lifeforms have evolved rarely or never, and those that exist are mostly 29 
restricted to specific lineages13–16. No flying vertebrates have two pairs of wings, for example, 30 
and no turtles or frogs fly. What explains the biased distribution of phenotypes in nature? 31 
Classical explanations focus on the influence of selection17,18, but it is possible that the 32 
propensities of biological systems to produce phenotypic variation could also shape evolutionary 33 
outcomes. A phenotype can become fixed in an evolving population only if it is first generated 34 
by mutation. If biological systems are more likely to produce some phenotypes than others1–7, 35 
and if these propensities change over time as lineages diverge19,20, then some phenotypes will be 36 
more likely to evolve in some taxa than in others. 37 

Whether phenotype production has been an important cause of evolutionary outcomes is 38 
unclear, because most patterns of phenotypic variation observed in nature could arise from 39 
production biases, natural selection, or both, and disentangling their past influences is extremely 40 
challenging 6,8–11. Ideally, we would isolate the phenotype production process by directly 41 
characterizing the complete genotype-phenotype (GP) map, which maps all possible 42 
combinations of mutations to the phenotypes they encode. This would allow us to precisely 43 
quantify the ability of a system to produce phenotypic variation, both on a global scale and by 44 
mutation from each particular genotype. The total space of genotypes and phenotypes is vast, but 45 
we reasoned that by combining three recent technical advances, this goal could become tractable 46 
for proteins and their biochemical phenotypes.  The first technique is deep mutational scanning 47 
(DMS), which allows huge libraries of protein variants to be characterized experimentally21. The 48 
scope of genetic variation to be measured in a DMS study can be defined as all combinations of 49 
all 20 possible amino acid states at the sequence sites that determine the protein’s phenotype of 50 
interest, thus encompassing all potential genetic variation at those sites22–26. Complete 51 
combinatorial DMS studies to date, however, have assayed only one or a few phenotypes that 52 
exist in extant proteins.  Although this approach can reveal all genetic variants that encode these 53 
phenotypes, it cannot address why those particular phenotypes evolved in the first place; to 54 
understand why evolution turned out as it did, we must characterize the propensity of mutations 55 
to produce not only the phenotypes that evolved historically but also all the phenotypes that did 56 
not. The second technique—comprehensive multi-phenotype profiling—addresses this limitation 57 
by quantifying all possible phenotypes that a single protein can perform, such as binding of all 58 
possible substrates or DNA elements in a defined class27–31. We reasoned that by combining 59 
DMS with comprehensive multi-phenotype assays, we could map all possible phenotypes onto 60 
all possible genotypes within a defined scope.  This would allow us to characterize the total 61 
capacity of a protein system to produce and access phenotypic variation by genetic change. 62 

The phenotypes of extant lineages evolved long ago, so understanding the causal role of 63 
phenotype production in historical evolution requires GP maps to be characterized as they 64 
existed in the deep past. The third technique— ancestral protein reconstruction32— can address 65 
this problem by providing the protein backgrounds on which a comprehensive combinatorial 66 
multi-phenotype DMS study is performed. Moreover, characterizing such GP maps across a 67 
phylogenetic time series of reconstructed ancestral proteins24,33 would reveal how biases in 68 
phenotype production may have changed over time and whether these biases are congruent with 69 
the trajectories of phenotypic evolution that actually unfolded during history.  70 

Here we apply this approach to assess how phenotype production shaped the functional 71 
diversification of the steroid hormone receptor protein family. We use comprehensive multi-72 
phenotype DMS to experimentally characterize GP maps of the binding interface of two 73 
reconstructed ancestral steroid hormone receptor DNA binding domains (SR DBDs) and their 74 
ability to encode specific recognition of all possible DNA response elements. We then analyze 75 
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these maps to understand 1) how they could shape potential phenotypic outcomes of evolution on 76 
short and long timescales, 2) characterize the mechanisms that changed key features of the maps 77 
across evolutionary time, and 3) assess the impact of the maps on the historical evolutionary 78 
processes that yielded the lineage-specific patterns of DNA specificity in extant steroid hormone 79 
receptors. 80 

Two complete ancestral GP maps 81 
SRs are a family of transcription factors that regulate physiological and reproductive biology in 82 
bilaterian animals. Most bilaterian taxa have a single SR, which specifically binds to inverted 83 
palindromes of the motif AGGTCA, called the estrogen response element (ERE; Fig. 1a). In 84 
chordates, a gene duplication of the ancestral SR (AncSR1) produced two major SR classes, 85 
which have different DNA specificity phenotypes: chordate estrogen receptors (ERs) retain the 86 
ancestral ERE specificity, but a novel specificity for a palindrome of AGAACA, called the 87 
steroid response element (SRE), evolved in the lineage leading to AncSR2, the common ancestor 88 
of the chordate ketosteroid receptors (kSRs; Fig. 1a, b)12. Specificity for DNA is determined 89 
primarily by the amino acid sequence of a recognition helix (RH) that binds in the DNA major 90 
groove34,35. AncSR1 and AncSR2 DBDs differ by 34 amino acid replacements, but experiments 91 
on the reconstructed proteins established that three amino acid changes in the RH were the 92 
primary cause of the evolution of SRE specificity12.  93 

To understand how phenotype production may have shaped the evolution of SR-DBD 94 
specificity, we characterized combinatorially complete GP maps of the DBD-response element 95 
(RE) interface at the key ancestral timepoints AncSR1 and AncSR2. The scope of genotypes is 96 
all possible 204 = 160,000 amino acid variants at four variable sites in the recognition helix—the 97 
three that changed between AncSR1 and AncSR2, plus one other that varies in the broader 98 
nuclear receptor family (Fig. 1c). The scope of specificity phenotypes consists of all 42 = 16 99 
possible RE sequences that can be produced by all combinations of nucleotides at the two base 100 
positions that vary between ERE and SRE. These two maps of the recognition helix-RE interface 101 
can be thought of as submaps within the much larger GP map of the entire DBD, which are 102 
connected by the 31 other “background” substitutions that occurred between the AncSR1 and 103 
AncSR2 proteins (Fig. 1b).  104 

We engineered two protein libraries, each containing all 160,000 variants of the 105 
recognition helix in the background of either the AncSR1 or AncSR2 DBD, along with16 yeast 106 
strains, each containing a GFP reporter driven by one of the REs (Fig. 1c, Extended Data Fig. 107 
1a–e). We transformed each RE strain separately with the two protein libraries, with barcodes to 108 
mark the strain and the ancestral background, for a total of 5.12 million protein-DNA complexes. 109 
, we used an initial round of fluorescence-activated cell sorting to enrich the yeast libraries for 110 
GFP-positive cells, pooled the enriched libraries, sorted cells in three replicates by their 111 
fluorescence, and sequenced the sorted bins (Fig. 1d, Extended Data Fig. 1f, g). Using this 112 
strategy, we obtained empirical fluorescence estimates for the majority of complexes with good 113 
replicability (r2 = 0.92 across replicates, excluding complexes at the lower bound of 114 
fluorescence; Extended Data Fig. 2). Fluorescence of the remaining complexes was predicted 115 
using a generalized linear model trained on the experimental data (Methods, Extended Data Fig. 116 
3a–d)36,37. 117 

Each protein variant was assigned a DNA specificity phenotype based on these 118 
experiments. A protein variant is classified as specific if it is functional in complex with only one 119 
RE, promiscuous if it is functional on multiple REs, or nonfunctional if it is not functional on 120 
any RE. We defined functional complexes as those having fluorescence at least as great as the 121 
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wild-type complex in each background (i.e. EGKA:ERE for the AncSR1 library and GSKV:SRE 122 
for AncSR2) (Methods, Extended Data Fig. 3e–g). 123 

 124 

Fig. 1 | Characterizing ancestral GP maps using multi-phenotype DMS. a, Amino acid 125 
sequence of the recognition helix (RH) in extant and ancestral steroid receptor (SR) proteins and 126 
the sequence of the RE they bind to. Colored residues are responsible for differences in protein-127 
RE specificity. b, Phylogeny of SRs. Each clade of proteins is colored by the RE sequence it 128 
recognizes. In chordates, a historical transition from ERE to SRE specificity occurred along the 129 
branch between AncSR1 (the common ancestor of all chordate SRs) and AncSR2 (the common 130 
ancestor of vertebrate kSRs). The number of historical sequence changes along the AncSR1-131 
AncSR2 branch is shown; three of these in the recognition helix (RH) caused the specificity 132 
switch12. c, d, DMS experiment to assay effects of RH genotype on binding to variable REs. c, 133 
We built combinatorial libraries of all combinations of 20 amino acid states at four variable sites 134 
in the RH (pink Xs), using the rest of the AncSR1 and AncSR2 DBDs as backgrounds (top left). 135 
These were transformed into 16 S. cerevisiae strains, each containing one of the 16 possible RE 136 
motifs (pink Ns, bottom left) genomically integrated upstream of a GFP reporter gene (right). d, 137 
We assayed binding of DBD-RE complexes using FACS coupled with deep sequencing. For 138 
each library, we performed an initial enrichment sort to select for GFP+ cells. We then grew up 139 
the selected cells, pooled them across the 32 libraries, and resorted them into four fluorescence 140 
bins in triplicate (binned sort). Sorted cells were deep sequenced to estimate the mean log10GFP 141 
(F) of each combination of protein and RE genotypes. 142 

 143 

Global bias in the AncSR1 GP map  144 
The probability that a phenotype will evolve equals the probability that it will be produced by 145 
mutation times the probability that, once produced, it will be fixed. The GP map 146 
would have no effect on evolutionary outcomes if and only if it had two properties: isotropy—147 
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encoding all phenotypes with equal probability—and homogeneity—producing the same 148 
distribution of phenotypes from all starting genotypes in the map38–41. If the map is anisotropic,  149 
 150 

 151 
Fig. 2 | Global and local bias in the AncSR1 GP map. a, Global production distribution in the 152 
AncSR1 GP map. Bars represent the number of protein variants that bind specifically to each 153 
RE. The dashed line shows the expected frequencies if the distribution were unbiased. B, 154 
phenotype bias, calculated as one minus the entropy (base 16) of the distribution. b, Sequence 155 
space network of the AncSR1 GP map. Nodes represent functional protein variants, colored by 156 
their RE specificity; white nodes, promiscuous genotypes. Edges connect protein variants that 157 
can be interconverted by a single nucleotide change. Genotype clusters (1–6, ordered by 158 
decreasing size) identified by a community structure detection algorithm are shown in gray. 159 
Sequence logos show amino acid frequencies at the variable RH sites in each cluster. c, Bottom: 160 
Frequencies of specificity phenotypes within each genotype cluster; the global production 161 
distribution is shown for comparison. Asterisks, phenotypes significantly enriched within a 162 
cluster relative to the global production distribution (Fisher’s exact test, p < 0.05 after Bonferroni 163 
correction). Top: strength of phenotype bias (B) in each cluster. Red line, B of global production 164 
distribution. d, Distribution of phenotype bias (B) of the 1-mutant neighborhood of every RE-165 
specific protein variant in the main network component. Dot shows the mean. Dashed red line, 166 
global phenotype bias. e, Proportion of neutral neighbors per RE-specific protein variant in the 167 
main component of the AncSR1 map. Dot shows the mean. P-value, probability that the mean 168 
would be at least as great as observed if phenotypes were randomly reassigned in the main 169 
component (n = 91). f, Distribution of the number of new phenotypes accessible within one 170 
mutation, across all RE-specific variants in the AncSR1 main component. g, Mean distance 171 
between pairs of phenotypes in the AncSR1 main component. The color of each cell shows the 172 
mean of the length of the most direct path from every genotype encoding one phenotype to every 173 
genotype encoding the other. Bonferroni corrected p-values for a two-sided permutation test 174 
where phenotype associations were shuffled within the main component: * p < 0.001. 175 
 176 
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then phenotypes more likely to be produced would be more likely to evolve; if the map is 177 
heterogeneous, then the probability that each phenotype will be produced—and hence evolve—178 
would change as lineages diverge from each other across the map.  179 

We assessed the isotropy of the AncSR1 GP map by characterizing the frequency 180 
distribution of DNA specificity phenotypes encoded by all functional protein variants. Only 107 181 
out of 160,000 total genotypes in the library were functional (0.07%). Of these, the majority (91) 182 
were specific for a single RE. We calculated the bias (B) of this global phenotype distribution, 183 
defined as 1 minus the Shannon entropy (base 16); B can range from 0 when specificity for all 16 184 
REs is encoded with equal frequency to 1 when only a single phenotype is encoded. We found 185 
that the distribution is strongly anisotropic (B = 0.42). Two specificity phenotypes—ERE and 186 
SRE—together account for >60% of all specific genotypes, and only five others can be produced 187 
at all; nine phenotypes are not encoded by any protein variant (Fig. 2a). 188 

We refer to this anisotropy as global bias in the GP map40. Global bias in the AncSR1  189 
map imposes hard limits on phenotypic evolution—the majority of conceivable phenotypes 190 
could never evolve in this map, even if they conferred strong fitness advantages. The global bias 191 
is also congruent with evolutionary history—the phenotypes that evolved historically in the two 192 
lineages descending from AncSR1 are also the most frequently encoded. 193 

Local bias in the AncSR1 GP map  194 
We next assessed the homogeneity of the AncSR1 GP map using Maynard-Smith’s classic 195 
network model of sequence space42. Each functional protein variant is a node with its 196 
experimentally defined phenotype. Nodes are connected by edges if their amino acid sequences 197 
can be interconverted by a single nucleotide change given the standard genetic code. 198 
Nonfunctional variants are excluded from the network, based on the assumption that they will be 199 
removed quickly from evolving populations by purifying selection.  200 

We found that the distribution of phenotypes in AncSR1 sequence space is strongly 201 
heterogeneous. Although the majority of functional genotypes (91%) and phenotypes (6 of 7) are 202 
mutually connected in a single main network component, each phenotype tends to be sequestered 203 
in a local region (Fig. 2b). Using a community structure detection algorithm43, we found that the 204 
main network component can be partitioned into six clusters of genotypes that have dense 205 
connectivity within clusters and weak connectivity between (Fig. 2b). The phenotype bias B 206 
within every single cluster is higher than the global bias of the map, and 5 of 6 clusters are 207 
significantly enriched for a single specificity phenotype, which differ among all 5 clusters (Fig. 208 
2c). The clumpy distribution of phenotypes in sequence space arises from the simple fact that 209 
similar genotypes, which are connected to each other in sequence space, are likely to encode 210 
similar phenotypes (Fig. 2b, logos). 211 

This heterogeneity creates local bias40: the propensity to produce phenotypes depends 212 
strongly on the particular genotype occupied at the time. The one-mutant neighborhood around 213 
every genotype has extremely high bias (mean B = 0.91; Fig. 2d), indicating that individual 214 
genotypes can access much less phenotypic variation than is encoded across genotype space as a 215 
whole. Most mutations are phenotypically neutral (79% of edges; Fig. 2e), and most genotypes 216 
can directly access at most one new phenotype (Fig. 2f). The historical starting genotype 217 
(EGKA), for example, has access to only one functional neighbor, which also has ERE 218 
specificity. Another consequence of heterogeneity is that phenotypes, aggregated over the 219 
genotypes that encode them, are differentially accessible to each other, with substantial variation 220 
in the number of mutations required to transform each phenotype into the others (Fig. 2g). For 221 
example, SRE-specific protein genotypes are directly accessible from nodes encoding specificity 222 
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for AT and GA, but they are multiple substitutions away from all ERE-specific genotypes (Fig. 223 
2b).  224 

The GP map of AncSR1 is therefore both anisotropic and heterogeneous, and these 225 
properties impose global and local biases on the production of phenotypes. Global bias favors 226 
production of the historical phenotypes ERE and SRE and entirely prevents the production of 227 
most conceivable phenotypes. Local bias further restricts the number of accessible phenotypes 228 
from each particular genotype, favoring conservation over the evolution of new phenotypes, 229 
including from the historical genotype EGKA.  230 

Biases in the GP map affect phenotypic outcomes of evolution 231 
To characterize the potential influence of the AncSR1 GP map on the outcomes of evolution, we 232 
modeled evolution on the network of functional amino acid genotypes as a discrete-time Markov 233 
chain from every possible starting genotype given a variable trajectory length. Each time-step in 234 
a trajectory is an amino acid substitution, the probability of which is weighted by the number of 235 
single-nucleotide mutations that can mediate it; the relative probability of evolving a given 236 
phenotype at the end of the trajectory is the sum of the probabilities of evolving all genotypes 237 
that encode it. This model, which corresponds to neutral molecular evolution in which all 238 
functional genotypes have equal fitness42,44, represents a null scenario: the fixation process 239 
imposes no biases on evolutionary outcomes except to prevent the loss of function via purifying 240 
selection, thus allowing us to isolate the influence of biases imposed by the GP map on 241 
evolutionary outcomes. 242 

We first computed the equilibrium distribution of phenotypic outcomes after an infinite 243 
number of substitutions. This represents the limiting case at which the distribution of outcomes is 244 
insensitive to the starting genotype and does not change with additional substitutions. The 245 
equilibrium outcome distribution is well correlated with the global production distribution (Fig. 246 
3a, r2 = 0.82), reflecting the constraints imposed by the global production bias. However, there 247 
are differences: the equilibrium distribution is more biased (B= 0.46), and whereas ERE and SRE 248 
specificity are the two most frequently encoded phenotypes, ERE and AT specificity are the 249 
most likely equilibrium outcomes (Fig. 3a). This difference arises because most AT-specific 250 
genotypes are located centrally within the network, while SRE-specific genotypes are in a more 251 
peripheral cluster (Fig. 2b) and are therefore less likely to be occupied. The heterogeneous 252 
connectivity of the GP network and global production bias therefore affect evolutionary 253 
outcomes, even over infinitely long timescales.  254 

On finite timescales, local bias strongly affects evolutionary outcomes. After 3 255 
substitutions, for example—the shortest path between the historical ancestral and derived 256 
genotypes—the outcome distributions are very strongly biased (mean B = 0.8 across starting 257 
genotypes, Fig. 3b), because most genotypes can reach only a few new specificity phenotypes by 258 
a path of this length (Extended Data Fig. 4). The bias in outcomes gradually decays as 259 
trajectories get longer, but it takes 42 substitutions (10.5 per site) for the mean bias to decrease to 260 
within 0.05 units of the equilibrium (Fig. 3b, vertical dashed line). By comparison, the maximum 261 
root-to-tip branch length in the steroid receptor DBD phylogeny (Fig. 1b), which spans over 500 262 
million years of evolution, is just 2.2 substitutions per site. The phenotypes likely to evolve on 263 
phylogenetically relevant timescales are therefore strongly affected by local bias in the GP map. 264 
 Another consequence of local bias is that outcomes are strongly contingent on the genetic 265 
starting point. Consider a trajectory length of 8 substitutions—long enough for new phenotypes 266 
to become accessible from most starting points, but not so long that the influence of local bias is 267 
lost. At this timescale, genotypes differ dramatically in the distribution of phenotypes that evolve 268 
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from them (Fig. 3c). Much of this variation is explained by the genotype cluster to which the 269 
starting node belongs (Fig. 3c), because evolutionary trajectories rarely jump between weakly  270 
 271 

 272 
Fig. 3 | The AncSR1 GP map biases evolutionary outcomes towards phenotype 273 
conservation. a, Comparison between the global production distribution and the long-term 274 
equilibrium distribution of phenotypic outcomes in the AncSR1 main network. Each dot shows 275 
the frequency of one specificity phenotype in the two distributions. Black dot at the origin 276 
represents nine phenotypes not encoded in the map. Dashed gray line, y = x. Squared Pearson’s 277 
correlation coefficient is shown. b, Strength of bias (B) in evolutionary outcomes as a function of 278 
the length of evolutionary trajectories. Each gray dot shows the B of the outcome distribution for 279 
trajectories of a given number of substitutions starting from one node on the main network 280 
component. Solid blue and black lines show the mean across all starting genotypes and from 281 
EGKA, respectively. Dashed horizontal red and cyan lines show B of the global production 282 
distribution and the equilibrium distribution, respectively. Vertical dashed line shows the number 283 
of substitutions required for mean B to reach within 0.05 units of the equilibrium value. The 284 
secondary x-axis (above) shows the trajectory length as substitutions per site. c, Distribution of 285 
evolutionary outcomes after 8 substitution steps from every starting genotype in the AncSR1 286 
main network component, organized by the cluster of the starting genotype (top). Bottom bar 287 
shows the phenotype of each starting genotype. Bars at right show the average outcome 288 
distribution for all starting genotypes. d, Distribution of the probability of phenotype 289 
conservation after 8 substitution steps across all specific starting genotypes in the AncSR1 main 290 
network component. Dot shows the mean. e, Evolutionary outcomes become less similar as 291 
starting genotypes diverge from each other. Each dot shows the similarity of the distributions of 292 
phenotypic outcomes (Pearson’s r2) of 8-step trajectories starting from a pair of genotypes, 293 
versus the number of network edges between the pair. Blue line, mean similarity across all pairs 294 
of starting genotypes. f, Probability of evolving each specificity phenotype starting from EGKA 295 
as a function of the number of substitutions. 296 
 297 
connected clusters and clusters are strongly enriched for individual phenotypes. Even at this 298 
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timescale, the direction of phenotypic evolution on average favors conservation of the starting 299 
phenotype (Fig. 3d), but when new phenotypes evolve, these too differ strongly among starting 300 
genotype (Fig. 3c).  301 

A final consequence of local bias is that as lineages diverge from each other across the 302 
map, the distributions of phenotypic outcomes likely to evolve from them become increasingly 303 
dissimilar. The correlation between the distributions of phenotypic outcomes after eight-step 304 
evolutionary trajectories from pairs of starting genotypes depends strongly on the distance 305 
between those genotypes in the network. For pairs of genotypes that are one substitution apart, 306 
the average r2 is 0.88, but this correlation drops to 0.50 when the genotypes are three steps apart 307 
and is entirely lost at 11 steps (r2 = 0.02, the maximum distance on the network) (Fig. 3e). Biases 308 
in the outcomes of phenotypic evolution therefore become distinct among lineages as they 309 
traverse the GP map.  310 

The AncSR1 GP map favored historical conservation of ERE specificity 311 
Local and global bias have a particularly strong and long-lasting impact on the outcomes of 312 
evolutionary trajectories that begin from the historical genotype of the recognition helix in 313 
AncSR1 (EGKA). It takes 80 substitutions for the bias in phenotypic outcomes from this starting 314 
point to decay to within 0.05 units of equilibrium, almost double the average across genotypes 315 
(Fig. 3b, blue vs. black solid lines). It takes at least 5 substitutions for any new specificity 316 
phenotype to be accessed, and even after 8 substitutions the probability of conserving ERE 317 
specificity is still 0.90 (Fig. 3f). The AncSR1 GP map heavily favors phenotypic conservation 318 
from the historical starting genotype across phylogenetically relevant timescales. Bias imposed 319 
by the GP map is therefore congruent with the long-term historical conservation of ERE 320 
specificity in the lineages that descend from AncSR1 and lead to modern-day estrogen receptors.  321 

The historical outcome that evolved in AncSR1’s other descendant linage—acquisition of 322 
SRE specificity in the kSR clade—was very unlikely on phylogenetic timescales. SRE-specific 323 
genotypes are distant from EGKA (Fig. 2b), so the probability of evolving SRE specificity after 324 
eight substitutions is only 0.0008 (Fig. 3f), despite the fact that this is the second-most frequently 325 
encoded specificity phenotype in the network overall. Strong local bias around EGKA therefore 326 
overrides the global bias towards SRE specificity, making the historical outcome in the kSR 327 
clade extremely unlikely.  328 

Evolution of a different GP map in AncSR2 329 
Given that local bias made SRE specificity unlikely to evolve from the ancestral genotype in the 330 
AncSR1 map, how could this phenotype have historically evolved in the kSRs? We reasoned that 331 
the GP map must have changed along the branch leading to AncSR2 when SRE specificity was 332 
acquired. Previous experiments showed that the background substitutions that occurred outside 333 
the recognition helix during this interval had a nonspecific permissive effect on both ERE and 334 
SRE activation, allowing the protein to tolerate the historical substitutions and other mutations in 335 
the RH (Fig. 1b)12,24. We predicted that the background substitutions had a similarly permissive 336 
effect across all REs, increasing the number of functional genotypes in the map and the number 337 
of phenotypes they encode, including SRE specificity and others.  338 

To assess this hypothesis, we characterized the GP map of the RH sites in AncSR2 and 339 
compared it to the map in the AncSR1 background. As predicted, the number of functional 340 
genotypes and phenotypes both massively increased (Fig. 4a, b). There are 2,407 functional 341 
protein genotypes in the AncSR2 map, an increase of >20-fold over the AncSR1 background. 342 
Fourteen of the 16 possible specificity phenotypes are now encoded in the map, twice as many as 343 
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in AncSR1 (Fig. 2a, 4a). The background substitutions therefore dramatically expanded the 344 
functional genetic and phenotypic variation that can be produced within the recognition helix. 345 

 346 

 347 
Fig. 4 | Global and local bias and connectivity changed in the AncSR2 GP map. a, Global 348 
production distribution and global B of the AncSR2 GP map. b, Sequence space network of the 349 
AncSR2 GP map. c, Number of one-step neighbors per protein variant in each network. Dots 350 
show the mean of each distribution. d, Bottom: Frequencies of specificity phenotypes within 351 
each genotype cluster (1–14, ordered by decreasing size); the global production distribution is 352 
shown for comparison. Only the 14 largest clusters, which contain >90% of genotypes, are 353 
shown. Asterisks, phenotypes significantly enriched within a cluster relative to the global 354 
production distribution (Fisher’s exact test, p < 0.05 after Bonferroni correction). Top: strength 355 
of phenotype bias (B) in each cluster. Red line, B of global production distribution. e, 356 
Distribution of the number of new phenotypes accessible within one mutation, across all RE-357 
specific protein variants in the AncSR2 main component. f, Proportion of neutral neighbors per 358 
RE-specific variant in the main network component of the AncSR1 and AncSR2 maps. Dots 359 
show the mean. p-value, probability that the mean would be at least as great as observed if 360 
phenotypes were randomly reassigned in the main component of each map (AncSR1 n = 91, 361 
AncSR2 n = 2,402). 362 

 363 
Connectivity between genotypes in the map increased, reducing local bias and facilitating 364 

access to new phenotypes. In the AncSR2 network, all but five of the 2,407 functional nodes are 365 
connected in a single main component (Fig. 4b), and the mean number of edges per node is 10.7, 366 
a three-fold increase compared to the AncSR1 network (Fig. 4c). Genotype clusters are still 367 
present, but bias within clusters is weaker than in the AncSR1 map (Fig. 2c, 4d). As a 368 
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consequence, genotypes have more access to new phenotypes: >50% of genotypes in the 369 
AncSR2 map can access between 1 and 4 new phenotypes within a single mutation (Fig. 4e, 370 
compare to Fig. 2e), because genotypes are typically connected to far more non-neutral 371 
neighbors (Fig. 4f). 372 

Finally, the global production distribution of phenotypes also changed across this 373 
interval. In the AncSR2 map, SRE became the most frequently encoded phenotype (39% of 374 
specific variants), and ERE’s rank declined from first to seventh (encoding just 3% of specific 375 
variants) (Fig. 2a, 4a). The background substitutions therefore realigned the global phenotype 376 
bias from favoring the ancestral specificity to producing the derived specificity.  377 

The AncSR2 GP map favored evolution of SRE specificity 378 
These changes in the AncSR2 GP map dramatically altered the likely phenotypic outcomes of 379 
evolution. At long-term equilibrium using our Markov model and the AncGR2 map, the most 380 
likely evolutionary outcome is now SRE specificity, with a probability close to 40% (Fig. 5a, 381 
compared to <20% in the AncSR1 map). At moderate timescales as well, SRE specificity is the 382 
most likely outcome across the majority of starting genotypes (Fig. 5b). The probability of 383 
evolving new phenotypes overall is considerably higher in the AncSR2 network compared to 384 
AncSR1 (mean probability of conservation after 8 steps 0.47 in AncSR2 but 0.61 in AncSR1, 385 
Fig. 3d, 5c). 386 
 387 

 388 
Fig. 5 | The AncSR2 GP map biases evolutionary outcomes towards SRE specificity. a, 389 
Comparison between the global production distribution and the long-term equilibrium 390 
distribution of phenotypic outcomes in the AncSR2 main network. Dashed gray line, y = x. b, 391 
Distribution of evolutionary outcomes after 8 substitution steps from every starting genotype in 392 
the AncSR2 main network component, organized by the cluster of the starting genotype (top). 393 
Bottom bar shows the phenotype of each starting genotype. Bars at right show the average 394 
outcome distribution for all starting genotypes and all non-SRE-specific starting genotypes, 395 
respectively. c, Distribution of the probability of phenotype conservation after 8 substitution 396 
steps across all specific starting genotypes in the AncSR2 main network component. Dot shows 397 
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the mean. d, Number of genotypes (top) and phenotypes (bottom) accessible as a function of the 398 
length of evolutionary trajectories. Lines show the mean across all starting genotypes in each 399 
network. Gold, AncSR1 network; teal, AncSR2 network. e, Strength of bias (B) in evolutionary 400 
outcomes as a function of the length of evolutionary trajectories. Lines and colors are the same 401 
as in Fig. 3b. f, Distribution of the similarity in outcome distributions (Pearson’s r2) for 8-step 402 
trajectories starting from all pairs of genotypes in the AncSR1 and AncSR2 main networks. Dots 403 
show means. g, Probability of evolving each specificity phenotype starting from EGKA as a 404 
function of the number of substitutions. 405 
 406 

These changes in evolutionary outcomes are attributable to the increased connectivity of 407 
the AncSR2 network and the shift in the global production distribution. From any starting point, 408 
the increase in functional nodes and connectivity allows access to far more genotypes and new 409 
phenotypes (Fig. 5d). As a result, the influence of local bias is lost faster, and trajectories more 410 
rapidly converge on the equilibrium distribution (Fig. 5e), which more closely resembles the 411 
production distribution than in the AncSR1 background (Fig. 5a). Evolutionary outcomes are 412 
also more similar across pairs of starting points than they were in the AncSR1 map (Fig. 5f). 413 
Combined with the shift in the global production distribution, this causes SRE specificity—414 
which was already the second-most likely outcome in the AncSR1 map—to become the most 415 
likely outcome from a majority of starting points in the AncSR2 background. 416 

From the historical RH genotype EGKA (the AncSR2 protein with the RH states reverted 417 
to their ancestral states), the likely outcomes of phenotypic evolution are dramatically different 418 
than in the AncSR1 map. EGKA is much less mutationally isolated in the AncSR2 network, so 419 
the probability of conserving ERE specificity after 8 substitutions drops from 0.9 in the AncSR1 420 
map (Fig. 3f) to 0.07 in the AncSR2 map (Fig. 5g). The probability of evolving new specificity 421 
phenotypes on moderate timescales increases accordingly: after just three steps, two new 422 
phenotypes—including SRE specificity—are more likely than conservation of ERE. By six 423 
steps, SRE specificity becomes the most likely of all phenotypic outcomes. 424 

The background substitutions that occurred along the branch to AncSR2 therefore 425 
changed the GP map of the RH in a way that dramatically changed the probable phenotypic 426 
outcomes of evolution. This map strongly favors phenotypic diversification, and it makes the 427 
particular phenotype that historically evolved in the kSR lineage the most likely of all possible 428 
outcomes. 429 

Simple biophysical mechanisms changed the GP map  430 
Finally, we sought insight into the biophysical mechanisms that changed the GP map of the 431 
recognition helix between AncSR1 and AncSR2. Although our experiments provide a functional 432 
rather than biophysical readout, different biophysical mechanisms predict different patterns of 433 
functional change between the AncSR1 and AncSR2 maps. We therefore analyzed the change in 434 
fluorescence of each protein-DNA complex variant between the two backgrounds to identify 435 
potential biophysical mechanisms and considered them in light of existing crystal structures. We 436 
found evidence for two major mechanisms.  437 

First, the background substitutions between AncSR1 and AncSR2 appear to have caused 438 
a universal increase in affinity across all protein-DNA complexes. Previous experiments and 439 
crystal structures showed that the background substitutions improve nonspecific DNA contacts 440 
and binding cooperativity to both ERE and SRE12,24; we therefore hypothesized that affinity 441 
increased universally for all amino acid variants across all 16 REs. To test this hypothesis, we fit 442 
a simple model in which fluorescence in each ancestral background is a function of a complex’s  443 
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 444 
Fig. 6 | Nonspecific effects of background substitutions on DBD-RE affinity. a, Fluorescence 445 
of each complex in the AncSR1 vs. AncSR2 background, scaled between the upper and lower 446 
bounds for each background. Curve shows best-fit model assuming that the affinity of every 447 
complex in the AncSR2 background is related to its affinity in the AncSR1 background by the 448 
same scaling factor. Shaded region around the curve (barely visible) shows bootstrapped 95% 449 
confidence interval (CI). The Pearson’s r2 between the data and model predictions is shown (n = 450 
2,627). Histograms show distribution of F in each background. Dashed lines show the 451 
fluorescence of the wild type complex in each background (AncSR1-EGKA:ERE or AncSR2-452 
GSKV:SRE). Colors indicate the backgrounds in which each genotype is functional. b, Amino 453 
acid frequencies at the variable RH sites across all functional protein variants in the AncSR1 and 454 
AncSR2 maps. c, Distribution of the number of neighbors gained in the AncSR2 background 455 
across all functional protein variants in the AncSR1 background that remain functional in the 456 
AncSR2 background. Dashed line, mean. d, Correlation between the number of protein variants 457 
bound per RE in each background. Black line, linear fit to all REs except ERE; shaded region, 458 
95% CI. e, Same as a, but fitting a model in which the background substitutions affect affinity of 459 
all variants for ERE by one scaling factor and for all other REs by a different scaling factor. 460 
Purple, observed fluorescence and best-fit model predictions for ERE complexes; gray, for non-461 
ERE complexes. f, Crystal structure of the AncSR1-EGKA protein in complex with ERE (PDB 462 
4OLN). The RH backbone is shown as a ribbon, with key side chains shown as sticks. The gray 463 
surface shows ERE, with variable bases and backbone as sticks. In this complex, glutamine (q) at 464 
site 36 forms a hydrogen bond (yellow dashed line) with the DNA backbone, and lysine (k) at 465 
site 32 forms two hydrogen bonds to the ERE-specific bases G and T. g, Same as f, but with the 466 
AncSR2-EGKA crystal structure (PDB 4OND). Substitution to glutamic acid (E) at site 36 467 
abolishes the ancestral hydrogen bond to the DNA backbone and results instead in electrostatic 468 
repulsion from the backbone. This deforms the recognition helix, abolishing the hydrogen bonds 469 
between K32 and the G and T bases. In F and G, lowercase letters represent ancestral amino acid 470 
states, and uppercase derived.  471 

 472 
affinity, and affinity is scaled by a constant factor in AncSR2 relative to AncSR1. The model fits 473 
the data very well (r2 = 0.95; Fig. 6a), with an estimated 70-fold universal improvement in 474 
affinity in the AncSR2 background. This apparent increase in affinity explains the vast increase 475 
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in functional genotypes and specificity phenotypes between AncSR1 and AncSR2, because many 476 
protein-DNA complexes that had weak affinity in the AncSR1 background—and were therefore 477 
nonfunctional—bind strongly enough in AncSR2 to produce functional levels of fluorescence. 478 
The number of promiscuous protein variants also increases, because many variants cross the 479 
threshold for functionality on multiple REs (Extended Data Fig. 5a). A universal improvement in 480 
affinity explains not only the increased size but also the greater connectivity of the AncSR2 481 
network: the background substitutions do not qualitatively change the amino acid determinants 482 
of binding but instead make them less stringent (Fig. 6b), so many of the newly functional nodes 483 
in AncSR2 are close neighbors of those that were already functional in AncSR1, with an average 484 
gain of 11 new neighbors per node (Fig. 6c).  485 

The second apparent mechanism is that the background substitutions negatively affect 486 
specific binding to ERE, shifting the global production bias away from ERE and leaving SRE as 487 
the most-encoded phenotype in the AncSR2 background. A universal affinity increase predicts 488 
that the number of variants with every specificity phenotype should increase proportionally 489 
across the AncSR1-AncSR2 interval; this pattern holds, but ERE is an outlier, with far fewer 490 
variants than would be expected given the pattern for other phenotypes (Fig. 6d). Moreover, ERE 491 
complexes exhibit notably lower fluorescence in the AncSR2 background than predicted by a 492 
universal increase in affinity (Extended Data Fig. 5b). We estimated the effect of the background 493 
substitutions on ERE affinity by incorporating a background-by-ERE interaction term into our 494 
affinity-fluorescence model; adding this parameter improves the fit to the data (r2 = 0.97), with 495 
the background substitutions improving ERE affinity by an estimated 2.3-fold, compared to 99-496 
fold for all other REs (Fig. 6e). The extent of the relative reduction in fluorescence differs among 497 
protein variants, however, suggesting additional specific interactions between background 498 
substitutions and amino acids in the recognition helix (Extended Data Fig. 5c). Crystal structures 499 
of the EGKA:ERE complex12 suggest a possible structural basis for the global reduction in ERE 500 
affinity: one of the background substitutions (q36E) deforms the protein backbone of the 501 
recognition helix, abolishing two hydrogen bonds that are formed between a conserved residue 502 
and bases in the ERE (Fig. 6f, g). Corroborating this mechanism, the background substitutions 503 
also shift the global bias away from AT specificity (Fig. 6d), and this is the only other RE that 504 
can form these hydrogen bonds.  505 

The structure of the GP map therefore changed between AncSR1 and AncSR2 via two 506 
simple biophysical mechanisms. By increasing all proteins’ affinity for all REs, while also 507 
impairing their affinity for ERE, the background substitutions reduced local bias and changed the 508 
direction of global bias, facilitating the evolution of many new genotypes and phenotypes and 509 
shifting the protein’s global propensity away from conserving ERE specificity to evolving the 510 
new specificity for SRE.  511 

Robustness to assumptions 512 
To assess whether our conclusions are sensitive to assumptions that we made in our analysis, we 513 
reanalyzed our experimental data under different models and assumptions. First, we applied 514 
different thresholds to classify genotypes as functional or nonfunctional, included promiscuous 515 
genotypes when characterizing global production distributions, and characterized these 516 
distributions using only genotypes with experimentally measured phenotypes. In every case, we 517 
observed similar forms of bias in both the AncSR1 and AncSR2 GP maps to those reported 518 
above (Extended Data Fig. 6).  519 

Second, instead of treating the protein as an evolutionary unit independent of the RE, we 520 
repeated our analyses using an alternative sequence space network in which the protein and RE 521 
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coevolve as a complex. In this model, evolution may occur via single-step amino acid mutations 522 
in the protein or nucleotide mutations in the RE. Our main conclusions again hold: global and 523 
local biases impact phenotypic evolution over long and short timescales, favoring ERE 524 
conservation in the AncSR1 map and evolution of SRE specificity in AncSR2 (Extended Data 525 
Fig. 7). 526 

Finally, we addressed uncertainty about the ancestral sequences. AncSR1 and AncSR2 527 
DBD reconstructions have very high confidence, containing just five and zero ambiguously 528 
reconstructed sites, respectively33. Experimental data from a prior single-mutant DMS study 529 
show that the effects of mutations in the RH are virtually identical when they are introduced into 530 
the AncSR1 background or into an alternative reconstruction of AncSR1 that incorporates all 531 
plausible alternative amino acids at the ambiguously reconstructed sites (r2 > 0.99; Extended 532 
Data Fig. 8)33. The very limited uncertainty about the AncSR1 ancestral sequence is therefore 533 
likely to have little or no effect on our conclusions. 534 

The GP map was a cause of historical phenotypic evolution 535 
Our data establish that global and local biases in the two ancestral GP maps we studied were 536 
causal factors in the historical lineage-specific evolution of DNA specificity. Establishing 537 
causality in a multifactorial framework requires 1) evidence that a putative cause increases the 538 
probability of the outcome(s) of interest, and 2) evidence for a specific mechanism by which the 539 
cause affects the outcome’s probability45. Concerning the first requirement, our experiments 540 
show that biases in the AncSR1 map increased the probability that ERE specificity would be 541 
evolutionarily conserved, and biases in the AncSR2 map increased the probability that SRE 542 
specificity would be acquired. The second requirement is satisfied by a simple axiom of 543 
population genetics: the probability that a phenotype will evolve is the product of its probability 544 
of production and its probability of fixation under the influence of selection and drift. If biases in 545 
the GP map increase the production probability, then evolutionary outcomes will in turn be 546 
biased.  547 

A cause must precede its effect. The biases that favored the conservation of ERE 548 
specificity in the AncSR1 map are ancestral to the ER lineage in which that outcome occurred 549 
(Fig. 1b). This map persisted unchanged for hundreds of millions of years of phenotype 550 
conservation, because zero amino acid changes anywhere in the DBD occurred along the 551 
descendant branches leading from AncSR1 to ERa in the ancestor of all bony vertebrates. Even 552 
most present-day ERa DBDs contain zero or at most a single substitution relative to AncSR1 553 
(Extended Data Fig. 9). As for the acquisition of SRE specificity in the AncSR2 lineage, the 554 
global bias that favors production of SRE specificity as the second-most encoded phenotype was 555 
already present in the AncSR1 map. Further, the massive increase in connectivity of the AncSR2 556 
map, which dramatically increased the propensity for new phenotypes to evolve, must have been 557 
acquired before SRE specificity actually evolved, because the recognition helix substitutions that 558 
conferred SRE specificity during history cannot be tolerated unless the background substitutions 559 
that nonspecifically increased DNA affinity occurred first12. Our experiments do not resolve 560 
whether the third major property of the AncSR2 map—a shift in global bias away from ERE 561 
specificity that further enhanced the propensity to encode SRE specificity—occurred before or 562 
after this phenotype was historically acquired.  563 

We do not argue that selection played no historical role in the evolution of specificity. It 564 
seems likely that purifying selection would have favored conservation of ERE specificity in the 565 
chordate ERs, and positive selection could have contributed to fixation of SRE specificity in the 566 
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AncSR2 lineage. If so, however, selection would have further increased the probability of 567 
outcomes that were already favored by the biases imposed by the GP map.  568 

Our data show that the GP map’s influence is strong enough to override the influence of 569 
selection in many cases. For example, some global biases we observed are absolute. There are 9 570 
specificity phenotypes that cannot be encoded at all in the AncSR1 GP map, and two cannot be 571 
encoded in AncSR2; these could phenotypes never evolve, no matter how large a fitness benefit 572 
they might confer. Local bias is also absolute in many cases: from every starting point, the vast 573 
majority of phenotypes are impossible to produce directly by mutation, and most require many 574 
substitutions before they become accessible. Selection would therefore be powerless to fix these 575 
phenotypes over short or medium timescales. The GP map limited evolution to a small subset of 576 
possible phenotypes; history, further influenced by selection and chance, played out within this 577 
set. 578 

There is evidence that features similar to those we observed in the steroid receptor GP 579 
map affect biological systems and their evolution across levels of organization. Global bias is 580 
apparent in other molecular46,47 and developmental systems48–51, and the resulting biases are 581 
often congruent with natural patterns of diversity52–55. Local bias also appears to be widespread, 582 
because most random mutations are phenotypically neutral if they are tolerated51,56–59, and long-583 
term phenotype conservation is widespread in the fossil record60. When new phenotypes are 584 
acquired, identical perturbations often yield different phenotypes in different lineages61–64, and 585 
convergent evolution becomes less likely among distantly related lineages65. As lineages evolve 586 
across their GP maps, their biology inevitably changes, imposing new biases on the production 587 
and future evolution of genotypes and phenotypes. It therefore seems likely that anisotropy and 588 
heterogeneity are near-universal characteristics of GP maps2,39,41, and that the biases these 589 
properties create have shaped large-scale patterns of phenotype conservation and lineage-specific 590 
evolutionary change across the tree of life.  591 

Our study differs in kind from previous combinatorial DMS studies, which have 592 
addressed the distribution in sequence space of just one or a few phenotypes that are encoded by 593 
extant proteins, rather than the space of all possible phenotypes 22,24,25,63,66–68. These studies have 594 
shown that sequence landscapes are rugged, so the probability of reaching particular genotypes 595 
encoding those phenotype may depend on the starting point and intermediate mutational steps. 596 
Because those studies take the phenotypic “destination” for granted, they cannot address why 597 
those phenotypes, rather than all the other conceivable outcomes, exist at all.   598 

Our work shows that as a protein or other biological system moves through sequence 599 
space, the set of phenotypes that it can produce changes at every step. Life is astonishing in its 600 
diversity, but an even deeper puzzle lies in the fact that only a tiny fraction of conceivable 601 
phenotypes have ever evolved, and those which have evolved are mostly limited to particular 602 
taxa14–16,69.  Chance and selection are likely important factors in explaining the patchy 603 
distribution of phenotypes on Earth. But the very particular biology we observe today must also 604 
reflect the constantly changing potential of biological systems, as they vary and diverge, to 605 
generate new forms of life at every moment in time.  606 
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Methods 607 

RE reporter strains 608 

To measure binding of SR DBD to the 16 RE variants, we adapted a yeast GFP reporter system 609 
previously developed to measure binding to ERE and SRE, where GFP expression is well 610 
correlated with DNA affinity over a range of at least 2 M-2 (r2 = 0.74)33. We engineered 16 yeast 611 
strains, each of which reports on binding of the DBD to one RE. We modified the yeast strain 612 
CM997 (YPS1000 MATa ho::KMX)70 to replace the KMX gene at the HO locus with a construct 613 
containing yeast-enhanced GFP downstream of a minimal CYC1 promoter with an array of four 614 
palindromic RE sites (tcaAGNNCAcagTGNNCTtga), each separated by a 19-nt sequence, along 615 
with a HygR gene. To ensure a consistent dynamic range of fluorescence across strains, we made 616 
changes to two RE strains in the nucleotide sequences flanking the palindromes at sites that do 617 
not affect specificity34,35 (see Supplementary Methods for details). These constructs were 618 
transformed into yeast using the lithium acetate method71 and selected for resistance to 619 
hygromycin and susceptibility to G418; integration was confirmed by Sanger sequencing. 620 

To validate this reporter system, we measured fluorescence of each strain in the presence and 621 
absence of a DBD variant with universally high affinity to all REs (AncSR1+11P+GGKA)12,29. 622 
We used a low-copy yeast vector (pDBD) to express this DBD variant as a C-terminal fusion 623 
with an SV40 nuclear localization signal and a S. cerevisiae Gal4 activation domain (Gal4AD) 624 
under control of a pGAL1 promoter. We transformed this construct into each yeast strain using 625 
the lithium acetate method followed by G418 selection (50 μg/mL). Single colonies were 626 
inoculated in YPD+G418 and transferred to YPGal+G418 media for 6 hours to induce DBD 627 
expression. GFP fluorescence was measured on a BD LSRFortessa flow cytometer using a 488 628 
nm laser with 505 nm long pass and 525/50 nm band pass filter. We used as the metric of 629 
fluorescence log10(GFP/FSC-A1.5), which normalizes fluorescence to cell volume. All 16 strains 630 
showed DBD-dependent fluorescence across a similar dynamic range (Extended Data Fig. 1a–c). 631 

AncSR1 and AncSR2 combinatorial library construction 632 

We used as the wild-type protein sequences the maximum a posteriori AncSR1 and AncSR2 633 
DBD sequences inferred from a maximum likelihood phylogeny of nuclear receptors33.  634 

We optimized codon usage for yeast and cloned the ancestral DBDs into the pDBD2.1 635 
expression vector, which is modified from the pDBD vector24,33 to express GFP at a level within 636 
the dynamic range of fluorescence for the wild type AncSR1:ERE and AncSR2:SRE complexes. 637 
A bidirectional pGAL1/GAL10 promoter simultaneously drives DBD and mCherry expression, 638 
which allowed us to monitor plasmid retention in yeast (Extended Data Fig. 1d). 639 

Combinatorial mutant libraries were created by synthesizing oligos (IDT) with degenerate NNS 640 
codons to encode all 20 amino acids and a stop codon at four recognition helix sites of each 641 
ancestral protein (Extended Data Fig. 1e). To distinguish sequencing reads coming from different 642 
RE strains, 16 synonymously barcoded versions of the library were designed for each 643 
background (Extended Data Fig. 1e, Supplementary Table 1). Each barcode (REBC) differed by 644 
at least three nucleotides to ensure accurate read assignment despite sequencing errors. The 645 
oligos were cloned into the pDBD2.1 vector using the BsaI-HF Golden Gate Assembly kit 646 
(NEB), transformed into Invitrogen ElectroMAX DH5ɑ-E E. coli, and maxiprepped 647 
(Supplementary Methods). Transformation yields exceeded 1.08×10⁷ cfu per barcoded library, 648 
providing 56-fold coverage of the amino acid library size (Supplementary Table 2). Assemblies 649 
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were validated by Sanger sequencing of independent transformants and PCR of the plasmid 650 
libraries to confirm the correct insert size. 651 

Maxiprepped libraries (GenElute HP, Sigma-Aldrich) were transformed into the yeast reporter 652 
strains using an optimized yeast electroporation protocol (Supplementary Methods). 653 
Transformation yields exceeded 107 cfu per library (50-fold coverage), estimated by dilution 654 
plating (Supplementary Table 2). Yeast libraries were flash-frozen in liquid N2 in 200 OD600-mL 655 
aliquots with 25% glycerol and stored at –80°C. Multiple transformant rates estimated from 656 
Sanger sequencing of individual colonies72 were estimated to result in 0.03% or fewer cells with 657 
multiple plasmid copies at time of sorting. 658 

Cell sorting 659 

We used fluorescence-activated cell sorting (FACS) to separate cells based on their GFP 660 
expression. We performed two rounds of sorting: an initial “enrichment sort” to enrich for GFP+ 661 
variants in the full libraries, and a second, higher resolution “binned sort” on the enriched 662 
libraries to generate quantitative fluorescence estimates for each variant. Enrichment sorting was 663 
performed in batches of 8 libraries. Two glycerol stocks per library were thawed on ice, after 664 
which cells were recovered for 2 hours in 400 mL YPD+chloramphenicol (chlor) per library at 665 
30°C and 225 rpm. After recovery, G418 was added to the culture and a sample of cells was 666 
taken for dilution plating. We recovered a minimum of 1.6×107 cfu per library (82-fold 667 
coverage). After 15 hours of overnight growth, libraries were washed once in PBS, resuspended 668 
to OD600 0.25 in 50 mL YPGal+G418, and grown for 6 hours to induce DBD expression. Cells 669 
were then spun down, washed once in PBS, resuspended in 5 mL PBS, and kept on ice for 670 
sorting.  671 

Sorting was performed at the University of Chicago Cytometry and Antibody Technology 672 
Facility on a BD FACSAria Fusion machine. We used a 488 nm laser with 495 nm long pass 673 
filter and 515/20 nm band pass filter for GFP detection, and a 561 nm laser with 595 nm long 674 
pass filter and 610/20 nm band pass filter for mCherry detection. After gating on homogeneous 675 
single cells and mCherry expression, we sorted cells into GFP– and GFP+ populations (Extended 676 
Data Fig. 1f). To normalize fluorescence to cell volume, GFP gates were drawn to have a slope 677 
of 1.5 on a log(FSC-A)-log(GFP) plot. We sorted 2.5×107 cells per library in the enrichment 678 
stage (129-fold coverage, Supplementary Table 2). 679 

Enriched cells from different libraries were pooled by GFP bin and grown in either 700 mL 680 
(GFP+) or 2 L (GFP–) of YPD+G418+chlor. Cultures were grown overnight at 225 rpm and 22–681 
30°C, depending on the ratio of cells to media, until they were at least OD600 3 but not yet 682 
saturated. 200 OD600-mL 25% glycerol stocks were then made for both the GFP+ and GFP– 683 
cultures. 10 OD600-mL of the GFP– culture was used for plasmid extraction using a previously 684 
described protocol21. 685 

The binned sort was performed to yield three replicates per library. For each replicate, two 200 686 
OD600-mL glycerol stocks of GFP+ cells per enrichment sort batch were thawed on ice, 687 
recovered in 400 mL YPD+chlor for 2 hours, and sampled for dilution plating. After adding 688 
G418, cultures were grown overnight, achieving a recovery rate at least 4X the number of GFP+ 689 
cells collected during the enrichment sort (Supplementary Table 3). Overnight cultures were 690 
pooled proportionally to the GFP+ cell counts from the enrichment sort, yielding a total of 100 691 
OD600-mL. The pooled cells were washed with PBS, induced for DBD expression in 400 mL 692 
YPGal+G418 for 6 hours, washed again, resuspended in 40 mL PBS, and kept on ice for sorting. 693 
Binned sorting followed the enrichment sort protocol but used four GFP bins instead of two 694 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.28.635160doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.28.635160
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

(Extended Data Fig. 1g), with ~1.6×10⁸ cells collected per replicate. The number of sorted cells 695 
and recovered reads was consistent across libraries and replicates (Supplementary Table 4). 696 

Deep sequencing 697 

After sorting, cells were grown in 100 mL YPD+G418+chlor per 10⁷ sorted cells, or at least 100 698 
mL per bin. Cultures were grown overnight to at least OD600 3.0 but not yet saturated, and 50 699 
OD600-mL was collected per 10⁷ sorted cells for plasmid extraction. 700 

Sequencing libraries were constructed from plasmids extracted from the enrichment sort GFP– 701 
population and the four binned sort populations using two rounds of amplification. In the first 702 
round, the RH scanning and REBC regions of the DBD were amplified with primers that added a 703 
6-nt barcode for bin and replicate identification (BRBC)73. For every 10 OD600-mL of yeast used 704 
for plasmid extraction, 3 μL of plasmid template was used in a 10 μL Q5 PCR reaction (NEB). 705 
AncSR1- and AncSR2-specific primers were mixed proportionally to background-specific cell 706 
counts (estimated from flow cytometry) to minimize amplification bias. To introduce nucleotide 707 
diversity for improved cluster identification during Illumina sequencing, eight unique forward 708 
and reverse primer pairs were used per bin and background to encode frameshift diversity and 709 
attach read 1 primer sequences in both directions. PCR conditions included 52°C annealing for 710 
13 cycles. Reactions were then pooled by bin/replicate and purified using the Zymo DNA Clean 711 
& Concentrator Kit. In the second round, half of the first-round product was amplified with 712 
primers to add Illumina P5 and P7 adapter sequences. PCR was performed in 50 μL Q5 reactions 713 
(NEB) per 10 μL round 1 product reaction at 68.4°C annealing for 12 cycles. The final product 714 
was size-selected on a 2% agarose gel, excised, purified using the Qiagen Gel Extraction Kit, and 715 
re-purified with the Zymo DNA Clean & Concentrator Kit. 716 

Final sequencing library concentrations were quantified by Qubit. Libraries were pooled 717 
according to the number of cells sorted per bin/replicate, and 1.8 pM dilutions were prepared 718 
according to Illumina’s standard protocol. Replicate 1 of the binned sort libraries was sequenced 719 
on a NextSeq High Output run. The remaining replicates were sequenced on a NovaSeq S1 run 720 
at the University of Chicago Genomics Facility. We used standard read primers and 86 cycles for 721 
read 1 and 80 cycles for read 2. This enabled us to bidirectionally sequence the region containing 722 
the variable RH codons and REBC. 723 

Mean fluorescence estimation, data cleaning and validation 724 

Sequencing reads were processed using a custom pipeline. We used sickle v1.3374 to filter reads 725 
based on their quality: we kept reads with a Phred score ≥ 30 and a minimum length of 79 726 
nucleotides. We then used PEAR v0.9.675 to merge the trimmed paired-end reads (minimum 727 
assembly length 100 nucleotides). Finally, we used Biopython toolkit v1.7976 to demultiplex the 728 
assembled reads by DBD background, REBC, and BRBC. We only considered reads that 729 
mapped exactly to the DBD background and allowed reads with at most one mismatch in the 730 
REBC and one in the BRBC. 731 

The mean fluorescence for protein:RE complexes observed in the binned sort data was estimated 732 
as previously described33. We first estimated the proportion of cells of each complex g in each 733 
bin b (cg,b) from the proportion of reads in b that mapped to g. The mean fluorescence estimate 734 
Fg for each complex was then estimated by taking the weighted mean fluorescence across bins 735 
(mean fluorescence of each bin was measured during sorting), with weights 𝑐#,%/ ∑ 𝑐#,%% . 736 
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We applied several filtering and correction steps to reduce global measurement error and 737 
normalize fluorescence estimates between replicates. First, complexes with fewer than 27 reads 738 
per replicate were removed to ensure >95% had a standard error (SE) of ≤ 0.1 (5% of the assay 739 
range; Extended Data Fig. 2a). Second, complexes observed in only one replicate were excluded. 740 
Third, batch effects were corrected by fitting I-splines to normalize fluorescence between 741 
replicates (Extended Data Fig. 2b). Finally, SE was recalculated and complexes with SE > 0.1 742 
were removed (Extended Data Fig. 2c). The final dataset had a mean pairwise Pearson’s r² = 743 
0.55 across replicates. The poor correlation arises primarily because the vast majority of 744 
complexes are at the lower fluorescence bound, so r2 is dominated by measurement noise; for 745 
variants with fluorescence above the lower bound (roughly F ≥ –4.0), r² improved to 0.92. 746 
Altogether, we obtained fluorescence estimates for 628,732 AncSR1 and 658,475 AncSR2 747 
variants, covering 24.6% and 25.7% of possible variants, respectively (excluding nonsense 748 
variants). 749 

Many variants were observed at high read depth in the GFP– bin of the enrichment sort but not in 750 
the binned sort. We assigned these a null phenotype (lower-bound fluorescence) using a 751 
statistical procedure based on read depth (see Supplementary Methods), resulting in 859,171 752 
AncSR1 and 638,762 AncSR2 protein:RE null complexes (FDR = 0.1; Extended Data Fig. 2d). 753 
This increased the total phenotyped variants to 1,487,903 in AncSR1 and 1,297,237 in AncSR2, 754 
covering 58% and 51% of all possible variants, respectively. 755 

To evaluate the accuracy of the sort-seq fluorescence values, we measured the fluorescence of 5 756 
isogenic variants by flow cytometry, which were also spiked into the DMS libraries prior to the 757 
binned sort. We found a high correlation between the fluorescence estimates from flow 758 
cytometry and sorting (Pearson’s r2 = 0.87, Extended Data Fig. 2e). We additionally compared 759 
the fluorescence estimates of the same variants that were contained in the DMS libraries and 760 
again observed a strong correlation with flow cytometry measurements (Pearson’s r2 = 0.97, 761 
Extended Data Fig. 2e).  762 

To evaluate whether the REBC mutations affected fluorescence, we constructed AncSR1 and 763 
AncSR2 “mini-libraries” consisting of each of the 16 REBCs engineered into the respective 764 
wild-type protein variant. These were transformed via electroporation into the ERE or SRE 765 
reporter strain, respectively, at 1:16 the scale of the full libraries, and spiked into the full-scale 766 
libraries before sorting. The fluorescence of the mini-library variants did not differ significantly 767 
by REBC (p = 0.98 AncSR1, p = 0.99 AncSR2, one-way ANOVA), indicating that fluorescence 768 
estimates are directly comparable between libraries with different REBC mutations.  769 

Fluorescence inference for missing complexes 770 

To predict the fluorescence of the remaining complexes for which we did not obtain 771 
experimental estimates, we fit a generalized linear model based on reference-free analysis 772 
(RFA)36,37 to the experimental data. The model estimates a sigmoid function to capture the 773 
measurement bounds of the assay, plus additive and interaction effects (specific epistasis) for all 774 
amino acid states at the four variable sites in the DBD and all nucleotide states at the two 775 
variable sites in the RE. All possible intramolecular interactions up to third order amino acid 776 
interactions in the DBD and second order nucleotide interactions in the RE, and intermolecular 777 
interactions up to third order amino acid-by-second order nucleotide interactions were included. 778 
L2 regularization with 10-fold cross validation was used to reduce overfitting (Extended Data 779 
Fig. 3a; Supplementary Methods). We fit separate RFA models for each ancestral background 780 
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using the glmnet v4.1-6 R package77. Model fits to the observed data were R2 = 0.96 for AncSR1 781 
active complexes (0.31 all complexes) and R2 = 0.99 for AncSR2 active complexes (0.88 all 782 
complexes) (Extended Data Fig. 3b). These models were used to predict fluorescence values for 783 
unobserved protein-RE complexes. We also used the fitted models to correct the predictions for 784 
complexes in one of the modified strains that had systematically lower fluorescence 785 
(Supplementary Methods; Extended Data Fig. 3c, d). 786 

Classification of functional complexes 787 

We classified complexes as functional if their fluorescence was not significantly lower than the 788 
wild type complex, i.e. EGKA:ERE in the AncSR1 background and GSKV:SRE in the AncSR2 789 
background. Complexes inferred as null from the enrichment sort were classified as 790 
nonfunctional. For complexes observed in the binned sort, we used a t-test to account for 791 
measurement error. For complexes with predicted fluorescence from the RFA models, we 792 
performed a nonparametric bootstrap test using the distribution of model residuals concatenated 793 
over the ten cross-validation fits to account for model prediction error (Supplementary Methods; 794 
Extended Data Fig. 3e). For both tests, we used a Benjamini-Hochberg FDR threshold of 0.25 to 795 
classify variants as nonfunctional if they were significantly less fluorescent than the wild type 796 
complex (Extended Data Fig. 3f). The low stringency of the FDR threshold was chosen to reduce 797 
the false positive rate for calling variants functional. The majority of complexes classified as 798 
functional in both backgrounds had fluorescence estimates obtained from the binned sort 799 
experiment (59.3% AncSR1, 75.4% AncSR2; Extended Data Fig. 3g). 800 

Protein genotype networks 801 

Following Maynard Smith’s sequence space formalism42, we built genotype networks consisting 802 
of all functional RH variants in each DBD background. RH genotypes are connected by an edge 803 
if they differ by a single amino acid mutation that can be produced via a single nucleotide 804 
mutation given the standard genetic code. Genotype networks for joint protein-DNA models 805 
follow a similar logic (Supplementary Methods). We used the R package igraph v1.5.178 to build 806 
and analyze the genotype networks, and the software gephi v0.10.179 for network visualization. 807 
To identify clusters of densely connected genotypes within the networks, we used the 808 
cluster_edge_betweenness function from the R igraph package.  809 

Model of evolution on GP maps 810 

We modeled evolution on the genotype networks as an origin-fixation process under a strong 811 
selection-weak mutation regime80,81 To isolate the effect of the GP map’s structure on evolution, 812 
we considered a scenario in which all functional genotypes have equal fitness, so the fixation 813 
probability is affected only by drift, and nonfunctional variants are removed by purifying 814 
selection. The relative probability P(i,j) of substitution from protein genotype i to genotype j is 815 
therefore equal to the amino acid mutation rate , normalized over all single-step neighbors of i 816 
in the network. We assumed that there are no biases in the nucleotide mutation process (e.g. 817 
transition vs. transversion rate), so  is affected only by unequal mutational access between 818 
amino acids imposed by the genetic code. To incorporate this effect, we scaled  by the number 819 
of possible nucleotide mutations that can change any nucleotide sequence that encodes i to any 820 
nucleotide sequence that encodes j: 821 
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 (1) 822 

where o indexes the amino acid position, o* is the position at which the amino acid change 823 
occurs,  is the number of possible single nucleotide changes that can produce the state in j 824 
from the state in i at site o*, and co is the number of possible codons for the invariant amino acid 825 
state at site o.  826 

We used these transition probabilities to specify a discrete time Markov model for each ancestral 827 
genotype network, where each step is a single amino acid substitution. Genotypes that are more 828 
than one nucleotide change apart cannot access each other in a single time step, and the 829 
probability of staying in the same genotype across a single step in the Markov chain is also zero. 830 
We only considered functional genotypes within the main component of each network (the 831 
largest connected component). With this model, we computed the probability distribution  of 832 
evolving all possible genotypes after k substitution steps given any specified set of starting 833 
genotypes: 834 

 (2) 835 

where P is the transition matrix with entries P(i, j), k > 0, and is the vector of the probability 836 
distribution of genotypes at time step k = 0. Setting a single element i of to 1 and all others to 837 
zero corresponds to evolution from a single starting genotype; setting all elements of to 1/n, 838 
where n is the number of functional genotypes in the network, averages over all possible starting 839 
genotypes. We calculated the relative probability of evolving a given specificity phenotype at 840 
time step k by summing over all elements of  that encode that specificity and normalizing by 841 
the total probability across all specific protein genotypes.  842 

Effects of background substitutions 843 

To estimate the effect of the background substitutions between AncSR1 and AncSR2 on binding 844 
affinity, we first considered a model where the background substitutions have a universal 845 
nonspecific effect on affinity across all RH and RE genotypes. We assumed that fluorescence is 846 
proportional to the fraction of protein bound to DNA. If a complex g has dissociation constant 847 
Kd(g) in the AncSR1 background, then its AncSR1 fluorescence (normalized to scale between 0 848 
and 1) is:  849 

 (3) 850 

where [RE] is the concentration of RE. If the background substitutions scale Kd(g) by a factor , 851 
then fluorescence in the AncSR2 background is  852 

 (4) 853 

Rearranging these equations gives an expression for fluorescence in the AncSR2 background as 854 
a function of fluorescence in the AncSR1 background and : 855 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.28.635160doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.28.635160
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 (5) 856 

We fit this model to the AncSR1 and AncSR2 fluorescence data using orthogonal regression, 857 
which accounts for measurement error in both backgrounds. We used only complexes that had 858 
fluorescence measurements from the binned sort in both backgrounds, and whose fluorescence 859 
was significantly greater than that of nonsense variants in either background (n = 2,627). 860 
Fluorescence was normalized in each background to scale between the upper and lower bounds 861 
inferred from the RFA models. Confidence intervals (CI) were constructed by bootstrapping the 862 
data and refitting the model. The effect of the background substitutions was estimated to be  = 863 
0.014 (95% CI: 0.010–0.014), corresponding to a 70-fold increase in affinity (95% CI: 70–99). 864 

We next considered a model where the background substitutions have a different effect on ERE 865 
affinity than they do on other REs. We modified the model such that  represents the ERE-866 
specific effect of the background substitutions and  the effect on the other 15 REs. We fit this 867 
model as before and obtained parameter estimates of = 0.43 (95% CI: 0.19–0.76) and  = 868 
0.010 (95% CI: 0.0028–0.010), corresponding to fold-increases in affinity of 2.3 (95% CI: 1.3–869 
5.2) on ERE and 99 (95% CI: 99–361) on other REs. 870 

Code availability 871 

Scripts for analysis are available at www.github.com/JoeThorntonLab/RH-RE_scanning.  872 
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 1047 
Extended Data Figure 1 | DBD library construction and sorting. a, Design of the DBD 1048 
expression vector used for DMS. The SR DBD is fused to an N-terminal S. cerevisiae Gal4 1049 
Activation Domain. Its expression is under control of a bidirectional pGAL1/10 promoter, which 1050 
simultaneously drives mCherry expression to select cells that maintain the plasmid during 1051 
sorting. b, Design of DBD library oligos. NNS codons (pink) were used to generate all possible 1052 
combinations of amino acid mutations at the four RH scanning sites (marked as X in the amino 1053 
acid sequence). For each background (AncSR1, left; AncSR2, right), we synthesized 16 libraries, 1054 
each with a unique set of synonymous barcode mutations at five codons (purple, Supplementary 1055 
Table 1), which allows each to be associated with one RE strain. BsaI sites (orange) were used 1056 
for Golden Gate assembly into the pDBD2.1 backbone. c–e, Validation of the RE reporter 1057 
strains. GFP fluorescence was measured by flow cytometry in each strain in the presence 1058 
(+DBD) or absence (–DBD) of a universally high-affinity DBD variant (AncSR1+GGKA+11P, 1059 
29). In each row, the left peak corresponds to autofluorescence from cells that do not express 1060 
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GFP, either due to lack of DBD binding or loss of the DBD expression plasmid; the right peak 1061 
corresponds to cells that are expressing GFP in response to DBD-RE binding. “FS mut” denotes 1062 
strains with mutations in the flank/spacer regions of the RE that correct anomalous expression 1063 
patterns shown in red (see Supplementary Methods). Red strains were not used in the final DMS 1064 
experiment. Experiments were conducted on the same day within each panel. c, Fluorescence in 1065 
the presence of high-affinity DBD. d, Fluorescence in the absence of DBD expression plasmid. 1066 
e, Fluorescence in the CC and GA FS mut strains, with the ERE strain included as a negative 1067 
control. f–g, Sorting gates used for DMS. f, Enrichment sort gates. Homogeneous single cells 1068 
were first selected by gating on FSC-A vs. SSC-A and FSC-A vs. FSC-H (top). Plasmid 1069 
retention was then selected for by gating on mCherry expression (PE-Texas Red-A, bottom left). 1070 
Finally, cells were sorted into GFP+ (P4) and GFP– (P5) populations (bottom right). The 1071 
boundary between the GFP+ and GFP– gates was drawn to have a slope of 1.5 on a log-FSC-A 1072 
vs. log-GFP (FITC) scale so that populations were sorted by GFP expression relative to cell 1073 
volume. g, Binned sort gates. Gates P1–P3 were drawn as in C. Cells were then sorted into four 1074 
GFP bins, which were drawn to have roughly equal heights (P5–P7). The boundaries between 1075 
GFP gates were again drawn to have a log-log slope of 1.5. 1076 
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 1078 
Extended Data Figure 2 | DMS data cleaning. a, Curves show characteristics of the binned 1079 
sort dataset as a function of the read count threshold used to retain protein-RE complexes for 1080 
further analysis (x-axis). Black, standard error of F (SE, left axis); red, complexes retained, 1081 
expressed as a fraction of the number of complexes in the binned sort (right axis); gold, fraction 1082 
of complexes retained that have SE ≤ 0.1 (right axis). We used a read count threshold of 27 1083 
(vertical dashed line), at which ≥95% of complexes have SE ≤ 0.1 (horizontal dashed line). b, 1084 
Correcting and filtering estimates of F from the binned sort. Left, correlation in F between 1085 
replicates before correction. Pearson’s r2 is shown for all complexes, and for the subset of 1086 
complexes with F > –4 in both replicates, which roughly corresponds to the boundary between 1087 
active and inactive complexes (gray dotted lines). Red curves, I-splines fit using complexes with 1088 
SE of F < 0.1. Center, correlation in F between replicates after correcting using the I-spline 1089 
transforms. Right, correlation in F between replicates after filtering corrected variants for SE ≤ 1090 
0.1. c, Distribution of SE across all complexes in the binned sort after the I-spline correction. 1091 
Complexes with SE > 0.1 were discarded. d, Read count distribution for complexes sequenced in 1092 
the enrichment sort GFP– bin. Complexes were inferred to be inactive (gray) if they were not 1093 
observed in the binned sort, but had high enough inferred cell count in the enrichment sort to 1094 
have been detectable in the binned sort had they been at least minimally fluorescent (see 1095 
Supplementary Methods). e, Correlations between estimates of F from flow cytometry (x-axis) 1096 
and DMS (y-axes). Left y-axis (black points) shows estimates from isogenic strains that were 1097 
spiked into the DMS libraries prior to the binned sort. Right y-axis (red points) shows estimates 1098 
from complexes that were encoded in the DMS libraries. 1099 
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 1101 
Extended Data Figure 3 | Fluorescence imputation, GA fluorescence correction, and 1102 
functional genotype classification. a, b, A generalized linear model that predicts the 1103 
fluorescence of each protein-RE complex from its sequence was fit to the data for each 1104 
background, using L2 regularization to address overfitting. a, Ten-fold cross-validation (CV) 1105 
was used to identify the optimal L2 penalty parameter (λ). Red and black, mean and SE of the 1106 
out-of-sample mean squared error (MSE) across the 10 folds. Initial range finding was performed 1107 
using two folds (pink and cyan). Vertical line, λ that minimizes mean MSE. b, Genetic score 1108 
versus observed F for the regularized RFA models. Red line, best-fit nonspecific epistasis 1109 
function. For display, the distribution was discretized; colors show the number of variants in the 1110 
interval defined by each square. Coefficient of determination (R2) is reported for all complexes 1111 
and for the subset of active complexes (above the gray line). c, d, Fluorescence correction for the 1112 
GA strain. c, Affinity (KA) versus F for a panel of DBD variants measured on ERE, SRE, and 1113 
GA. Affinities, measured by fluorescence anisotropy on the three REs, all with the original 1114 
flank/spacer sequence, were previously reported12,29. F was measured by flow cytometry in the 1115 
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RE strains that were used for DMS, of which the ERE and SRE strains had the original 1116 
flank/spacer sequence, and the GA strain had a mutated flank/spacer sequence (see 1117 
Supplementary Methods, Extended Data Fig. 1c–e). Curves, best-fit sigmoidal function. The 1118 
same midpoint parameter was used for ERE and SRE (black); that for GA was independently 1119 
estimated (gray). Dashed lines, sigmoidal functions using 95% confidence intervals on the 1120 
midpoints. d, GA fluorescence correction based on the affinity effect estimated in c. Plots show 1121 
F before and after the correction. Dashed gray lines, mean boundary between active and null 1122 
variants. Red line, y = x. e, Bootstrap sampling strategy for classifying functional complexes with 1123 
model-inferred fluorescence. Plots show concatenated out-of-sample predictions versus observed 1124 
F across all 10 CV models. Bootstrap-sampled residuals from the interval within ±0.1 units of a 1125 
complex’s predicted F were used to test whether a variant with model-inferred F was not 1126 
significantly worse than the wild-type complex (dashed gray lines). An example for a complex 1127 
with inferred F = –3.75 (solid black line) is shown, with the bootstrap interval shown as a shaded 1128 
rectangle. Solid red line, y = x. f, Distribution of F across all 2,560,000 complexes in each DBD 1129 
background. Solid vertical lines, upper and lower bounds of fluorescence inferred from the RFA 1130 
models; dashed vertical lines, fluorescence of wild type complex (EGKA: ERE for AncSR1 and 1131 
GSKV:SRE for AncSR2). Colors indicate the source from which F was estimated. Darker colors 1132 
show functional variants, lighter colors nonfunctional. All “enrichment sort” complexes were 1133 
assigned to the lower bound of fluorescence, except for GA RE variants whose fluorescence was 1134 
corrected upward (d). Some model-predicted variants in the AncSR1 background have predicted 1135 
F below the reference but are classified as functional, because the bootstrap test accounts for the 1136 
AncSR1 RFA model’s tendency to under-predict fluorescence (e, left). g, Bars show the number 1137 
of functional RH variants per RE per DBD background, colored by source of F estimate as in f. 1138 
  1139 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.28.635160doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.28.635160
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 1140 
Extended Data Figure 4 | Accessible new phenotypes after 3 substitution steps in the 1141 
AncSR1 network. Bars show the distribution over every starting genotype in the AncSR1 main 1142 
component. Dashed line, mean. 1143 
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 1145 
Extended Data Figure 5 | Additional analyses for effects of background substitutions on 1146 
DBD-RE affinity. a, Changes in phenotype across the AncSR1-to-AncSR2 transition. Bars 1147 
represent the set of protein variants in AncSR2 that have different classes of phenotypes: 1148 
specificity phenotypes that were encoded in the AncSR1 map (old specificity), specificity 1149 
phenotypes not encoded in the AncSR1 map (new specificity), or promiscuous in AncSR2. 1150 
Colored sections show the fraction of variants in each class whose functional category in the 1151 
AncSR1 background was specific, promiscuous, or nonfunctional. b, Plots are the same as in 1152 
Fig. 6A, but split into panels by RE. Blue points, protein-DNA complexes with significantly 1153 
lower fluorescence in the AncSR2 background than predicted by the model; red, all other 1154 
variants. Numbers at the bottom-right of each panel show the fraction of plotted variants with 1155 
significantly lower than expected AncSR2 fluorescence. c, Amino acid frequencies at the RH 1156 
variable sites among all complexes that are significantly more (left) or less (right) fluorescent in 1157 
the AncSR2 background than predicted by the ERE-specific model in Fig. 6e. To test for 1158 
significance in b and c, we tested whether their Bonferroni-corrected 95% CI of fluorescence 1159 
was outside of the 95% CI of the model in both the AncSR1 and AncSR2 backgrounds. 1160 
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 1162 
Extended Data Figure 6 | Robustness to alternative phenotype assignment methods. a, 1163 
Global production distribution in the AncSR1 background, counting variants that bind 1164 
specifically (colored bars) and promiscuously (white bars) to each RE. Dashed line shows the 1165 
expected frequencies if the production distribution were isotropic. The bias, B, of the distribution 1166 
and r2 to the production distribution for specific variants (Fig. 2a) are reported. b, Same as in a, 1167 
with phenotypes calculated using data from variants with fluorescence significantly higher than 1168 
that of nonsense variants (active variants). c, Sequence space network for AncSR1 active 1169 
variants. d, Bottom: Frequencies of specificity phenotypes within each genotype cluster in the 1170 
AncSR1 active variant networks; the global production distribution is shown for comparison. 1171 
Top: strength of phenotype bias (B) in each cluster. Red line, B of global production distribution. 1172 
e–g, Same as in b–d, but with phenotypes calculated using only data from the binned sort 1173 
experiment; protein-DNA complexes without experimental fluorescence measurements were 1174 
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assumed to have null fluorescence. h–o, Same as in a–g, but for the AncSR2 background. Note 1175 
that the active variant datasets are likely to be enriched for false positives due to 1176 
misclassification of variants whose fluorescence is by chance slightly higher than the nonsense 1177 
variant distribution. This may explain the high frequency of variants that do not share any 1178 
mutational connections to other active variants. It may also explain the high frequency of CG-1179 
specific variants compared to the original classification scheme, since the CG yeast strain has a 1180 
slightly higher null fluorescence level than most other strains (Extended Data Fig. 1c, d) and 1181 
most CG-specific variants are unconnected in the active variant genotype networks. p, Number 1182 
of protein variants in each network under different methods of phenotype assignment. 1183 
“Functional” indicates the original method used in the main text; note that this yields the same 1184 
number of protein variants as the “specific + promiscuous” method. q, Number of edges per 1185 
node in each network, with the original phenotype classification method (functional) shown for 1186 
comparison. 1187 
  1188 
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 1189 
Extended Data Figure 7 | Robustness to model of evolution using joint protein-DNA 1190 
networks. a, AncSR1 protein-DNA coevolution network. Nodes represent functional protein-RE 1191 
complexes, colored by the RE specificity of the protein genotype; colors are as in Fig. 2b and 4b. 1192 
Promiscuous protein genotypes are represented by multiple nodes, one for each RE it binds. 1193 
Edges connect complexes that can be interconverted by a single nucleotide change in the RE or 1194 
the coding sequence of the protein. b, AncSR2 protein-DNA coevolution network. c, Bottom: 1195 
Frequencies of specificity phenotypes within each genotype cluster in the AncSR1 (left) and 1196 
AncSR2 (right) coevolution networks; the global production distribution (right-most column) is 1197 
shown for comparison. Top: strength of phenotype bias (B) in each cluster. Red line, B of global 1198 
production distribution. d, Bias (B) in evolutionary outcomes as a function of the length of 1199 
evolutionary trajectories. Solid curves, mean B across starting genotypes in the protein (cyan) or 1200 
coevolution (orange) networks. Dashed horizontal lines, B of the equilibrium distribution in each 1201 
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network; dashed horizontal red line, global bias. Vertical dashed lines show the number of 1202 
substitutions required for mean B to reach within 0.05 units of the equilibrium value within each 1203 
type of network. The equilibrium distributions are more biased in the coevolution networks, and 1204 
require more amino acid substitutions to be reached, because changes in protein genotype must 1205 
occur between variants that can bind to the same RE sequence. e, Comparison between 1206 
equilibrium outcome distributions of the protein-only evolution and protein-DNA coevolution 1207 
networks in each AncSR1 (left) and AncSR2 (right) backgrounds. Pearson’s r2 between the two 1208 
distributions are shown. Dashed line, y = x. f, Probability of conservation of each phenotype after 1209 
8 amino acid substitution steps in the protein vs. coevolution networks. g, Mean shortest amino 1210 
acid distance between all possible pairs of phenotypes in the coevolution vs. protein networks, 1211 
calculated as in Fig. 2g. Circles, AncSR1 networks, triangles, AncSR2 networks. Dashed line, y 1212 
= x. h, Probability of evolving each specificity phenotype as a function of the number of amino 1213 
acid substitutions away from EGKA:ERE in the AncSR1 (left) and AncSR2 (right) coevolution 1214 
networks. In both backgrounds, conservation is more likely at short trajectory lengths than in the 1215 
corresponding protein networks (Fig. 3g, 5f), but the relative likelihood of achieving each 1216 
phenotypic outcome is similar. i, Distribution of the number of neighbors per genotype with 1217 
distinct RH sequences in each type of network. Dots, means of distributions. j, Distribution of 1218 
the fraction of neutral neighbors per node with distinct RH genotypes in each network. Dots, 1219 
means of distributions. 1220 
  1221 
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 1222 
Extended Data Figure 8 | Robustness of RH mutation effects to uncertainty in ancestral 1223 
reconstruction. Effects on ERE binding of all possible single amino acid mutations at the four 1224 
variable RH sites in the background of the maximum a posteriori (MAP) wild type AncSR1 1225 
protein (x-axis), and in the background of the AltAll wild type AncSR1 protein, which has the 1226 
second-most likely amino acid state at all sites at which the posterior probability of the MAP 1227 
state is less than 0.8 (y-axis)33. Pearson’s r2 is shown. 1228 
  1229 
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 1230 
Extended Data Figure 9 | Amino acid changes along the SR phylogeny. a, Amino acid 1231 
alignment of extant vertebrate ERs and the MAP protein sequences for key ancestral nodes in the 1232 
SR phylogeny33. The AncSR1 sequence is used as the reference to indicate amino acid changes; 1233 
dots, same amino acid state as that in AncSR1; dashes, gaps; red circles, variable sites in DMS 1234 
experiment; yellow circle, historical substitution (q36E) that likely contributed to the shift in the 1235 
direction of the global bias away from ERE. b, Cladogram of SRs showing the number of 1236 
substitutions that occurred along each branch. Letters, nodes shown in alignment in a; black 1237 
nodes, AncSR1 and AncSR2; orange nodes, ancestral ER sequences identical to AncSR1. 1238 
Branches and clades are colored according to their DNA specificity phenotype: purple, ERE-1239 
specificity; green, SRE-specificity. 1240 
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