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Abstract

Human reproduction is a tightly controlled process of stepwise evolution with multiple, mostly yet 

unknown milestones and checkpoints. Healthy halpoid gametes have to be produced by the 

parents, which will fuse to form the diploid zygote that implants in the female uterus and grows to 

become first an embryo, then a fetus and finally matures into a newborn. There are several known 

risk factors that interfere with normal production of gametes, spermatocytes or oocytes, and often 

cause embryonic mortality and fetal demise at an early stage. Yet some embryos with chomosomal 

abnormalities can develop beyond the critical first trimester of pregnancy and, while those with 

supernumary chromosomes in their hyperdiploid cells will be spontaneously aborted, a small 

fraction of fetuses with an extra chromosome continues to grow to term and will be delivered as a 

liveborn baby.

While minor clinical symptoms displayed by children with trisomies are manageable for many 

parents, the burden of caring for a child with numerical chromosome abnormalities can be 

overwhelming to partners or individual families. It also poses a significant financial burden to the 

society and poses ethical dilemma.

In this communication, we will review the progress that has been made in the development of 

molecular techniques to test individual fetal cells for chromosomal imbalances. We will focus our 

discussion on the direct visualization of chromosome-specific DNA sequences in live or fixed 
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specimens using fluorescence in situ hybridization (FISH) and, more specifically, talk about the 

groundbreaking progress that in recent years has been achieved towards an improved diagnosis 

with novel, chromosome-specific DNA probes.
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Mini Review

Numerical chromosome aberrations are rarely compatible with early human development 

and life. Most commonly, chromosomally imbalanced human zygotes or embryos carry 

chromosomal monosomies or trisomies leading to either failed nidation or fetal demise. 

Published estimates state that as many as half of the 15–20% of recognized pregnancy 

failures are due to numerical chromosome aberrations [1]. A few well known exceptions are 

embryos carrying an extra chromosome 13, 18, 21, X or Y, which lead to phenotypical 

abnormalities and clinically recognizable symptoms [1–6].

However, incidences of trisomy occur disproportionately among the 22 human autosomes. 

Studies karyotyping thousands of live birth or spontaneous abortuses, sometimes referred to 

as ‘product of conception (POC)’, show that trisomies involving chromosome 16 are the by 

far most common abnormality and are found in 31% of spontaneous abortions [1] compared 

to trisomy 13 or 21 found in only 4.1% and 10.5% of spontaneous abortions. Chromosome 

16 trisomy occurs in 1–2% of all human conceptions and is thus most common autosomal 

trisomy found in first trimester miscarriages [7,8].

Studies of human preimplantation embryos at the day 3-stage could demonstrate a maternal 

age dependent increase in the number of embryos carrying cells with an extra chromosome 

16 [9] providing further evidence that most trisomy 16 pregnancies originate as a 

consequence of a maternal meiosis I non-disjunction [10] and are generally not compatible 

with life [1,11].

However, some embryos which survive early in utero carry a rare trisomy 16 mosaic 

aberration, containing both euploid and trisomic cell lines with abnormal expression of 

imprinted genes [12,13]. Such cases include true mosaics, cases with confined placental 

mosaicism (CPM) and uniparental disomy (UPD) [7].

A trisomy 16 mosaicism is usually caused by a remarkable process termed ‘trisomy rescue‘, 

where loss of a chromosome 16 in one of the trisomic cells of the early embryo results in a 

euploid cell line. The final distribution of trisomy 16 cells in the placenta and the fetus 

depends on the embryonic stage when trisomy rescue occurs and either one of the two 

maternal chromosomes or the paternal chromosome can be lost [7,14]. When a trisomy 16 

conceptus is rescued, the result may be maternal uniparental disomy 16 (UPD(16)mat), i.e, 

both homologues of chromosomes 16 are inherited from the mother [15,16] and a lifeborn 

child may have a distinct phenotypic effect [7,14,17]. While, a significant number of fetuses 
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with prenatally diagnosed mosaic trisomy 16 have a good outcome with a milder 

phenotypical appearance [6,18], the mosaic trisomy 16 has also been associated with a 

severe pregnancy complication called ‘preclampsia‘ [13] emphasizing a need for rapid and 

accurate genetic analysis of fetal chromosomes as a further relevant tool for counselling the 

mother [10,11,14,19,20].

For more than two decades, our laboratories and others have been involved in the design of 

genetic tests analyzing the karyotypes of human sperm, oocytes, preimplantation embryos, 

fetal cells and tumor specimens based on fluorescence in situ hybridization (FISH) [3,21–

26].

The FISH technique is based on hybridization of non-isotopically labeled nucleic acid 

probes and detection by fluorescence microscopy [27]. Sources of DNA probes can be any 

modified oligonucleotide or chunks of cloned DNA identified as chromosome- or gene-

specific sequence. The goal of DNA probe optimization is to increase probe specificity and 

signal intensity. While small synthetic oligonucleotide probes have the advantage of rapid 

diffusion and thus shorter hybridization times, the small number of fluorescent moieties 

bound to intracellular targets often results in weak signals.

An ideal, high performance DNA probe is highly chromosome-specific and works well with 

a spectrum of biological specimens ranging from archival to fresh samples that may have 

undergone complex aging and fixation procedures [28]. Our laboratories and others have 

worked with a variety of cloned or PCR-amplified DNA sequences targeting tandemly-

repeated pancentromeric clusters of alpha satellite DNA [21,29–32] for chromosome 

enumeration. Early probes were often cloned in plasmids which allow inserts in the kilobase 

(kb) range to be stably propagated [33,34]. However, some alphoid DNA probes face 

limitations of use in cases where existing heteromorphisms lead to one strong and one very 

weak signal, the latter of which might be easily missed [35,36].

The family of short DNA satellite repeats II/III is an attractive, large hybridization target for 

chromosome enumeration, even in the presence of heteromorphisms [35], but remains 

limited to just a handful of human chromosomes such as chromosomes 1, 9, 16 and Y. The 

plasmid clone pHUR98 is an example of a successfully used chromosome 16 satellite II/III 

DNA repeat probe [37–39].

We gained extensive experience preparing FISH probes from yeast artificial chromosome 

(YAC) clones or P1 clones [40–43]. However, existing physical maps for these clones do 

not cover the heterochromatic regions of the human genome and most probes will target 

single copy sequences which result in weaker signals.

Other approaches for chromosome enumeration have been described such as comparative 

genomic hybridization [44], but none of them can compete with the above describe FISH 

and direct visualization in terms of speed, low complexity and cost. We recently investigated 

the use of bioinformatics tools and mining of data in existing databases. We chose to search 

the genome database at UC Santa Cruz [45], which shows alignments of paired end-

sequenced bacterial artificial chromosome clones (BACs) [46,47] with the provisionally 

finished draft of the human genome sequence [48]. In our most recent approach to prepare 
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high performance DNA probes that supersede preexisting probes with regard to probe 

specificity and signal-to-noise ratios, we attempt to identify BAC clones from the 

pericentromeric regions of different chromosomes that are free of non-chromosome-specific 

short or long interspersed repeat sequences (SINE’s, LINE’s) and contain ‘pure’ satellite 

DNA (Figure 1) [49–51].

As the example in Figure 1 illustrates, the alignment of paired end-sequences from BAC 

clone RP11-416F8 suggests an insert of about 26.678 kb of human DNA mapping to 

chromosome 16, band q11.2 [51]. The insert is predicted to be comprised entirely of satellite 

DNA. We isolated the BAC DNA and labeled it with biotin using a Bioprime kit (Life 

Technologies, La Jolla, CA). The probe, when hybridized to metaphase spreads prepared 

from the fibroblast cell line WI-38 and stained with avidin-FITC following our published 

protocol [24], showed two very bright, specific signals per cell (arrows in Figure 2B) which 

were easy to count in the microscope by eye. Other probes, which have been prepared using 

a similar bioinformatics approach for chromosomes 10, X and Y can easily be combined 

with this chromosome 16-specific probe [50–52].

The fact that the WI-38 human diploid cell line was derived by Leonard Hayflick from 

normal female embryonic (3 months gestation) lung tissue in 1962 does not necessarily 

imply that the particular batch of WI-38 cells used in our studies was diploid [53]. As Sigma 

Aldrich, a major supplier of WI-38 cells for research and vaccine production describes the 

cells on their web site as 'Fibroblast-like, 2n=46, diploid except at high passage number', 

karyotype alterations have to be anticipated at high number of passages [54]. The 

observation of three chromosome 16-specific signals in WI-38 cells matches the primary 

goal of our technical developments, i.e., an assay able to detect trisomy 16 in fetal tissues.

In summary, despite the fact that most of the human heterochromatin remains unchartered 

territory, simple data mining approaches can identify potential DNA probes for chromosome 

enumeration that are easy and inexpensive to prepare by the less experienced laboratory and 

result in FISH signals of unprecedented specificity and intensity.
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Abbreviations

BAC Bacterial Artificial Chromosome

CPM Confined Placental Mosaicism

DAPI 4,6-Diamino-2-Phenylindole
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FISH Fluorescence In Situ Hybridization

FITC Fluorescein Isothiocyanate

UPD Uniparental Disomy
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Figure 1. 
The Graphic User Interface (GUI) of the UC Santa Cruz online Genome Browser indicating 

the position of BAC clone RP11-416F8 (indicated by the blue mark on the left) along the 

draft sequence of human chromosome 16.
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Figure 2. 
FISH result using a biotinylated probe prepared from BAC clone RP11-416F8. A) DAPI 

image showing the DNA/metaphase chromosomes; B) Three chromosome-specific green 

fluorescence signals (arrows) after staining with avidin-FITC; C) Overlay of the DAPI and 

FITC images.
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