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Genomes of sequence type 121
Listeria monocytogenes strains
harbor highly conserved plasmids
and prophages
Stephan Schmitz-Esser *, Anneliese Müller, Beatrix Stessl and Martin Wagner

Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine
Vienna, Vienna, Austria

The food-borne pathogen Listeria (L.) monocytogenes is often found in food production
environments. Thus, controlling the occurrence of L. monocytogenes in food production
is a great challenge for food safety. Among a great diversity of L. monocytogenes
strains from food production, particularly strains belonging to sequence type (ST)121
are prevalent. The molecular reasons for the abundance of ST121 strains are
however currently unknown. We therefore determined the genome sequences of three
L. monocytogenes ST121 strains: 6179 and 4423, which persisted for up to 8 years
in food production plants in Ireland and Austria, and of the strain 3253 and compared
themwith available L. monocytogenes ST121 genomes. Our results show that the ST121
genomes are highly similar to each other and show a tremendously high degree of
conservation among some of their prophages and particularly among their plasmids.
This remarkably high level of conservation among prophages and plasmids suggests
that strong selective pressure is acting on them. We thus hypothesize that plasmids
and prophages are providing important adaptations for survival in food production
environments. In addition, the ST121 genomes share common adaptations which might
be related to their persistence in food production environments such as the presence of
Tn6188, a transposon responsible for increased tolerance against quaternary ammonium
compounds, a yet undescribed insertion harboring recombination hotspot (RHS) repeat
proteins, which are most likely involved in competition against other bacteria, and
presence of homologs of the L. innocua genes lin0464 and lin0465.

Keywords: Listeria monocytogenes, sequence type 121, persistence, genome, plasmid, prophage

Introduction

The facultative intracellular pathogen Listeria monocytogenes is responsible for listeriosis, a rare but
severe disease in humans and animals, which is acquired primarily through the consumption of
contaminated food; particularly “ready-to-eat food” is of high risk (Allerberger and Wagner, 2010;
Eurosurveillance Editorial, 2012). L. monocytogenes can survive and grow in multiple natural and
man-made habitats, such as soil, marine and fresh water, vegetation, sewage, food processing plants,
farm environments, domestic and wild animals (Sauders and Wiedmann, 2007; Ferreira et al.,
2014); therefore, controlling L. monocytogenes in food processing environments is a considerable
challenge. Long-term survival—also called persistence—for months or even years of various
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L. monocytogenes strains in food production environments has
been described by many studies, for reviews see: (Carpentier and
Cerf, 2011; Ferreira et al., 2014; Larsen et al., 2014). Persistence
describes the repeated occurrence of genetically indistinguishable
(determined e.g., by pulsed-field gel electrophoresis or
ribotyping) L. monocytogenes strains in the same food
production plant over a long time period. However, only
relatively few studies have focused on the molecular mechanisms
of persistence (Carpentier and Cerf, 2011; Ferreira et al., 2014).
So far, only two studies have analyzed genome sequences
of persistent L. monocytogenes strains: one study described
the genome of L. monocytogenes strain J2818 [sequence type
(ST) 11, serovar 1/2a], which persisted for 12 years in a food
processing plant in the US (Orsi et al., 2008). Another more
recent study determined the genome sequences of two persistent
ST121 (serovar 1/2a) L. monocytogenes strains isolated from
two different fish processing plants in Denmark (Holch et al.,
2013). These two studies revealed that prophage diversification
is an important driver of L. monocytogenes evolution and
suggested that specific genetic determinants may enable long-
term persistence in food processing environments. Two models
explaining persistence have been proposed (Ferreira et al., 2014):
According to the first model, certain L. monocytogenes strains
have unique phenotypic and genotypic characteristics facilitating
long-term survival in food processing environments. The other
model states that persistence is largely a random process and that
most L. monocytogenes strains can establish persistence if present
in an appropriate niche at an appropriate time (Ferreira et al.,
2014). Particularly L. monocytogenes strains of ST121 are often
found in food production environments (Ragon et al., 2008;
Parisi et al., 2010; Chenal-Francisque et al., 2011; Hein et al.,
2011; Holch et al., 2013; Kastbjerg et al., 2014; Martin et al., 2014;
Stessl et al., 2014; Wang et al., 2015). However, the molecular
mechanisms underlying the phenomenon of persistence are
currently unknown. As persistent L. monocytogenes strains
in food processing environments greatly increase the risk of
(re)contamination of food products and therefore represent a
big challenge for food safety, we analyzed the genome sequences
of three ST121 L. monocytogenes isolates and compared them
with available L. monocytogenes ST121 genomes to identify
common and unique genetic traits among ST121 genomes with
a particular focus on persistence.

Materials and Methods

Bacterial Strains Used for Genome Sequencing
The following three L. monocytogenes strains were potentially
persisting in three food processing facilities during several
years (Table 1). The strains were assigned to genetic lineage II,
serovar 1/2a and ST121. L. monocytogenes 4423 was isolated
primarily from product-associated and cheese samples in 2004
from an Austrian cheese processing plant producing semi-hard
and hard cheese (Stessl et al., 2014). L. monocytogenes 4423
corresponds to AuB1 and 6179 corresponds to IrlA1 in Stessl
et al. (2014). L. monocytogenes 6179 originated from an Irish
farmhouse-cheesemaking plant and was mainly isolated from
cheeses (Fox et al., 2011a,b; Stessl et al., 2014). L. monocytogenes
3253 was isolated from Austrian deli-meat products and the

corresponding food processing environment (FPE). Details on
strains are given in Table 1.

DNA Isolation, Genome Sequencing and Genome
Analyses
L. monocytogenes strains were cultivated under aerobic
conditions at 37◦C in brain heart infusion broth (BHI,
Merck; with 125 rpm shaking), harvested by centrifugation,
the resulting pellet was used for DNA isolation using the
QIAGEN genomic-tip columns and buffers according to the
recommendations of the manufacturer. For 6179 and 4423
genome sequencing was performed using an Illumina GAII
genome analyzer available at the University of Veterinary
Medicine Vienna. Sequencing was performed using paired-end
sequencing technology and 100 bp read-length using Illumina
standard protocols. For 3253 genome sequencing was performed
with Illumina MiSeq sequencing technology using 300
bp read length and paired-end sequencing (Microsynth,
Balgach, Switzerland). Four (4423) and three (6179 and
3253) million reads were used for a de novo assembly using
SeqManNGen (DNASTAR). The average coverage was 145 ×
for L. monocytogenes 4423, 98 × for L. monocytogenes 6179,
and 205 × for 3253. This assembly resulted in 35 contigs with
a size >500 bp for 4423, 32 contigs for 6179, and 12 contigs
for 3253. The contigs were aligned to the L. monocytogenes
EGDe genome using the “move contigs” option in MAUVE
(Darling et al., 2010) and used for initial genome analyses.
PCR and Sanger sequencing was performed to close remaining
gaps—this resulted in one contig for 6179 and 12 contigs
for 4423. Automatic genome analysis and annotation of the
genomes was done using the RAST server (http://rast.nmpdr.
org/) (Aziz et al., 2008; Overbeek et al., 2014) and theMicroScope
platform (https://www.genoscope.cns.fr/agc/microscope/home/)
(Vallenet et al., 2013). Genome comparisons and determination
of homologous proteins were done with BlastP, BlastN, and
tBlastN (Camacho et al., 2009). Similar to a previous study
(Kuenne et al., 2013) we used a similarity cut-off of 60% amino
acid identity and 80% coverage for identification of homologous
proteins. Alignments of genomes, prophages and plasmids were
done with MAUVE (Darling et al., 2010). Multilocus sequence
typing (MLST) of the sequenced strains was performed with the
MLST tool available on the Center for Genomic Epidemiology
website [https://cge.cbs.dtu.dk/services/MLST/ (Larsen et al.,
2012)]. For comparison other currently available ST121 genomes:
the genome sequences of LM_1880 (GenBank accession number
AZIZ00000000), a strain isolated from cheese in Italy—for
which no information regarding possible persistence is currently
available—(Chiara et al., 2014) and N53-1 (GenBank accession
number AXDU01000000), a persistent L. monocytogenes strain
isolated from a fish production plant in Denmark (Holch et al.,
2013; Kastbjerg et al., 2014) and S2_2, S2_3, S10_1, and S10_3
(GenBank accession numbers: JWHJ01000000, JWHK01000000;
JWHG01000000, and JWHH01000000), isolated from pork
industry in Spain (Ortiz et al., 2010, 2014; Lopez-Alonso et al.,
2015) were downloaded from GenBank and loaded onto the
RAST server. In the study by Holch and coworkers (Holch et al.,
2013) it was stated that the strains La111 and N53-1 were almost
identical (no SNPs present), we therefore used only N53-1 for our
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comparisons. CRISPR regions were analyzed with CRISPRFinder
[http://crispr.u-psud.fr/Server/CRISPRfinder.php (Grissa et al.,
2007)]. Phylogenetic analyses of plasmid replication initiation
protein amino acid sequences was performed with MEGA 6.0
using maximum likelihood based phylogenetic inference and the
JTT amino acid substitution model with 1000x bootstrapping
(Tamura et al., 2013).

Accession Numbers
The genome and plasmid sequences have been deposited in the
EMBL European nucleotide archive under accession numbers
HG813249 and HG813250 for L. monocytogenes 6179 and
CBXR010000001 to CBXR010000012 for L. monocytogenes 4423.
The L. monocytogenes 3253 whole genome shotgun project has
been deposited at DDBJ/EMBL/GenBank under the accession
JYJO00000000. The version described in this paper is version
JYJO01000000.

Results and Discussion

Recently, two L. monocytogenes sequence type (ST) 121 strains
(4423 and 6179) were found to be potentially persistent in
European cheese processing facilities (Fox et al., 2011a,b; Stessl
et al., 2014). The genetically highly similar (but not identical)
L. monocytogenes strains 4423 and 6179 were recurrently
isolated during a timeframe of seven and 8 years (Table 1).
Interestingly, a high abundance of L. monocytogenes ST121
in food and persistence in FPE was also observed by other
authors (Parisi et al., 2010; Chenal-Francisque et al., 2011;
Holch et al., 2013; Althaus et al., 2014; Martin et al.,
2014; Ortiz et al., 2014; Wang et al., 2015). Currently, 69
L. monocytogenes ST121 are available in the Institute Pasteur
MLST database with a considerable increased isolation history
from 2009 to 2014 (http://www.pasteur.fr/recherche/genopole/
PF8/mlst/Lmono.html; accessed on: 19.02.2015).

To get more insight into the genetic features involved in
L. monocytogenes ST121 persistence in FPE, the three ST121
strains 4423, 6179, and 3253 were selected for whole genome
sequencing and compared with available L. monocytogenes ST121
genomes (n = 6).

Genome sequencing followed by gap closing using PCR
resulted in one contig for L. monocytogenes 6179 (Table 2),

however we were not able to close the genome. The remaining
gap probably comprised two consecutive rRNA operons as
in the homologous region in L. monocytogenes EGDe. For
L. monocytogenes 4423 and 3253, 12 contigs remained (Table 2).
The genomes display typical features of L. monocytogenes
genomes such as assembly sizes between 3.00 and 3.01Mbp and
a genomic G+C content of 37.9%, which are in the range found
for most Listeria genomes (den Bakker et al., 2010, 2013; Kuenne
et al., 2013). In addition, all strains harbor a plasmid (pLM6179,
pLM4423, and pLM3253) with sizes of 62.2 (6179 and 4423)
and 63.1 kbp (3253) with G+C content of 36.5%. Details on the
genomes and plasmids are shown in Table 2.

Overall, all the sequenced ST121 genomes are highly similar to
each other and also highly similar to the L. monocytogenes EGDe
genome (Figure 1, Table 1); however, one 358 kbp inversion
in the 6179 genome between the EGDe homologs lmo1240
(LM6179_1548) and lmo1241 (LM6179_1975) representing
homologs of the EDGe genes lmo2589 to lmo2366 including also
all three 6179 prophages, was found. This rearrangement most
likely explains the slightly different PFGE patterns of 4423 and
6179 reported recently (Stessl et al., 2014). The average nucleotide
and amino acid identity between the nine ST121 strains is 99.8
and 99.9%, respectively.

The ST121 genomes harbor between one and four prophages
(Table 1). In 6179, 4423, and 3253, one prophage is inserted
downstream of the tRNA Arg-TCT, another prophage
downstream of tRNA Arg-CCG. In 6179, the third phage is
inserted downstream of the tRNA Thr-GGT and in 4423 and
3253 upstream of the tRNA Ser-CGA. Prophages or phage
remnants integrated into the comK gene are found in three of the
nine ST121 genomes. Prophages integrated into comK have been
suggested to be important for the adaptation of L. monocytogenes
to food environments (Verghese et al., 2011).

The phages at tRNA Ser-CGA in 4423 and 3253 and tRNA
Thr-CGT in 6179 are specific for the respective strains (but
show highest similarity to other Listeria phages). Interestingly, in
6179, 4423, and 3253, the phages at tRNA Arg-CCG are identical
and the phages inserted at tRNA Arg-TCT show more than
96.5% nucleotide sequence identity to each other (Supplementary
Figures 1, 2). Highly similar tRNA Arg-CCG (99.8 to 100%
nucleotide identity) and tRNAArg-TCT (95.4 to 100% nucleotide
identity) prophage contigs are also present in LM_1880, N53-1,

TABLE 2 | General features of the L. monocytogenes 6179, 4423, and 3253 genomes and plasmids determined in this study.

3253 4423 6179 pLM3253 pLM4423 pLM6179

Assembly size (bp) 3,001,169a 3,000,849a 3,010,620a 63,152a 62,207 62,206

No. of contigs 11 11 1 1 1 1

G+C content (%) 37.9 37.9 37.9 36.5 36.5 36.5

No. of predicted coding sequences (CDS) 2990 3054 3063 62 62 61

Average length of CDS 890 889 886 892 892 902

Coding density (%) 89.4 89.5 89.4 88.8 88.8 88.3

No. of rRNA operons 5b 6 4b – – –

No. of tRNA genes 63 61 49 – – –

No. of prophages 3 3 3 – – –

aGenomes are not closed.
bThe number of rRNA operons could not be determined due to remaining gaps in the assembly.
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FIGURE 1 | Alignment of L. monocytogenes ST121 genomes. The
genomes of L. monocytogenes EGDe (ST35), 6179, 4423; N53-1, 3253,
LM_1880, S2_2, S2_3, S10_1, and S10_3 were aligned using Mauve
(Darling et al., 2010). Homologous regions are shown in the same color.

The height of the similarity profile within each block corresponds to the
average level of conservation in that region of the genomes. The
rearrangement in the L. monocytogenes 6179 genome is highlighted in
orange.

S2_2, S2_3, S10_1, and S10_3 (Supplementary Figures 1, 2).
The similarity of the ST121 tRNA Arg-TCT and tRNA Arg-
CCG prophages to other described Listeria phages is considerably
lower (Supplementary Figures 1, 2). This high degree of similarity
of prophages—particularly of tRNA-Arg-CCG prophages—in
L. monocytogenes ST121 strains isolated independently from
food processing plants from five different countries (Austria,
Ireland, Denmark, Italy, and Spain) in different years is striking,
particularly keeping in mind that prophages have been shown
to be important drivers of short-term genome evolution in
L. monocytogenes (Orsi et al., 2008; Gilmour et al., 2010; Verghese
et al., 2011) and are considered to be the major source of diversity
within the genus Listeria (Kuenne et al., 2013). Two recent
studies performed comparative genome analyses of Listeria
bacteriophages also found regions showing high conservation
between some phages, but to a much lesser degree as found in
our study (Dorscht et al., 2009; Denes et al., 2014). The high
degree of similarity particularly of the tRNAArg-CCG prophages
identified here might thus be a result of adaptation of ST121
strains to similar niches in food production environments. It
has been shown that prophages can provide increased growth
under nutrient limitation (Edlin et al., 1977), increased biofilm
formation (Wang et al., 2010; Verghese et al., 2011; Fortier
and Sekulovic, 2013) and can be beneficial for withstanding
osmotic, oxidative, and acid stress (Wang et al., 2010). In a similar

way, the presence and high conservation of L. monocytogenes
ST121 prophages might thus be advantageous for survival under
stress conditions, which they are faced with in food production
environments.

All analyzed ST121 genomes encode a typical
L. monocytogenes pathogenicity island and truncated internalin
A (inlA) genes, a feature often found in ready-to-eat food
and food production environment L. monocytogenes isolates
(Nightingale et al., 2008; Van Stelten et al., 2010). The truncated
InlA proteins have a predicted length of 492 amino acids
and belong to mutation type 6 (Nightingale et al., 2008; Van
Stelten et al., 2010). Overall, the genomic organization of the
inlAB locus in ST121 strains is similar to L. monocytogenes
EGDe (Supplementary Figure 3). Interestingly, the lmo0435
homolog BapL, a putative peptidoglycan bound protein
involved in biofilm formation, but not essential (Jordan
et al., 2008), is truncated in ST121 strains (Supplementary
Figure 3). All ST121 strains encode a highly similar set
of internalins and internalin-like proteins (Supplementary
Tables 1, 2). Using a set of virulence-associated genes based
on a study by den Bakker et al. (2010), we performed
BlastP and tBlastN searches: all virulence genes present in
L. monocytogenes EGDe except homologs of lmo2026 (an
internalin-like protein) are present in the ST121 genomes (data
not shown).
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Listeria genomes are highly syntenic and horizontal gene
transfer into Listeria genomes occurs mostly in the accessory
genome consisting mainly of prophages, transposons and
so-called hypervariable hotspots (den Bakker et al., 2010, 2013;
Kuenne et al., 2013). We thus compared the regions of the
hypervariable hotspots in the ST121 genomes to identify possible
differences and found the same gene content in all hypervariable
hotspots; only in LM_1880, hypervariable hotspot 7 (lmo0458
to lmo0480) seems to be part of a rearrangement, however also
here the gene content is identical to the other ST121 genomes
(data not shown). One mechanism for protection against foreign
DNA are restriction modification systems. The ST121 genomes
encode a lmoJ2 type II restriction modification system locus
inserted into hypervariable hotspot 4 (lmo0301 to lmo0314);
LmoJ2 has been shown to be involved in phage resistance (Lee
et al., 2012). In addition, all ST121 genomes encode two recently
described CRISPR loci: a type I CRISPR system inserted between
lmo0517 and lmo0518 homologs, and a type II CRISPR system
inserted between lmo2591 and lmo2595 as described previously
in other L. monocytogenes genomes (Kuenne et al., 2013; Sesto
et al., 2014). We analyzed the CRISPR regions in the ST121
genomes: overall, the CRISPR regions were identical, with the
exception of a single 14 bp insertion in CRISPR locus 1 in 6179
and the presence of only 21 spacers in 4423 compared to other
complete CRISPR 2 loci in ST121 genomes (Supplementary Table
3); however, in 6179, LM_1880, and N53-1 CRISPR 2 loci were
located at the end of contigs and thus not completely assembled.

L. monocytogenes encounters various stress conditions in food
and food production environments. We therefore analyzed the
ST121 genomes with respect to genes possibly involved in stress
tolerance. Previously, the so-called stress survival islet 1 (SSI-1)
has been characterized in L. monocytogenes and was shown to
confer increased tolerance toward acidic and salt stress (Ryan
et al., 2010). Similar to the results of a recent study, all ST121
genomes harbor homologs of the L. innocua genes lin0464 and
lin0465 at the same genomic locus (Hein et al., 2011). However,
their function is currently unknown.

Plasmids also often confer increased stress tolerance. The
pLM4423 and pLM6179 plasmid genome sequences were closed
by PCR and have a size of 62.2 kbp (Table 2). They encode typical
features found in many Listeria plasmids such as determinants
for plasmidmaintenance, replication and possible transfer as well
as the CadAC Cadmium resistance transposon Tn5422 (Lebrun
et al., 1994a,b; Kuenne et al., 2010) and also ClpL homologs,
which are members of the HSP100 subgroup of heatshock
proteins. ClpL proteins were found in some Listeria plasmids
before (Kuenne et al., 2010). Highly similar (approximately 68%
amino acid identity) ClpL proteins have been shown to be
involved in stress response, virulence under various conditions in
Streptococcus spp. and Lactobacillus spp. and to act as chaperone
for the stress response regulator CtsR (Suokko et al., 2005;
Kajfasz et al., 2009; Tran et al., 2011; Tao and Biswas, 2013).
The plasmid-encoded ClpL proteins thus most likely provide
additional stress response potential to ST121 strains. Most of
the other predicted proteins of ST121 plasmids have no known
function. All currently sequenced ST121 L. monocytogenes harbor
a plasmid with assembly sizes between 60.9 and 63.1 kbp

(Table 1). Based on phylogenetic analyses of plasmid replication
initiation proteins, these plasmids belong to group 2 Listeria
plasmids (Supplementary Figure 4). Strikingly, these plasmids
are basically identical (Figure 2, Supplementary Figure 4) and
show more than 99.9% nucleotide identity to each other. The
only visible differences in the alignments (Figure 2) are due to
the fact that only the pLM6179 and pLM4423 plasmid sequences
are closed. The similarity to their most similar related plasmids
is considerably lower: 99.3% nucleotide identity (coverage: 78%)
to pLM5578 from L. monocytogenes 08-5578 (ST120) (Gilmour
et al., 2010) and 96.6% (coverage: 74%) to pLMR479a from
L. monocytogenes R479a (ST8) (Supplementary Figure 5). This
extremely high degree of conservation between plasmids of
strains isolated from different sources, years and countries
suggests that strong selective pressure is acting on the ST121
plasmids. This high conservation of ST121 plasmids may thus
be the result of niche adaptation. Plasmids are thought to have
important ecological functions because they can be found in
high abundance in bacterial populations in diverse habitats and
encode a wide array of accessory functions which may confer an
advantage to their bacterial hosts, compensating for the burden
of carrying a plasmid (Heuer et al., 2008). In addition, it has been
suggested that not only bacterial taxa but also their plasmids are
defined by their respective ecological niches (Brown Kav et al.,
2012). High similarity among some Listeria plasmid sequences
has been observed by previous studies (Canchaya et al., 2010;
Kuenne et al., 2010). However, in these cases the regions of high
similarity represented either only parts of the plasmid sequences
or plasmids such as pLM33 with a size of 32 kbp integrated
into other larger plasmids and not—as found here—the whole
plasmid genomes. Another possible explanation for the high
conservation observed in ST121 plasmids and prophages might
be that these mobile genetic elements show a high dispersal rate.
Assuming a high dispersal rate of these mobile genetic elements
nevertheless strongly suggests an advantage of their presence. In
line with this, we could show a high level of transcription and
differential expression (more than threefold change) of 75 of the
tRNA-Arg-TCT and tRNA-Arg-CCG prophage genes and also
of 30 out of 62 plasmid genes in L. monocytogenes 6179 under
benzethonium chloride challenge (Casey et al., 2014); suggesting
an important functional role of these mobile genetic elements at
least under the conditions analyzed in this study. In addition,
the strong and wide transcription of these genes suggests that
negative selection is not acting on these prophages and plasmids.

In food production environments, bacteria are regularly faced
with cleaning and disinfectants, thus resistance mechanisms
may provide important advantages. Recently, we identified the
novel transposon Tn6188 in L. monocytogenes 6179 and 4423,
which is involved in increased tolerance to various quaternary
ammonium compounds such as benzalkonium chloride. We
found Tn6188 in 11% of the analyzed strains, the Tn6188-
positive strains were primarily of serovar 1/2a (Muller et al.,
2013, 2014). Interestingly, identical Tn6188 copies are present in
all ST121 strains analyzed in this study. However, the Tn6188
copies in N53-1 and LM-1880 were not correctly annotated
in these two genomes. In addition, a different benzalkonium
chloride resistance mechanism, the bcrABC cassette has been
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FIGURE 2 | Alignment of L. monocytogenes ST121 plasmids. The
plasmids pLM6179, pLM4423, pLMN53-1, pLM_1880, pLM3253,
pLMS2_2, pLMS2_3, pLMS10_1, and pLMS10_3 were aligned using Mauve

(Darling et al., 2010). Homologous regions are shown in the same color. The
height of the similarity profile within each block corresponds to the average
level of conservation in that region of the plasmids.

characterized in L. monocytogenes H7550 (a serovar 4b strain)
and was later found in other L. monocytogenes genomes and
plasmids (Elhanafi et al., 2010; Dutta et al., 2013). In contrast to
Tn6188, bcrABC cassettes are absent from the sequenced ST121
genomes.

We found a 12.5 kbp insertion in the ST121 genomes between
the EGDe lmo2753 and lmo2754 homologs. This insertion has
a G+C content of 40.0%, which is slightly higher than the
average genomic G+C content of L. monocytogenes genomes, and
encodes—among others—a 3056 amino acid protein harboring
29 rearrangement hotspot (RHS) repeats (PFAM domain:
PF05593, locus_tag: LM6179_0173, Figure 3). The RHS proteins
and the region surrounding them in ST121 strains are identical.
RHS repeat harboring proteins such as RhsAB from E. coli or
Dickeya dadantii (the former Erwinia chrysanthemi) or WapA
from Bacillus subtilis have been shown to be involved in
intercellular competition by inhibiting growth of neighboring
cells (Koskiniemi et al., 2013). More generally, RHS proteins
have been found in many diverse bacteria and been shown or
suggested to be involved in cell-cell interactions (Busby et al.,
2013; Kwong et al., 2014). Generally, the conservation among
RHS proteins is low (Busby et al., 2013). In line with this, the
L. monocytogenes ST121 RHS proteins show only 25% amino acid
identity to WapA from B. subtilis, which is responsible for tRNA
cleavage resulting in inhibition of cell growth of neighboring
cells (Koskiniemi et al., 2013). Upstream of the RHS protein in
ST121 strains, a putative RNA 2′-phosphotransferase (KptA) is

present (locus_tag: LM6179_0169). The ST121 KptA proteins
show 39% amino acid identity to the functionally characterized
E. coli KptA. Interestingly, RNA 2′-phopsphotransferases have
been shown to perform RNA cleavage by a mechanism highly
similar to ADP-ribosylation catalyzed by various bacterial toxins
(Spinelli et al., 1999). Although not directly shown, most
likely, KptA also catalyzes tRNA cleavage (Spinelli et al., 1999).
Thus, the putative RNA 2′-phosphotransferases in ST121 strains
might fulfill a similar function than the nuclease domain
of WapA in B. subtilis. In this context it is tempting to
speculate that the presence of this insertion might relate to the
widespread occurrence of L. monocytogenes ST121 strains in food
production environments. We hypothesize that the presence of
this insertion harboring the RHS protein and the putative RNA
2′-phosphotransferases provides ST121 strains with a means for
better competition against other bacteria in food production
environments.

Taken together, our results show that L. monocytogenes ST121
strains are highly similar to each other and also show an
extremely high degree of conservation in some prophage regions
and in their plasmids. This high level of conservation suggests
that a strong selective pressure is acting on these conserved
prophages and plasmids, which are usually among the most
variable parts of genetic information in bacteria. It is tempting
to speculate that these conserved regions provide ST121 strains
with fitness adaptations possibly enhancing survival in food
production environments as shown e.g., for other prophages. In
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FIGURE 3 | Organization of the insertion between lmo2753 and
lmo2754 homologs in L. monocytogenes ST121 strains. Homologous
genes are shown in the same color. The inserted region is identical in all

analyzed ST121 genomes. For clarity, only one of the Spanish pork
industry isolates (S2_2) and only L. monocytogenes 6179 locus_tags are
shown.

addition, we show that L. monocytogenes ST121 strains harbor
common genetic determinants such as Tn6188, or the insertion
harboring the RHS proteins, which might also increase their
chances of becoming persistent. However, more L.monocytogenes
ST121 genome sequences, genomes from persistent strains
from other sequence types and experimental validation will be
needed to confirm our hypotheses. A possible contribution of
L. monocytogenes ST121 plasmids to survival in food production
environments could, e.g., be tested by curing strains from their
plasmids or by deleting specific plasmid genes of interest such as
the genes encoding the ClpL proteins. Similarly, a contribution
of prophages to persistence could be tested by deleting the
prophages and monitoring the phenotypic effects on survival
under conditions similar to food production environments.
Likewise, a possible role of other chromosomally encoded genes
in persistence such as the RHS proteins could be analyzed by
generating deletion mutants and investigating their effect on
survival.
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