

OPEN ACCESS

Edited by: Raffaele Zarrilli, University of Naples Federico II, Italy

Reviewed by:

Mohamamd Emaneini, Tehran University of Medical Sciences, Iran Morovat Taherikalani, Lorestan University of Medical Sciences, Iran

*Correspondence:

Durg Vijai Singh durg_singh@yahoo.co.in; singhdv@ils.res.in; dvsingh@cusb.ac.in

[†]These authors have contributed equally to this work

[‡]Present address:

Sasmita Panda, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States

Specialty section:

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

Received: 08 August 2019 Accepted: 12 November 2019 Published: 04 December 2019

Citation:

Aggarwal S, Jena S, Panda S, Sharma S, Dhawan B, Nath G, Singh NP, Nayak KC and Singh DV (2019) Antibiotic Susceptibility, Virulence Pattern, and Typing of Staphylococcus aureus Strains Isolated From Variety of Infections in India. Front. Microbiol. 10:2763. doi: 10.3389/fmicb.2019.02763

Antibiotic Susceptibility, Virulence Pattern, and Typing of *Staphylococcus aureus* Strains Isolated From Variety of Infections in India

Shifu Aggarwal^{1†}, Smrutiti Jena^{1†}, Sasmita Panda^{1†‡}, Savitri Sharma², Benu Dhawan³, Gopal Nath⁴, N. P. Singh⁵, Kinshuk Chandra Nayak⁶ and Durg Vijai Singh^{1,7*}

¹ Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India, ² Jhaveri Microbiology Centre, LV Prasad Eye Institute, Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, Hyderabad, India, ³ Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India, ⁴ Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, ⁵ Department of Microbiology, Faculty of Medical Sciences, University of Delhi, New Delhi, India, ⁶ Institute of Life Sciences, Bhubaneswar, India, ⁷ Department of Biotechnology, Central University of South Bihar, Gaya, India

Staphylococcus aureus is one of the major causes of nosocomial infections. This organism produces powerful toxins and cause superficial lesions, systemic infections, and several toxemic syndromes. A total of 109 S. aureus strains isolated from a variety of infections like ocular diseases, wound infection, and sputum were included in the study. Minimum inhibitory concentration (MIC) was determined against 8 antimicrobials. PCR determined the presence of 16S rRNA, nuc, mecA, czrC, gacA/B, pvl, and toxin genes in S. aureus isolates. Pulse-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), SCCmec, spa-, and agr-typing and serotyping determined the diversity among them. All isolates of S. aureus were resistant to two or more than two antibiotics and generated 32 resistance patterns. These isolates were positive for 16S rRNA and S. aureus-specific nuc gene, but showed variable results for mecA, czrC, and qacA/B and pvl genes. Of the 32 methicillin-resistant S. aureus (MRSA), 13 strains carried SCCmec type V, seven type IV, two type III, and nine carried unreported type UT6. Of the 109 strains, 98.2% were positive for hlg, 94.5% for hla, 86.2% for sei, 73.3% for efb, 70.6% for cna, 30.2% for sea, and 12.8% for sec genes. Serotypes VII and VI were prevalent among S. aureus strains. PFGE analysis grouped the 109 strains into 77 clusters. MLST classified the strains into 33 sequence types (ST) and eight clonal complexes (CCs) of which 12 were singletons, and two belong to new allelic profiles. Isolates showed 46 spa-types that included two new spa-types designated as t14911 and t14912. MRSA and methicillin-susceptible S. aureus (MSSA) isolates were diverse in terms of antibiotic resistance pattern, toxin genotypes, SCCmec types, serotypes and PFGE, MLST, and spa-types. However, few isolates from eye infection and wound

1

infection belong to CC239, ST239, and *spa*-type t037/t657. The study thus suggests that *S. aureus* strains are multidrug resistant, virulent, and diverse irrespective of sources and place of isolation. These findings necessitate the continuous surveillance of multidrug-resistant and virulent *S. aureus* and monitoring of the transmission of infection.

Keywords: antibiotic susceptibility, virulence, MLST, spa-typing, PFGE, biofilm, Staphylococcus aureus

INTRODUCTION

Staphylococcus aureus commensal to human skin and mucous membranes could cause nosocomial (Lindsay and Holden, 2004) and systemic infections (Jarraud et al., 2002). The isolation of methicillin-resistant *S. aureus* (MRSA) from ocular infections varies from 3 to 30% in a hospital in India and other countries (Shanmuganathan et al., 2005; Freidlin et al., 2007). MRSA strains belonging to ST5, ST72, and ST88 and isolated from severe eye infections in India were resistant to all antibiotics except tetracycline, chloramphenicol, and cefazolin (Nadig et al., 2012). Godebo et al. (2013) showed that 94.5% of *S. aureus* isolated from wound infection were resistant to penicillin, 91.8% to ampicillin, and 76.7% to oxacillin.

Several studies have shown the presence of toxin genes among MRSA. The presence of the sea gene in MRSA varies from country to country (Mehrotra et al., 2000; Kim et al., 2006; Wang et al., 2013). However, hla gene was present in all isolates (Shukla et al., 2010). MRSA isolated from conjunctivitis in Nigeria belonging to ST88 and SCCmec type IV were positive for pvl gene (Ghebremedhin et al., 2009). However, pvl gene positive methicillin-susceptible S. aureus (MSSA) strains belonged to ST30 (D'Souza et al., 2010). S. aureus carrying the pvl gene and belonging to ST239, ST5, and ST88 was reported from a teaching hospital in China (Liu et al., 2009). MSSA belonging to ST121 and spa-type 287 isolated from community-acquired pneumonia in young patients carried the virulence genes (cna and bbp) and pvl (Baranovich et al., 2010). The role of virulence genes in S. aureus pathogenesis may vary from one infection type to another type of infections. Dhawan et al. (2015) reported the isolation of SCCmec type IV and V clones of MRSA in an Indian hospital. Several other workers also showed a decrease in SCCmec III MRSA isolation but increased SCCmec IV and V MRSA isolation (Hsu et al., 2005; D'Souza et al., 2010). Multidrug-resistant isolates belonging to ST239 and SCCmec type III were slowly replaced by multidrugsusceptible ST22 (SCCmec type IV) and ST772 (SCCmec type V) in hospitals (D'Souza et al., 2010).

Several molecular biology techniques like multi-locus sequence typing (MLST), pulse-field gel electrophoresis (PFGE), SCC*mec* typing, and *spa*-typing have been used to study epidemiology and clonal diversity of *S. aureus* (Maslow et al., 1993; Norazah et al., 2001; Ghaznavi-Rad et al., 2011). However, not a single technique alone could discriminate the bacteria because of differences in the degree of typeability, reproducibility, and discriminatory power (Tenover et al., 1994). Overall analysis of different typing techniques can provide information on diversity of the isolates that can be useful for outbreak investigations. In India, *S. aureus* is rated as one of the major pathogen causing a variety of infections and showing

resistance to several antibiotics; however, not much information is available on their antibiotic susceptibility, virulence profile, and genomic diversity. In this study, our aim was to determine the antibiotic susceptibility pattern, virulence profiles, and genomic diversity among MRSA and MSSA isolated from patients with a variety of infections, including ocular diseases and collected from different parts of India from 2007 to 2015. Genetic, serotype, and phenotypic data were used to determine whether isolates from a variety of infections had similar characteristics.

MATERIALS AND METHODS

Bacterial Strains

A total of 109 S. aureus strains isolated from patients visited/admitted to hospitals with infections in different part of India between July 2007 and November 2015 were included in the study. These isolates were from LV Prasad Eye Institute, Bhubaneswar (n = 54), comprised of microbial keratitis (n = 18), eyelid abscess (n = 8), endophthalmitis (n = 5), Steven Johnson syndrome with bacterial keratitis (n = 9), suture-related infections (n = 3), and other ocular infection (n = 5); LV Prasad Eye Institute, Hyderabad (n = 10) comprised of cornea scrapping (n = 5), pus from eve (n = 4), and suture-related infections (n = 1); Institute of Medical Sciences, Banaras Hindu University, Varanasi (n = 21) comprised of wound infection (n = 16) and unknown sources (n = 5); All India Institute of Medical Sciences, New Delhi (wound infection n = 10); and University College of Medical Sciences, Delhi (wound infection n = 9). Also, five isolates were from the conjunctiva of the asymptomatic healthy volunteers LV Prasad Eye Institute, Bhubaneswar. We conducted the study following the guidelines mentioned in the Declaration of Helsinki. We identified all the 109 isolates by using biochemical tests including Gram staining, catalase production, fermentation of glucose and mannitol, and ID32 STAPH strips using ATBTM NEW v.1.0.0 software on an ATBTM reader (bioMerieux, France) (Panda et al., 2014). The amplification of the S. aureus nuc gene confirmed the identity of isolates (Hirotaki et al., 2011). We used S. aureus ATCC 25293 and S. aureus ATCC 29213 as quality control strains for antibiotic susceptibility testing, and S. aureus ATCC 25923 and ATCC 43300 as a reference for serotyping, PFGE, MLST, and spa-typing.

Coagulase Gene Typing

Coagulation-inhibition test with coagulase type I–VIII-specific antisera (staphylococcal coagulase antiserum kit; Denka Seiken, Inc., Tokyo, Japan) was conducted to determine the coagulase type of *S. aureus* following the manufacturer's instructions (Goh et al., 1992). Briefly, a single colony for each test

strain was suspended in BHI broth (Becton Dickinson Co.) and incubated at 37°C for overnight. Then centrifuged the culture and 0.1 ml of the supernatant used as test antigen. Distributed an aliquot (0.1 ml) of the test antigen into ten tubes followed by addition of 0.1-ml aliquots of anticoagulase types I–VIII sera to first eight tubes, except 9th and 10th tubes which were used as positive and negative controls and incubated at 37°C for 1 h. After that, 0.2 ml of diluted rabbit plasma was added to each tube and incubated at 37°C for 1 h. Visual inspection judged the coagulation of plasma after 2, 4, 24, and 48 h and accordingly, strains were typed based on results obtained with staphylocoagulase reaction showing coagulation inhibition.

Minimum Inhibitory Concentration (MIC) Determination

Minimum inhibitory concentrations (MICs) of oxacillin, chloramphenicol, vancomycin, tetracycline, gentamicin, erythromycin, clindamycin, and trimethoprim were determined by broth microdilution methodology as recommended by the CLSI breakpoints. The 96-well plates were incubated at 37°C and were read for turbidity after 24 h.

Polymerase Chain Reaction (PCR) Assays

The presence of genes encoding for methicillin resistance (*mecA*), the nuclease (*nuc*), Panton-Valentine leukocidin (*pvl*), cadmium resistance (*czrC*), and quaternary ammonium resistance (*qacA/B*) was determined by hexaplex PCR (Panda et al., 2014). PCR identified the presence of *msrA*, *ermA*, *ermC* (erythromycin resistance), *tetK* (tetracycline resistance) genes (Duran et al., 2012). Also, PCR determined the presence of gene encoding for resistance to aminoglycosides [*aac* (6')/*aph* (2), *aph* (3'-*III*)] by the method described earlier (Schmitz et al., 1999). The presence of *catpC221*, *catpC223*, and *catpC194* (chloramphenicol resistance) was determined by PCR as described by Argudín et al. (2011). The *mphC* (clindamycin resistance) gene was detected by PCR method described earlier (Panda et al., 2016).

SCCmec Typing

Two PCRs, MPCR1 and MPCR2 were used to detect the presence of *mec* complex, *ccr* complex, and SCC*mec* type among *S. aureus* (Kondo et al., 2007).

Virulence Gene Profile and Accessory Gene Regulator (*Agr*) Typing

PCR determined the presence of Staphylococcal enterotoxin (SE) genes encoding for *seA*, *seC*, and *seI* (Monday and Bohach, 1999; Jarraud et al., 2002). Also, the presence of hemolysin genes, *hlA* and *hlG*, was determined by PCR (Mitchell et al., 2010; Paniagua-Contreras et al., 2012). PCR was used to detect the presence of collagen adhesion (*cna*) and extracellular fibrinogen binding protein (*efb*) among *S. aureus* strains (Zecconi et al., 2006). The presence of intracellular adhesion genes (*icaA*, *icaD*) was

determined by PCR as described by Arciola et al. (2001). PCR amplification was carried out to determine the presence of *agr* alleles using group-specific primers as described by Gilot et al. (2002).

Pulsed-Field Gel Electrophoresis (PFGE)

Pulsed-field gel electrophoresis of *S. aureus* genomic DNA digested with *SmaI* (NEB) was carried out by the protocol described for *S. aureus* by Centre for Disease Control and Prevention. The dendrogram of similarity showing the clustering of the isolates according to banding patterns was generated with Bionumerics software, version 7.1 (Applied Maths, Belgium) using the Dice index and the un-weighted pair group method with arithmetic average (UPGMA) with 0.5% optimization and 1% position tolerance. Isolates showing similarity coefficient of up to 80% were considered belonging to similar pulsotype (Van Belkum et al., 2007).

Multi-Locus Sequence Typing (MLST)

The internal fragments of seven housekeeping genes, viz., *arcC*, *gmk*, *aroE*, *glpF*, *pta*, *tpi*, and *yqil* were amplified by PCR method described earlier (Enright and Spratt, 1999). The amplified products were purified (ExoSAP; Affymetrix, Cleveland, OH, United States) and both strands sequenced using an ABI sequencer model 3500 (Life Technologies, Marsiling, Singapore) at the sequencing facility of the Institute of Life Sciences (Bhubaneswar, India). The nucleotide sequences were aligned using Mega 5.2 software. After manually comparing with reported alleles, STs were assigned accordingly. Sequencing was performed in biological duplicates to confirm the presence of novel alleles.

The advanced cluster analysis was performed to define the clonal complexes (CCs) by using Bionumerics software, version 7.1 (Applied Maths, Belgium). A minimum spanning tree (MST) was constructed using the MLST data and partitions were created to form clusters. The similarity in at least six alleles grouped isolates of *S. aureus* in one CC. The central ST of each separation was used to designate a CC.

Spa-Typing

PCR amplified the polymorphic X region of *Staphylococcus* protein A (*spa*) gene following the conditions mentioned earlier (Nelson et al., 2007). Amplified products were purified, and both strands were sequenced using an ABI sequencer model 3500 (Life Technologies, Marsiling, Singapore) at the sequencing facility of the Institute of Life Sciences (Bhubaneswar, India). The nucleotide sequences were aligned using Mega 5.2 software. Repeat succession in the polymorphic X-region assigned the *spa*-types, and accordingly the MST was generated using Bionumerics 7 software (Applied Maths, Belgium) using gap creation cost 250%, gap extension cost 50%, duplicate production cost 25%, and maximum duplication three repeats.

Statistical Analysis

We performed principal coordinates analysis (PCoA) and discriminant analysis (DA) using PAST program v2.17 for the antibiotic resistance genes and virulence genes in MRSA and MSSA isolates with regard to sources of isolation (Hammer et al., 2001). We carried out the DA using default values to confirm the hypothesis of whether MRSA and MSSA isolates are different.

RESULTS

Hexaplex PCR

All the isolates of *S. aureus* were positive for 16S rRNA and *S. aureus*-specific *nuc* genes. Hexaplex PCR discriminates between MSSA and MRSA isolates. Thirty-one of 109 (29.4%) methicillin-resistant strains were positive for the *mecA* gene, and 77 (70.6%) methicillin sensitive isolates were negative for the *mecA* gene. One of the methicillin-resistant strains of *S. aureus* was negative for the *mecA* gene. Among 109 isolates, 43 (39.4%) isolates comprising 23 of the 77 (29.9%) MSSA and 20 of the 31 (64.5%) MRSA isolates were positive for *pvl* gene. Of the 31 MRSA isolates, two (6.5%) strains were positive for the *czrC* gene and four (12.9%) isolates were negative for both *czrC* and *qacA/B* genes (data not shown).

Coagulase Serotyping

Serotyping classified *S. aureus* isolates into I–VIII serotypes by using coagulase typing scheme. Twelve of the 109 (11%) strains belong to serotype I, 11 (10%) to serotype II, nine (8%) to serotype III, 14 (12.8%) to serotype IV, 12 (11%) to serotype V, 19 (17.4%) to serotype VI, 20 (18.3%) to serotype VII, and 12 (11%) to serotype VIII, respectively. Nine of 31 (29%) MRSA belong to serotype VI and 17 of 78 (21.8%) and MSSA isolates belong to serotype VII (**Table 1**). Nine of the 24 (37.5%) isolates from wound infection belong to serotype VI and 16 of 64 (25%) isolates from eye infection belonged to serotype VII.

Antibiotic Resistance Genes

One hundred two of the 109 *S. aureus* isolates were multidrug resistant showing resistance to two or more antibiotics. All the strains were susceptible to vancomycin when tested by broth microdilution assay. Thirty-one isolates of *S. aureus* were resistant to oxacillin and carried the *mecA* gene; however, one isolate of *S. aureus* resistant to oxacillin was negative by PCR for the *mecA* gene. The remaining 77 isolates were sensitive to oxacillin and negative by PCR for the *mecA* gene (**Table 1**).

Ninety-five isolates of *S. aureus* resistant to chloramphenicol carried *cat: pC221* gene; however, 86 isolates carried *cat: pC223* and 37 isolates carried *cat: pC194* gene, respectively. Twenty isolates carried all the three genes tested; however, 83 isolates were positive for *cat: pC221* and *cat: pC223* and 37 isolates for *cat: pC221* and *cat: pC223* and 37 isolates for *cat: pC221* and *cat: pC194* genes, respectively (**Table 1**). One of the isolates sensitive to chloramphenicol was negative by PCR for all three genes. In contrast, 15 strains of *S. aureus* susceptible to chloramphenicol were positive for *cat: pC221* and 14 for *cat: pC223* genes, respectively.

Twenty-nine isolates were phenotypically resistant to tetracycline of which 29 isolates were positive for *tetK*, 25 for *tetL*, and 28 for *tetM* genes. Twenty-five isolates carried all the three genes tested; however, three strains carried *tetK* and *tetM* genes and one isolate *tetL* and *tetM* genes. In contrast, 76 isolates sensitive to tetracycline were positive for the *tetM* gene, 66 for *tetL*, and 29 for *tetK* genes. Among them, 27 isolates carried all the three genes, six had *tetK* and *tetM*, and 39 strains had *tetL* and *tetM* genes, respectively. One isolate sensitive to tetracycline was negative by PCR for all three genes tested (**Table 1**).

A total of 54 isolates were resistant to gentamicin of which 45 isolates were positive for aac(6')/aph(2') and aph (3'-III) genes and nine isolates for aph (3'-III) gene only. In contrast, 43 gentamycin sensitive isolates showed positive results for aac(6')/aph(2') and aph (3'-III), seven isolates for aac(6')/aph(2'), and two isolates for aph (3'-III) genes. However, 56 isolates sensitive to gentamicin were negative by PCR for aac(6')/aph(2')and aph (3'-III) genes (**Table 1**).

Of the 91 isolates of S. aureus showing resistance to macrolides carried erythromycin resistance genes. Twenty-eight isolates carried all the erythromycin resistance genes, namely, msrA, ermA, and ermC. Fifty-one isolates were positive for two genes, of which 30 isolates carried msrA and ermC genes, and 21 strains had ermA and ermC genes. Besides, 12 isolates were positive for a single gene of which five isolates carried the *ermC* gene, and seven isolates had msrA gene. In contrast, two of the 10 erythromycin sensitive isolates carried msrA and ermC genes, four strains possess msrA and ermC genes, and three isolates had the ermC gene. Of the 64 isolates carrying the *mphC* gene, 22 isolates were phenotypically resistant to clindamycin (Table 1). None of the 17 strains showing sensitivity to erythromycin carried any of the erythromycin resistance genes. One of the resistant isolate not carrying any of the erythromycin resistant genes is likely to be mediated by an as-yet-unknown mechanism.

Similarly, 74 isolates were resistant to trimethoprim of which 45 isolates were positive for dfrA, dfrB, and dfrG genes, 27 strains for dfrB and dfrG genes, and one isolate each for dfrB and dfrG genes, respectively. In contrast, 34 isolates sensitive to trimethoprim were also positive for dfrA, dfrB, and dfrG genes; however, one strain was positive for the dfrG gene (**Table 1**).

D-Test and Macrolide Resistance

Ninety of 109 (89.9%) *S. aureus* isolates that exhibited erythromycin resistance were evaluated for MLSB resistance phenotype, namely, iMLSB, cMLSB and MSB. Seventy eight of 90 (79.5%) isolates were erythromycin-resistant but clindamycin susceptible were tested for D-test. We found 14 isolates (10 MRSA and four MSSA) showed iMLSB phenotype, and 12 (two MRSA and 10 MSSA) had MSB phenotype. Seven erythromycin-resistant isolates comprising six MRSA and one MSSA had cMLSB phenotype. The remaining 45 isolates (14 MRSA and 31 MSSA) did not show any MLSB phenotypes.

Among MRSA and MSSA showing cMLSB resistance phenotype, three of six MRSA isolates possessed the *ermA* and *ermC* genes and one each possessed *ermC* gene, *msrA*, *ermC*, *mphC* genes, and *ermC* and *mphC* genes. One MSSA isolate was positive for *msrA*, *ermA*, and *ermC* genes. On the hand, one TABLE 1 Antibiotic resistance patterns and presence of antibiotic resistance genes in Staphylococcus aureus isolates from different parts of India.

Phenotypic antibiotic resistance pattern

Number of isolates showing presence of gene(s) encoding for

	MRSA	MSSA	mecA	aac(6')/ aph(2)	aph (3'III)	msrA	ermA	ermC	mphC	tetK	tetL	tetM	cat::pC221	cat::pC223	cat::pC194	dfrA	dfrB	dfrG
OX, CHL, TET, GEN, ERY, CL, TMP	10	0	10	10	10	-	10	10	10	10	10	10	10 (3)	_	10	10	10	10
OX, CHL, ERY, TMP	0	1	_	1	-	1	-	1 (1)	1	_	_	1	1 (1)	-	1	_	_	1
CHL, ERY, TMP	0	11	-	11	11	-	11 (3)	11	11	_	11	11	11 (3)	11	-	11	11	11
CHL, TMP	0	6	-	6	-	-	-	+	_	_	6	6	6 (2)	-	6	-	6	6
OX, CHL, TET, ERY, TMP	3	0	3	3	3	3	3(1)	3	3	3	3	3	3 (1)	-	-	_	3	3
OX, CHL, GEN, ERY, TMP	11	0	11	11	11	11	11 (5)	11	11	-	11	11	11 (2)	11	11	-	11	11
OX, CHL, TET, GEN, ERY, TMP	5	0	5	5 (1)	5	5	-	5	5	5	5	5	5 (1)	5	-	5	5	5
ERY, CL, TMP	0	1	-	-	1	1	1	1	-	-	-	-	-	-	-	-	1	-
CHL, ERY, CL, TMP	0	2	-	2	2	-	-	2(1)	2(1)	-	-	2	2 (1)	2	-	2	2	2
CHL, ERY, CL	0	13	-	13	13	13	13(9)	13	13(1)	13	13	13	13 (3)	13	-	13	13	13
CHL	0	3	_	-	-	3	-	3	-	3	3	3	3 (1)	3	-	3	3	3
CHL, TET, GEN, ERY, CL , TMP	0	З	-	-	3	3	-	3	-(2)	3	-	33		3	-	3	3	3
CHL, TET, GEN, TMP	0	1	-	1	1	-	-	1	-	1	-	-	1 (1)	-	-	-	-	-
CHL, GEN, ERY, CL, TMP	0	2	-	2 (1)	2	-	-	2(2)	2(2)	2	2	2	2	2	-	_	2	2
CHL, GEN, ERY, CL , TMP	0	7	-	7 (2)	7	7(3)	-	-	-(3)	7	7	7	7	7	7	7	7	7
CHL, TET, GEN, ERY, CL, TMP	0	1	-	-	1	-	-	-	1(1)	1	-	-	1	1(1)	-	1	1	1
CHL, GEN, ERY	0	З	-	3	3	3 (1)	-	3 (1)	-	_	3	3	3	3	-	3	3	3
CHL, TET, GEN, ERY	0	З	-	3 (2)	3	3	-	3(1)	-	3	3	3	3 (1)	3	-	3	3	3
GEN, ERY, CL, TMP	0	1	-	1 (1)	1	-	-	1	1	1	-	1	1	1	-	1	1	1
GEN, ERY	0	2	-	-	2(1)	2	-	2(1)	-	-	2	2	2	2	-	2	2	2
ERY	0	4	-	4	4	4	-	4(2)	-	4	-	4	4	4	-	4	4	4
ERY, TMP	0	З	-	3	3	3	-	3(3)	-	-	З	3	3	3	-	3	3	3
OX, CHL, GEN, ERY	1	0	1	-	1	-	-	- (1)	-	1	-	1	1	1	-	1	1	1
CHL, TET, ERY , TMP	0	2	-	2	2	-	-	2 (1)	-	2	2	2	2 (1)	2	-	2	2	2
CHL, ERY, CL	0	1	-	-	1	1	-	1(1)	1	-	1	1	1	1	-	1	1	1
GEN, ERY, TMP, CHL	0	1	-	1	1	1	-	1	-	-	-	1	1 (1)	-	-	-	1	1
CHL, CL, TMP	0	2	-	2	2	2	-	2	2	-	2	2	2	2	2	-	2	2
TET, TMP	0	1	-	1	1	1	-	1	-	1	1	1	1	1	-	-	11	
ERY, CL, CHL	0	1	-	1	1	1	-	1	1(1)	1	1	1	1 (1)	1	-	1	1	1
TET, GEN, CL , ERY	0	2	-	-	2	2	-	2	-(1)	-	-	2	2	2	-	2	2	2
OX, CHL, ERY, CL , TMP	1	0	1	1	1	1	-	1	—(1)	1	1	1	1	1	-	-	1	1
CHL, TET, GEN	0	1	-	1	1	-	-	-	-	-	1 (1)	1	1	1	-	-	1	1

MRSA: methicillin-resistant Staphylococcus aureus; MSSA: methicillin-susceptible Staphylococcus aureus, OX: oxacillin, GEN: gentamicin, ERY: erythromycin, TET: tetracycline; CL: clindamycin; CHL: chloramphenicol; TMP: trimethoprim. Isolates showing phenotypic resistance to given antibiotic(s) are shown in bold. Number in brackets indicate phenotypic sensitive isolates.

6

Erythromycin resistance and MSB phenotypes	Phenotype (%)	Gene combinations										
		msrA	ermA	ermC	mphC	msrA, ermC	ermA, ermC	ermC, mphC	msrA, ermA, ermC	msrA, ermC, mphC	msrA, ermA, ermC, mphC	
MRSA (n=32)												
ER-S, CL-S	10 (31.25%)	0	0	0	0	3 (30%)	0	1 (10%)	1 (10%)	3 (30%)	1 (10%)	
ER-R, CL-S (MSB phenotype)	2 (6.25%)	0	0	0	0	1 (50%)	0	0	0	1 (50%)	0	
ER-R, CL-R (cMLSB phenotype)	6 (18.75%)	0	0	1 (16.6 %)	0	0	3 (50%)	1 (16.6%)	0	1 (16.6%)	0	
ER-R, CL-D (iMLSB phenotype)	10 (31.25%)	0	0	6 (60%)	0	0	1 (10%)	0	1 (10%)	1 (10%)	0	
MSSA (n=77)												
ER-S, CL-S	52 (67.5%)	3 (5.7%)	1 (1.9%)	16 (30.7 %)	1 (1.9%)	20 (38.4%)	0	4 (7.6%)	0	4 (7.6%)	0	
ER-R, CL-S (MSB phenotype)	12 (15.5%)	0	1 (8.3%)	1 (8.3%)	2 (16.6 %)	6 (50%)	0	0	0	0	0	
ER-R, CL-R (cMLSB phenotype)	1 (1.29%)	0	0	0	0	0	0	0	1 (100%)	0	0	
ER-R, CL-D (iMLSB	4 (5.19%)	0	0	1 (25%)	0	3 (75%)	0	0	0	0	0	

TABLE 2 | Result of D-test obtained with MRSA and MSSA isolates showing presence of erythromycin resistance genes and its correlation with MLSB phenotypes among Staphylococcus aureus.

S: sensitive; R: resistance; ER: erythromycin; CL: clindamycin.

phenotype)

TABLE 3 | Distribution of SCCmec types among S. aureus strains isolated from wound and ocular infection.

			•				
SCCmec type	Recombinase complex	mecA complex		Source of infectio	Total no. of isolates ($n = 10$		
			Wound (n = 34)	Ocular (<i>n</i> = 69)	Unknown (n = 6)		
	ccrC1, ccrAB3	Class A	2	0	0	2 (1.8%)	
IV	ccrAB2	Class B	7	0	0	7 (6.4%)	
V	ccrC1	Class C2	5	4	4	13 (11.9%)	
UT6	ccrC1	Class A	5	3	1	9 (8.2%)	
Untypable-1	ccrC1	-	1	0	0	1 (0.91%)	
Untypable-2	ccrAB4	-	0	1	0	1 (0.91%)	
Untypable-3	ccrAB1	-	0	14	0	14 (12.8%)	
Untypable-4	ccrAB2	-	0	1	0	1 (0.91%)	
Untypable-5	ccrAB3	-	0	1	0	1 (0.91%)	

Distribution of SCCmec types among S. aureus strains isolated from wound and ocular infection

of the two MRSA isolates showing MSB phenotype had *msrA*, *ermC* genes and other strain had *msrA*, *ermC*, and *mphC* genes (**Table 2**). Of the 12 MSSA, six isolates contained *msrA* and *ermC* genes, one isolate each contained *ermC* and *ermA* genes, respectively, two strains had *mphC* gene. The remaining isolates did not carry any of the genes tested. Of the 10 MRSA, six isolates with iMLSB phenotype had *ermC* gene. One isolate each carried *msrA*, *ermA*, and *ermC* genes, *ermA*, *ermC* genes, *msrA*, *ermC*, and *mphC* genes, respectively. The remaining one isolate did not possess any of the resistance genes. Of the four MSSA isolates that showed iMLSB phenotype, three strains were positive for *msrA*, *ermC* genes, and one isolate was positive for *ermC* gene (**Table 2**).

Of the 109 S. aureus isolates tested for the presence of MLSB resistance genes, 102 isolates carried one or more erm genes. Three strains carried all the erythromycin resistance genes, namely, msrA, ermA, and ermC. Fifty-one isolates were positive for two genes, of which 46 isolates carried *msrA* and *ermC* genes, and five had ermA and ermC genes. Besides, 37 isolates were positive for a single gene of which 34 isolates carried the ermC gene, two isolates had ermA gene, and three isolates had the msrA gene (Table 2). In contrast, four of the 13 erythromycinsensitive isolates carried msrA and ermC genes. One strain each had the ermC gene and msrA gene. The remaining isolates did not carry any resistance genes. Twelve of the 21 mphC genepositive isolates showed phenotypic resistant to clindamycin. The remaining nine isolates were sensitive to clindamycin (Table 2). Eight erythromycin-resistant strains did not carry any of the erythromycin-resistant genes is likely to be mediated by an asyet-unknown mechanism.

SCCmec Typing

The presence of the *mec* complex and *ccr* complex classified *S. aureus* strains into different SCC*mec* types. Thirty-one MRSA isolates showed four known SCC*mec* types of which 13 (40.6%) belong to type V, nine (28.1) belong to type UT6, seven (21.9%) belong to type IV, and two (6.3%) belong to type III (**Table 3**). One isolate showing phenotypic resistance to methicillin but negative for *mecA* gene carried C1 type of *ccr* complex but lack *mec* complex. Of the 32 methicillin-sensitive isolates lacking the *mec* complex, 14 isolates carried *ccrA1B1*, one strain possesses

ccrA4B4, and 17 isolates had *ccrA3B3* and *ccrA4B4* type of *ccr* complex, respectively (**Table 3**).

Toxin Gene Profiles

Of the 109 isolates, 34 (31.2%) isolates harbored *sea* gene, 14 (12.8%) isolates *sec* gene, 93 (85.3%) isolates *sei* gene, 76 (69.7%) *cna* gene, 101 (92.6%) isolates *hla* gene, 107 (98%) isolates *hlg* gene, and 84 (77%) isolates carried *efb* gene, respectively. All the isolates, except one isolate, was positive for the *hlg*, and carried multiple virulence genes (**Table 4**).

Ninety-one isolates comprising 26 MRSA and 65 MSSA were positive for both *icaA* and *icaD* genes, but five strains containing three MRSA and two MSSA were negative for both *icaA* and *icaD* genes. Two of the three MRSA isolates were positive for *icaA* gene, and another strain was positive for *icaD* gene. Similarly, nine of the 10 MSSA isolates were positive for *icaD* gene and one isolate for *icaA* gene, respectively (**Table 4**).

Also, a total of 25 toxin genes combinations was obtained with 109 strains belonging to 77 PFGE patterns, 32 sequence types (STs), 46 *spa*-types, and five *agr*-types. Twenty-three isolates belonging to five MRSA and 18 MSSA showed a toxin pattern comprising *sei-cna-hla-hlg-efb* genes. On the other hand, five MRSA and two MSSA showed another virulence pattern composed of *sea-sec-sei-cna-hla-hlg-efb* genes. The remaining isolates showed 23 different virulence gene patterns (**Table 4**).

Agr-Typing

Of 109 S. *aureus* strains, 40 (36.7%) isolates belong to *agr*-I, 31 (28.4%) isolates to *agr*-III, 18 (16.5%) to *agr*-II, and seven (6.4%) belong to *agr*-IV; however, 13 (11.9%) isolates were not typeable by the method employed (**Table 4**). Of the 32 MRSA isolates, 20 (62.5%) belong to *agr*-I, five (15.6%) to *agr*-II, three (9.4%) to *agr*-III, and remaining isolates were untypeable. On the other hand, 28 of 77 (36.4%) MSSA isolates belong to *agr*-III, 20 (25.9%) to *agr*-I, 13 (16.9%) to *agr*-II, seven (9%) to *agr*-IV, and nine (11.7%) isolates were untypeable. There was a good correlation between virulence patterns and specific molecular types (**Table 4**). The *sea-sei-cna-hla-hlg-efb* was the dominant virulence pattern shown by MRSA belonged to SCC*mec* type UT6, and *agr* type I, followed by *sei-hla-hlg-efb* and *sei-cna-hla-hlg-efb* pattern showed

TABLE 4 | Source, clonal complex, sequence-, spa-, SSCmec-, and agr-types and virulence profiles of S. aureus isolated from different parts of India.

Source (isolate number)	CC/ST, spa-type	SCCmec type	<i>agr</i> type	<i>pvl</i> gene	icaA/icaD	Serotypes	Virulence pattern
MRSA (n = 32)							
Wound infection (2095)	239/239, t037	111	1	_	+ /+		sei-cna-hla-hlg-efb
Wound infection (2103)					+ /+	IV	sea-sei-cna-hla-hlg-efb
Wound infection (2656)	239/239,t037	UT6	1	_	+ /+	IV	sea-sei-cna-hla-hlg-efb
Wound infection (22/248)					+/+	Ш	sea-cna-hla
Wound infection (UC650)					+/+	IV	sea-cna-hla-hlg-efb
Wound infection (UC858)					_/_	V	sea-hla-hlq-efb
Wound infection (UC1079)	239/239.t2952	UT6	1	_	+ /+	1	sea-sei-cna-hla-hla-efb
Wound infection (2658)	239/241.t037	UT6	1	_	+/+	IV	sei-cna-hla-efb
Eye infection (P844628, N307002)	239/239, t037	UT6	1	_	+/+	IV	sei-cna-hla-hlq
					±		0
Eye infection (P853836)	239/239, t037	UT6	1	_	±	V	sea-cna-hla-hlg-efb
Wound infection (2380,2452)	772/772, t657	V	None	+	+/+	VI	sea-sec-sei-cna-hla-hlg-efb
					+/+		
Wound infection (UC609)	772/772, t657	V	2	+	+/+	VI	sea-sec-sei-cna-hla-hlg-efb
Wound infection (22/252)	772/Unk, t657	V	None	+	_/_	VI	sea-sec-sei-cna-hla-hlg-efb
Eye infection (845)	772/772, t345	V	3	+	_/+	I	sea-sec-sei-cna-hla-hlg-efb
Eye infection (1295)	2884/88, t2526	V	2	+	+/+	Ш	sei-hla-hlq-efb
Eve infection (1690)	5/5. t442	V	1	_	+ /+	IV	sei-hla-hla-efb
Eve infection (1820)	772/772, t657	V	1	+	+/+	VII	sea-sec-sei-cna-hla-hla-efb
Unknown (1189)	772/772, t657	V	2	+	+/+	VI	sec-sei-cna-hla-hla-efb
Unknown (1192 1249)	772/772 t345	V	2	+	+/+	VII	sea-sei-cna-hla-hla-efb
0	112,112,1010		-		+ /+	VI	sec-sei-cna-hla-hla-efb
Linknown (2654)	772/772 t345	V	1	+	+/+	VI	sea-sei-cna-hla-hla-efb
Wound infection (284)	Singleton 4/2642 ±064	v	1	_	+ /+	IV/	hla-hla-efh
Wound infection (221)	30/30 ±012	IV.	3	т.	1 / I I / I	VI	sei-cna-hla-hla-efb
Wound infection (27/231)	30/503 t012	IV.	3	, T	1/1		sei-cna-hla-hla
Wound infection (296)	22/22 1005	IV.	1	, T	1/1	1	ser-sei-cna-hla-hla
Wound infection (203)	22/22, 1000	IV.	1	-	1/1	1	sei-cna-bla-bla
Wound infection (LC104)	22/1414, 11020	IV IV	1	т 	+/+		sei-cna-hla-hla-afb
Wound infection (UC101)	22/22, UNK	ĨV	I	т	+/+	П	361-011a-111a-111g-610
Would infection (UC463)	22/22,1091	11/	1		τ/τ /	ш	soc soi ona bla bla ofb
Wound infection (2518)*	101/100 +070	ĨV	NT	+	_/_	111	sec-sei-cria-rila-rilg-elb
MSSA (n - 77)	121/120, 1272			Ŧ	+/+	VI	Sea-Sei-Ci ia-i iia-i iig-eib
Wound infaction (2120)	770/770 +245		0		1/1	1/1	soc one ble ble ofb
Wound infection (2150)	770/770 +1000	117*	2 None	+	+/+	VI	
Wound Infection (2164)	770/1 +200	U	None	+	+/+	VI	sea-sec-sei-cha-nia-nig-eib
Vound Infection (2493)	772/1, 1386		4	+	+/+	VI	sei-cha-nia-nig-erb
Eye infection (N309852)	772/1, 1098	1.17*	3	-	+/+	VII	sea-cria-riia-riig
Eye Infection (518)	772/1, 1693	UT*	3	-	+/+	VII	sea-sei-cna-nia-nig-etb
Eye infection (535,1636)	//2/1, t12/	01*	3	-	+/+	VII	sea-sei-cna-nig-etb
	770/4 1407	1.177	0		+/+	V	
Eye Infection (831)	772/1, t127	UI*	3	-	+/+		sea-sei-cna-nia-nig-etb
Eye infection (1361)	772/1, t128	UI*	3	-	+/+	VII	sea-sec-sei-hla-hlg-efb
Eye infection (1321)	//2/1, t1//	UI*	3	-	+ /+	VII	sea-sei-cna-hla-hlg-efb
Eye infection (1476)	//2/1, t12/		3	-	+/+	VIII	sea-sei-cna-hla-hlg-efb
Eye infection (1881)					+/+	l	
Eye infection (1503)	772/1, t127		3	-	+/+	VI	sei-cna-hla-hlg-efb
Eye infection (975)	772/1, t8078		3	-	+ /+	VI	sei-hla-hlg-efb
Eye infection (1214)	772/772, t657		3	+	+/+	VI	sea-sec-sei-cna-hla-hlg
Healthy conjunctiva (N11OD)	772/1, t948	UT*	None	-	+ /+	I	sea-sei-cna-hla-hlg-efb
Healthy conjunctiva (N12OD)	772/1, t948		3	-	+ /+	IV	sea-cna-hla-hlg-efb
Wound infection (2151)	30/714, t021		3	+	+/+	VI	sei-cna-hla-hlg-efb
Wound infection (2413)	30/1482, t386		3	+	+/+	IV	sei-cna-hla-hlg-efb

(Continued)

TABLE 4 | Continued

Source (isolate number)	CC/ST, spa-type	SCCmec type	<i>agr</i> type	<i>pvl</i> gene	icaA/icaD	Serotypes	Virulence pattern
Eye infection (1196)	30/938, t021		3	+	+/+	IV	sei-cna-hla-hlg-efb
Eye infection (1850)					+/+	V	
Wound infection (2488)	121/121, t159		4	-	+ /+	Ш	sei-cna-hla-hlg-efb
Eye infection (P832812)	121/121, t3204		4	+	+/+	V	cna-hla-hlg
Eye infection (P706434)	121/1964, t272		4	-	+ /+	V	sei-cna-hla-hlg
Eye infection (917)	121/2160, t159		4	+	+/+	V	cna-hla-hlg-efb
Unknown (2657)	2884/2884, t4104		3	+	+/+		hla-hlg-efb
Eye infection (149)	2884/88, t5562		3	+	_/+	VI	sei-hla-hlg-efb
Eye infection (1764Y)	2884/88, t448		3	+	+/+	VIII	sea-sei-hla-hlg-efb
Eye infection (504, 1035, 1271)	5/5, t442		2	-	+ /+	Ш	sei-cna-hla-hlg-efb
					+ /+		sei-hla-hlg-efb
					+ /+		sei-hlg
Eye infection (N303284)			None	_	+ /+	I	sei-cna-hla-hlg
Eye infection (843)			2	-	+ /+	VIII	sei-hlg-efb
Eye infection (1042)			2	_	+ /+	VII	sei-hla-hlg-efb
Eye infection (1766, 1862)			1	-	+ /+	VIII	sei-hla-hlg
					+/+		sei-hla-hlg-efb
Eye infection (1867)			1	_	+ /+	VII	sei-hla-hlg-efb
Eve infection (1103)	5/5, t14912		2	_	+ /+	V	sei-hla-hlg-efb
Eve infection (1306)	5/83, t442		2	_	+/+	Ш	sei-hla-hlg-efb
Eve infection (1424)	5/5, 8179		2	_	-/ +	VI	sei-hla-hlg-efb
Healthy conjunctiva (N9OD)	5/5. t010		2	_	+ /+	VII	sei-hla-hla-efb
Wound infection (17/201)	813/813, 110579		1	_	+ /+	VII	sei-cna-hla-hla
Wound infection (262)	813/291, †1149		1	_	+ /+	VII	hla
Eve infection (186)	22/22. t310		1	+	+/+		sei-cna-hla-hla-efb
Healthy conjunctiva (N61OD)	22/22 t948	UT*	1	+	+/+	VII	sea-sei-hla-hla-efb
Eve infection (481)	Singleton 1/580 t14911	0.	None	_	_/ +	V	sei-cna-hla-hla-efb
Eve infection (N297214)	Singleton 2/45_t302		1	_	+ /+	VII	cna-hla-hla
Wound infection (2417)	Singleton 3/Link t021		None	_	_/_	VI	sei-hla-hla-efh
Eve infection (1525 1545)	Singleton 5/72 t148		1	_	, _/+	VI	sei-hla-hla
2,0 111001011 (1020, 1010)	01191010110712, 1110		None	_	_/ +	V	sei-cna-hla-hla-efh
Wound infection (1/229, 861)	Singleton 6/789 t091		1	_	_/_	ů.	sei-cna-hla-hla
would inicotion (1/220, 001)	Gingleton 0/700, 1001		None	_	, /_		sei-cna-hla-hla-efh
Wound infection (379)	Singleton 6/789 t2505		None	_	1 / 1 1 / 1		sei-cna-hla-hla-efh
Eve infection (1603)	Singleton 6/789 t091		1	_	1 / 1 1 / 1	V	sei-hla-hla-efh
Eve infection (1990)	Singleton 7/6, t657		1	_	T/T	v III	soi ona bla bla ofb
Eve infection (1428)	Singleton $7/6$, $t/285$		1	-	+/+		ser-cria-rila-rily-elb
Eve infection (1608)	Singleton 7/6, t12406		1	-	-/+		sea-sei-cha-nia-nig-eib
Healthy appingative (NG1OS)	Singleton 9/15, t094		1	-	+/+	VIII N/	sea-sei-cha-ma-mg-eib
Wound infection (2509)	Singleton $0/2895$, ± 15570		2	-	+/+	17	sei-ma-ein
Wound infection (2506)	Singleton 10/670 +2941		4	+	+/+	1	sei-cha-nia-nig-eib
Evaluation (N250615, N280278, 1040	Singleton 10/672, t3641		- 1	-	±	1	sei-ma-mg-eib
1506)	Singleton 10/672, t3641		I	-	+/+	I	ser-cha-nia-nig
			None	-	+ /+	I	cna-hla-hlg
			1	-	+ /+	VII	sei-hla-hlg-efb
			1	-	+ /+	VIII	sei-hla-hlg-efb
Eye infection (188, 1164, 1355, 1670)	Singleton 10/672, t1309		I	-	+ /+	I	sei-hla-hlg-efb
			I	-	_/ +	Ш	sei-hla-hlg-efb
			I	-	+ /+	I	sei-cna-hla-hlg-efb
			1	-	+ /+	VIII	sei-cna-hla-hlg
Eye infection (884,1333)	Singleton 11/2233, t2663		3	+	+ /+	VII	sei-cna-hlg-efb
					+/+		
Eye infection (1716OD, 1758)			3	+	+ /+	IV	sei-cna-hla-hlg
					+/+		

(Continued)

TABLE 4 | Continued

Source (isolate number)	CC/ST, spa-type	SCCmec type	<i>agr</i> type	<i>pvl</i> gene	icaA/icaD	Serotypes	Virulence pattern
Eye infection (1716OS, 1769)			3	+	_/+	VIII	sei-cna-hla-hlg
			4		+/+		
Eye infection (915, 1366, 1729)			3	+	+/+	VII	sei-cna-hla-hlg-efb
		UT*	3	+	_/+	VII	sei-hla-hlg
			3	_	+ /+	VIII	sea-sei-cna-hla-hlg-efb

MRSA: methicillin-resistant Staphylococcus aureus; MSSA: methicillin-sensitive Staphylococcus aureus; CC: clonal complex; ST: sequence type; SSC: Staphylococcal cassette chromosome; agr: accessory gene regulator; Unk: unknown; UT: untypeable; NT: non-typeable; *Isolates with ccrAIB1 complex but lack mec complex; pvl: Panton-valentine leucocidin; icaA: intracellular adhesion gene A; icaD: intracellular adhesion gene D; sea: staphylococcal enterotoxin A; sec: staphylococcal enterotoxin C; sei: staphylococcal enterotoxin I; cna: collagen adhesion; hlyA: hemolysin A; hlyG: hemolysin G; efb: extracellular fibronectin binding protein.

by MSSA isolates belonged to *agr* type I and III, respectively (**Supplementary Table S1**).

Spa-Typing

Analysis of the aligned sequence of the polymorphic X region of *spa* gene using the *spa*-typing plug-in tool of Bionumerics 7 software showed 46 *spa*-types (**Figure 1**). MST analysis classified the strains into six major clusters, seven minor clusters, and 30 singletons. We designated cluster as a minor cluster that contained less than five but more than two strains. Of the 109 *S. aureus* isolates, 11 (10%) isolates belong to *spa*-type t442, 10 (9%) to t037, nine (8.2%) to t2663, eight (7.3%) to t657, six (5.5%) to t127, five (4.5%) isolates each to t345 and t3841, and four isolates each belong to t021, t091, and t1309. In addition, four (3.6%) isolates belong to t1309, three (2.7%) isolates belong to t948, and two (1.8%) each belong to t148, t386, t012, t159, and

t272, respectively. Moreover, one isolate each of 30 strains belong to single *spa*-types, namely, t15579, t8179, t14912, t010, t852, t005, t310, t309, t1328, t302, t1149, t10579, t007, t14911, t2952, t693, t2526, t8078, t5562, t448, t4104, t177, t098, t084, t2505, t3204, t1839, t064, t12406, and t4285 (**Figure 1**). Whereas 10 of 32 (31.2%) MRSA isolates belong to t037, 11 of 77 (14.3%) MSSA isolates belong to t442. *S. aureus* strain ATCC 25923 showed *spa*-type t948 along with three test isolates. We found two novel *spa*-types, namely, t14911 and t14912 among *S. aureus* strains after submission of nucleotide sequences to the Ridom *spa* server. *Spa*-type t14912 showed a close association with major *spa*-type t442, but 14911 *spa*-type was diverse and unrelated. One of the isolates was not assigned any *spa*-type (**Figure 1**).

Multi-Locus Sequence Typing (MLST)

Multi-locus sequence typing of 109 S. aureus isolates showed 32 STs, eight CCs, and 12 singletons (Figure 2). The major ST comprised of ST1 (12.8%), ST5 (11.9%), ST772 (11%) followed by ST239 (9.2%), ST672 (8.3%), and ST2233 (8.3%). Also, we found two new allelic profiles designated as unknown not reported earlier among S. aureus strains (Supplementary Table S2). Of the eight CCs, CC5 contained 14 isolates, CC22 had eight isolates, CC30 had six isolates, CC121 had five isolates, CC239 had 11 isolates, CC772 had 26 isolates, CC813 had two isolates, and CC2884 contained four isolates, respectively. Of the major CCs, CC30 contained five STs, namely, ST30, ST503, ST714, ST938, and ST1482, CC121 contained four STs, namely, ST120, ST121, ST1964, ST2160, and CC772 had three STs, namely, ST772, ST1, and new unknown ST (Figure 2). Seven of the 32 (21.8%) of MRSA strains belong to ST239, spa-type t037, and SCCmec type UT6. However, 14 (18.2%) of MSSA strains possessing ST1

belong to different *spa*-types, namely, 1127, t948, t177, t693, t098, and t386, of which few strains carry *ccr* complex but devoid of *mec* complex (**Table 4**). However, few isolates from eye infection and wound infection belong to CC239, ST239, and *spa*-type t037/t657. Reference strain of *S. aureus* ATCC25923 belonged to ST30 and CC30.

Pulsed-Field Gel Electrophoresis

SmaI-digested genomic DNA of S. aureus yielded bands classifying the 109 strains into 77 pulsotypes that includes two identical pairs (12 and 19A), three major clusters (1, 3, and 19), 17 minor clusters (14, 15, 17, 19, 20, 22, 24, 25, 28, 32, 57, 58, 63, 67, 69, 71, and 73), and 56 singletons. Four isolates were untypeable by the method employed. We found a total of 24 PFGE patterns among 32 MRSA isolates, of which one isolate was untypeable. Similarly, 77 MSSA isolates showed 53 PFGE patterns, of which three MSSA isolates were untypeable (Figure 3). MSSA isolates belonging to the major pulsotype 19 contained seven subtypes 19A, 19B, 19C, 19D, 19E, 19F, and 19G. These isolates were mostly from ocular infection and belong to ST1, agr type III, except one subtype 19G which belongs to ST6 and agr type I. S. aureus strain ATCC 25923 showed pulsotype 14. A dendrogram was generated using Bionumerics 7 software and percentage similarity with a cut-off of 80% and dice coefficients.

Statistical Analysis

Principal coordinates analysis segregates MRSA and MSSA isolates, except for few isolates with 25.75% of explained variance for antibiotic resistance genes (**Figure 4A**) and 26% for virulence genes (**Figure 5A**). We used axis one for the highest percentage

of representation. DA graph showed that MRSA isolates grouped within more positive values, whereas MSSA isolates grouped within negative values for both antibiotic resistance genes and virulence genes (Figures 4B, 5B). Predominant biomarkers were determined by calculating the coefficient of discriminant function and considered when the value was equal to 0.5 or >0.5. For antibiotic resistance genes, MRSA isolates are discriminating in the biomarker of resistance to ermA (0.8407), mphC (2.0167), tetK (2.3495), tetL (2.0604), and dfrA (1.3116), whereas the MSSA isolates were discriminating in resistance to *aac(6')/aph(2)* (-0.351), aph3 (-2.7179), ermC (-0.8473), tetM (-0.522), *cat:pC221* (-2.421), *cat:pC223* (-6.601), *dfrB* (-0.443), and *dfrG* (-0.603). For virulence genes, MRSA isolates are discriminating in the biomarker of resistance to icaA (0.67169), seA (0.68593), seC (2.3245), cnA (0.90744), and hlA (0.54797). On the other hand, MSSA isolates were discriminating in resistance to icaD (-2.1945), seI (-0.58795), and hlG (-1.4999). PCoA and discriminant function of antibiotic resistance and virulence genes of S. aureus isolates with source and place of isolation was heterologous and complex (data not shown).

DISCUSSION

We used hexaplex PCR for detection of MRSA and MSSA isolates along with the presence of mecA, pvl, czrC, and gacA/B genes. We found a good correlation between oxacillin resistance and the presence of the mecA gene. However, one isolate showing resistance to oxacillin and lack mecA gene indicate the occurrence of different mechanism of methicillin resistance. Twenty of 31 MRSA and 23 of 77 MSSA isolates were positive for *pvl* gene indicating the prevalence of *pvl* gene among MRSA strains from the wound and eve infections. This finding is in contrast to those who did not find such correlation among clinical isolates (Shittu et al., 2011); therefore, it cannot be used as a reliable marker for MRSA. The presence of *czrC* and *qacA/B* genes among the number of MRSA isolates indicates their possible association with the mecA gene; however, further investigation is required to authenticate these findings.

Coagulase gene typing has been used to characterize *S. aureus* strains. Hwang and Kim (2007) showed the presence of coagulase

timization:-0.5% Tolerance:-1.5%	Strain	Source of Isolation Yes	ar of isolation	Serotype ag	g <i>r</i> type	Pulsotype	SCCmec	ST	<i>spa</i> type
pfge	2656	Pus	2013	IV	1	1A	UT6	239	t037
	2657	Unknown	2013	111	111	1B	None	2884	t4104
	2654	Unknown	2013	\vee I	1	1C	\sim	772	t345
	1249	Unknown	2013	\vee I		2	\sim	772	t345
	2653	Pus	2013	1		3	None	672	t3841
	2103	Pus (nasal swab)	2013	IV	1	4	111	239	t037
	2452	Pus	2013	\sim I	UT	5	\sim	772	t657
	2658	Unkown	2013	12		6	UTB	241	t037
	2130	Pus	2013	VI.		,	None	772	1345
	2380 ATCC4330	Pus O Clinical Isolate	2013	ND	ND	9	~	39	1007
A NEW PROPERTY	2518	Pus	2013	VI	UT	10	V	120	t272
	2508	Pus	2013		IV.	11	None	2885	t1557
	1271	Scleral buckle explant	2009			12	None	5	t442
	1306	Corneal Scraping	2009			12	None	83	t442
	1424	Infected suture material	2009	\vee I		13	None	5	t8179
	ATCC252	93 Clinical Isolate	NK	ND	ND	14A		243	t021
	1042	Corneal Scraping	2009	\vee II		14B	None	5	t442
	504	Corneal Scraping	2008			15A	None	5	t442
	843	Corneal Scraping	2008	VIII	11	15B	None	5	t442
	1035	Corneal Scraping	2009			16	None	5	t442
	975	Corneal Scraping	2009	\vee I		17A	None	1	t8078
	1079	Pus	2015	1	1	17B	UTB	239	t2952
	650	Pus	2015	10	1	18	UTB	239	t037
	1321	Swab from Infected Sock	et 2009	VII		19A	07	1	t177
	1361	Corneal Scraping	2009			194	Nese	1	+127
	1476	Corneal Scraping	2010			198	None	1	+127
	1636	Corneal Scraping	2010	V		190	UT	1	+127
	518	Conjuctival Discharge	2008	×11		190	UT	1	t693
	535	Corneal Scraping	2008	\vee II		19E	UT	1	t127
	831	Pus from Canalicular abs	cess 2008		111	19F	UT	1	t127
	1698	Suture	2010	\vee III	1	19G	None	6	t12406
	2095	Pus	2013		1	20A	111	239	t037
	2488	Pus	2013		IV	20B	None	121	t159
	P706434	Corneal Scraping	2015	\sim	IV	21	None	1964	t272
	188	Corneal Scraping and sut	ure 2007	1	1	22A	None	672	t1309
	1049	Vitreous biopsy	2009	VII	1	22B	None	672	t3841
	1506	Canalicular express	2010	VIII		23	None	672	t3841
	1355	Conjuctival Discharge	2009	1		24A	None	872	t1309
	1670	Conformer from infected :	30. 2010	VIII	1	248	None	799	11309
	1164	Conjuctival swab	2010	ň	1	240	None	672	t1309
	1/229	Pus	NK		i.	25B	None	789	t091
	N259615	Corneal Scraping	2015		i.	26	None	672	t3841
	N303284	Pus from lid abscess	2015		UΤ	27	None	5	t442
	2493	Pus	2013	\sim	IV	28A	None	1	t386
	1192	Unknown	2013	\sim II		28B	\sim	772	t345
	1850	Eviscerated contents	2010	\sim	111	29	None	30	t021
	1320	Corneal Scraping	2009		1	30	None	6	t657
	1690	Corneal Scraping	2010	IV	1	31	None	5	t442
	1366	Pus from abscess	2009	\sim II		32A	UT	2233	t2663
	1758	Corneal Scraping	2010	IV	111	32B	None	2233	t2663
	1881	Vitreous biopsy	2010	1		33	None	1	t127
	293	Pus	2014	1	1	34	IV	1414	t1328
	P844628	Pus from orbital cellulitis	2015	12	1	35	UTB	239	t037
	296	Pus	2016	1	1	36	1	22	1005
	1867	Eyelid mass contents	2010		1	37	None	012	t442
	17/201	- 45	ININ	VII		30	None	013	11037

$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		6 F	Pus	2015	1		36		22	t005
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		67 E	=yelid mass contents	2010			37	None	5	1442
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	17/	/201 P	Pus	NK	VII		38	None	813	t10579
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ne	10D F	Healthy Conjuctiva	2009	VII		39	UT	22	t984
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	N28	97214 0	Sorneal Scraping	2015	VII		40	None	45	1302
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	172	29 0	Corneal Scraping	2010	VIII		41	None	2233	t2663
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		69 L	Jveal contents	2010	VIII		42	None	2233	t2663
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		1605 5	Swab from lid margin	2010	VIII		43A	None	2233	t2663
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		160D 0	Corneal Scraping	2010	IV		43B	None	2233	t2663
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		33 F	Pus from scleral abscess	2009	VII		43C	None	2233	t2663
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	884	4 0	Corneal Scraping	2008	VII		44	None	2233	t2663
$\left \begin{array}{ $	845	5 0	Corneal Scraping	2008	1		45	\vee	772	t345
$\left \begin{array}{ $		9 L	id abscess drained	2007	VI		46	None	88	t5562
$\left \left \left$	176	64Y 0	Corneal Scraping	2010	VIII		47	None	88	t448
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	858	8 F	Pus	2015	V	1	48	UT6	239	t037
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	210	64 F	Pus	2013	VI	UT	49	None	772	t1839
$\left \begin{array}{ $	284	4 F	Pus	2014	IV	1	50	\vee	2642	t064
$\left(\begin{array}{c} 4 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$		89 L	Jnknown	2013	VI	11	51	\vee	772	t657
$\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\left(\left(\begin{array}{c} \left($	481	1 0	Corneal Scraping	2008	V	UT	52	None	580	t14911
$\left \begin{array}{ $	N30	07002 0	Corneal Scraping	2015	IV	1	53	UTB	239	t037
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	P86	53836 F	Pus from burn injury of lid	2015	V	1	54	UTB	239	t037
$\left \left \left$	916	5 0	Corneal Scraping	2009	VII	111	55	None	2233	t2663
$\left \left \left$	221	1 F	Pus	NK	VI	111	56	IV	30	t012
$\left \left \left$	152	25 5	Suture	2010	VI	1	57A	None	72	t148
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	154	45 0	Corneal Scraping	2010	V	UT	57B	None	72	t148
$\left \begin{array}{ $		4 F	Pus	2015	п	1	58A	IV	22	t852
$ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		1 F	Pus	2015	11	1	58B	IV	22	t091
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	483	3 F	Pus	2015	111	1	59	IV	22	t309
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	917	7 ⊦	Half corneal button	2009	V	IV	60	None	2160	t159
198 Corneal Scraping 2009 IV III 62 None 938 1021 1100 Healthy Conjuctiva 2009 IV III 62 None 1 1948 1100 Healthy Conjuctiva 2009 IV III 63 None 1 1948 1100 Healthy Conjuctiva 2009 IV III 64 None 5 1010 1103 Orbital tissue 2009 VI II 64 None 5 11912 1103 Orbital tissue 2009 VI II 64 None 72 1657 009 Pus 2015 VI II 68 None 712 1657 1103 Orbital tissue 2013 VI III 69 None 712 1657 1214 Corneal Scraping 2013 VI III 69 None 712 1365 1214 Pus 2015 III III 07 None 712 1365 121	186	6 F	Pus from lid abscess	2007	11	1	61	None	22	t310
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	1115	96 0	Corneal Scraping	2009	IV	111	62	None	938	t021
N1200 Healthy Conjuctiva 2009 I/I II 038 None 1 1084 Healthy Conjuctiva 2009 I/I II 038 None 5 1010 Go VII II 05 None 5 1010 Orbital tissue 2009 VI II 06 None 772 1657 Orbital tissue 2015 VI II 05 None 772 1657 Orbital tissue 2013 VI II 05A None 714 1021 Pus 2013 VI III 05A None 148 128 Pus 2013 VI III 07A None 148 128 Pus 2015 III III 17A	N1	10D H	Healthy Conjuctiva	2009	1	UT	63A	None	1	t948
N2105 Healthy Conjuctiva 2009 I/I II 064 None 5 1010 Orbital tissue 2009 VI II 06 None 5 11010 Orbital tissue 2009 VI II 06 None 5 11010 Orbital tissue 2009 VI II 06 None 772 1857 009 Pus 2015 VI II 074 None 772 1857 1214 Corneal Scraping 2009 VI III 078 None 772 1857 1214 Corneal Scraping 2013 VI III 078 None 772 1857 1214 Pus 2013 VI III 07 None 142 121 2151 Pus 2013 VI UI 68 None 772 1857 2213 Pus 2013 III UT 71A None 178 1816 22/252 Pus None None 109 </td <td>N12</td> <td>20D H</td> <td>Healthy Conjuctiva</td> <td>2009</td> <td>IV</td> <td>111</td> <td>63B</td> <td>None</td> <td>1</td> <td>t948</td>	N12	20D H	Healthy Conjuctiva	2009	IV	111	63B	None	1	t948
None 5 1010 66 None 5 114912 66 None 5 114912 66 None 772 1857 772 1857 772 1857 None 772 1857 None 772 1857 110 11 68 None 714 1021 None 739 1205 110 11 17 None 739 1205 1205 N30862 None 110	N2	105 H	Healthy Conjuctiva	2009	IV	11	64	None	15	t084
1103 Orbital tissue 2009 V II 06 None 5 11912 4 4 4 4 4 000 VI II 07 None 72 1657 009 Fus 2015 VI II 075 VI II 08 None 712 1657 1214 Comeal Scraping 2013 VI III 08 None 712 1057 1214 Comeal Scraping 2013 VI III 08 None 714 1021 2417 Sputum 2013 VI III 08 None 718 1021 2417 Sputum 2015 III UT 718 None 718 1021 2417 Sputum 2015 III UT 718 None 719 1205 2137 Pus 2016 III UT 738 V 1098 22/252 Pus Nic Nic VI III 74 None 75 <td>N90</td> <td></td> <td>Healthy Conjuctiva</td> <td>2009</td> <td>VII</td> <td>11</td> <td>65</td> <td>None</td> <td>5</td> <td>t010</td>	N90		Healthy Conjuctiva	2009	VII	11	65	None	5	t010
1520 Aqueous aspirate 2010 VII I 67A None 772 1657 009 Pus 2015 VII II 67B None 772 1657 1214 Corneal Scraping 2009 VII III 68 None 772 1657 1214 Corneal Scraping 2013 VI III 69A None 714 1021 21417 Sputum 2013 VI III 69A None 789 1091 2413 Pus 2015 III UT 71B None 789 1091 379 Pus 2015 III UT 71B None 789 1205 N30982 Wound Infection 2015 II III 72 None 789 1205 1428 Lacrimal sact tissue 2009 VIII II 74 None 78 1215 22/248 Pus NK III II 74 None 5 14225 1225 <t< td=""><td>110</td><td>03 0</td><td>Drbital tissue</td><td>2009</td><td>V</td><td>11</td><td>66</td><td>None</td><td>5</td><td>t14912</td></t<>	110	03 0	Drbital tissue	2009	V	11	66	None	5	t14912
009 Pus 2019 VI II 078 V 772 1657 111 Corneal Scraping 2009 VI III 080 None 772 1657 2161 Pus 2013 VI III 084 None 714 1021 2161 Pus 2013 VI III 058 None 714 1021 2417 Sputum 2013 VI III 070 None 148 121 2417 Sputum 2013 VI III 070 None 148 121 2417 Sputum 2013 VI III 070 None 148 121 2417 Sputum 2015 III UT 718 None 789 1201 379 Pus 2015 III III 73 V 108 1255 22/252 Pus NK VI III 73 V 82 1255 1428 Lacrimal sactissue 209 VIII<	182	20 A	Aqueous aspirate	2010	VII	1	67A	None	772	t657
1214 Corneal Scraping 2009 VI III 68 None 772 1657 1214 Corneal Scraping 2013 VI III 69 None 772 1657 1214 Fus 2013 VI III 69 None 772 1657 1214 Sputum 2013 VI III 69 None 714 1021 2417 Sputum 2013 VI III 07 None 718 1621 2417 Sputum 2015 III UT 714 None 739 1205 373 Pus 2016 III UT 718 None 739 1205 22/252 Pus None Nik VI UT 738 V Unikn. 1657 22/252 Pus None 108 1428 1657 1428 1657 22/248 Pus Nik VI UT 738 V Unikn. 1657 1428 Corneal Scraping <t< td=""><td>005</td><td>9 F</td><td>Pus</td><td>2015</td><td>VI</td><td>11</td><td>67B</td><td>\vee</td><td>772</td><td>t657</td></t<>	005	9 F	Pus	2015	VI	11	67B	\vee	772	t657
2151 Pus 2013 VI III 69A None 714 1021 417 Sputum 2013 VI III 69B None 1482 1386 2417 Sputum 2013 IV III 70 None 1482 1386 801 Pus 2013 IV III 07 None 789 12505 N309802 Wound infection 2015 III UT 71A None 789 12505 N309802 Wound infection 2015 III UT 71A None 789 12505 N309802 Wound infection 2015 I III T7 None 789 12505 22/248 Pus NK III I 74 None 6 14285 1428 Lacrimal sact tissue 2009 VIII I 74 None 5 1442 1602 Discharge from infected so. 2010 VIII I 76 None 5 1442 17	121	14 0	Corneal Scraping	2009	VI	111	68	None	772	t657
1 1		51 F	Pus	2013	VI		69A	None	714	t021
2413 Pus 2013 IV III 070 None 7482 1386 1<	241	17 S	Sputum	2013	VI	UT	69B	None	Unkn.	t021
861 Fus 2015 III UT 7.1A None 7.89 1091 1 1 7.9 Fus 2015 III UT 7.1B None 7.89 12505 1 1 0.0 7.1B None 7.89 1037 2 2 2 Wound infection 2015 I III 7.8 UT 1.8 1 1 1 7.8 VT 0.0 7.8 VT 1.0 <		13 F	Pus	2013	IV		70	None	1482	t386
1 1	861	1 F	Pus	2015		UT	71A	None	789	t091
N309852 Wound infection 2015 I III 72 None 1 1098 V		9 F	Pus	2015		UT	71B	None	789	t2505
1 1 1 7 1 <td>N30</td> <td>09852 V</td> <td>Nound infection</td> <td>2015</td> <td>1</td> <td></td> <td>72</td> <td>None</td> <td>1</td> <td>t098</td>	N30	09852 V	Nound infection	2015	1		72	None	1	t098
22/248 Pus NK III I 74 None 6 14285 1295 Purulent material from lid 2009 VIII II 74 None 6 14285 1295 Purulent material from lid 2009 VIII II 76 None 6 14285 1295 Purulent material from lid 2009 VIII I 76 None 6 14426 1295 Purulent material from lid 2010 VIII I 76 None 5 1442 27/231 Pus NK VII III NT None 5 1442 27/231 Pus NK VII III NT None 5 1442 262 Pus 2014 VII II NT None 121 13204 262 Pus 2014 VII I NT None 121 13204 2832812 Correal Scraping 2015 V V None 672 1841 N289378 Suture 2015 I UT NT None 672 1841	22/	/252 F	Pus	NK	VI	UT	73A	\vee	Unkn.	t657
1428 Lacrimal sac tissue 2009 VIII i 7.4 None 6 14285 1428 Lacrimal sac tissue 2009 VIII i 7.6 None 6 14285 1255 Purulent material form infected so. 2010 VIII i 7.6 None 6 14285 1265 Corneal Scraping 2010 VIII i 7.6 None 6 1442 1862 Discharge from infected so. 2010 VIII i 7.7 None 6 1442 27/231 Pus NK VIII II NT None 201 111 282 Pus Origet and Scraping 2014 VII I NT None 201 11149 282812 Corneal Scraping 2015 V VT None 672 13841 N289378 Suture 2015 I UT NT None 672 13841		/248 F	Pus	NK		1	73B	UTB	239	t037
1295 Purulent material from lid 2009 III II 75 V 88 12528 1766 Corneal Scraping 2010 VIII I 76 None 5 1442 1862 Discharge from infected so. 2010 VIII I 77 None 5 1442 27/231 Pus NK VII III NT IV 503 1012 262 Pus 2014 VII I NT None 291 11149 P832812 Corneal Scraping 2015 V IV None 672 13841	142	28 L	acrimal sac tissue	2009	VIII	1	74	None	6	t4285
1766 Correal Scraping 2010 VIII i 76 None 5 t442 1766 Discharge from infected so. 2010 VIII i 77 None 5 t442 2010 VIII VIII i 77 None 5 t442 2010 VIII VIII II 77 None 5 t442 2012 Pus NK VII III NT None 50.011 262 Pus 2014 VII II NT None 2011 1149 2832812 Correal Scraping 2015 V IV None 672 t3841 N289378 Suture 2015 I UT NT None 672 t3841		95 F	Purulent material from lid	2009			75	V	88	t2526
1802 Discharge from infected so. 2010 VIII I 77 None 5 t442 27/231 Pus NK VIII III NT IV 603 t012 262 Pus 2014 VIII II NT None 291 t1149 P832812 Corneal Scraping 2015 V IV NT None 121 t3204 N289378 Suture 2015 I UT NT None 672 t3841	176	66 0	Corneal Scraping	2010	VIII	1	76	None	5	t442
27/231 Pus NK VII III NT IV 503 1012 262 Pus 2014 VII I NT None 291 1112 P832812 Corneal Scraping 2015 V IV NT None 211 13204 N289378 Suture 2015 I UT NT None 672 13841	186	62 0	Discharge from infected so.	2010	VIII	1	77	None	5	t442
262 Fus 201 VII I NT None 291 11149 PS2812 Corneal Scraping 2015 V IV NT None 120 1204 N289378 Suture 2015 I UT NT None 672 13841	27/	/231 F	Pus	NK	VII		NT	IV	503	t012
P832812 Corneal Scraping 2015 V IV NT None 121 t3204 N289378 Suture 2015 I UT NT None 672 t3841	262	2 F	Pus	2014	VII	1	NT	None	291	t1149
N289378 Suture 2015 I UT NT None 672 t3841	P83	32812 0	Corneal Scraping	2015	V	IV	NT	None	121	t3204
	N28	89378 9	Buture	2015	1	UT	NT	None	672	t3841

FIGURE 3 | Dendrogram representation (Dice coefficient) for macro-restriction banding patterns of *S. aureus* strains isolated from different sources with ATCC reference strains, generated by pulsed-field gel electrophoresis of total chromosomal DNA digested with *Smal* restriction enzyme and correlation between their pulsotype, ST, *spa*-type, SCC*mec* type, and *agr* type with information regarding their source and year of isolation.

serotype II among 54.4% MRSA and serotype VII among 30.9% MSSA. In contrast, we found serotype VII was present among 22% of MSSA isolates and serotype VI in 28.1% of MRSA isolates. These observations thus suggest that there is a difference in the presence of serotypes with regard to MRSA and MSSA.

Genetic determinants study among *S. aureus* showed a good correlation between resistance to aminoglycosides, chloramphenicol, clindamycin, erythromycin, trimethoprim, and tetracycline, and the presence of corresponding resistance genes. In this study, we found 85.3% strains showing resistance to chloramphenicol carried the pC221 gene; however, some of these strains also carried either pC223 or pC194 or both genes. Although one of 109 strains sensitive to chloramphenicol did not carry any of these genes, 13.8% strains showing sensitivity to chloramphenicol carried either pC221 or pC223 genes. These observations thus suggest that chloramphenicol sensitive strains carrying antibiotic resistance genes can develop resistance against this drug on exposure.

The aminoglycoside-modifying enzyme, encoded by aac (6')-aph(2'') gene, is responsible for resistance against aminoglycosides (Vanhoof et al., 1994). Besides, two other genes encoding for aph(3.III) and ant(4, IV) are accountable for

aminoglycoside resistance, but their frequency is less compared to aac(6')-aph(2") among staphylococci (Busch-SØRensen et al., 1996). In this study, we found 41.3% S. aureus possesses both aac(6')-aph(2") and aph (3, III) genes and 8.3% contained aph (3, III) gene and showed phenotypic resistance to gentamycin. These findings thus suggest that there are strains which harbor aminoglycoside resistance genes other than aac(6')-aph(2'')and few strains had aph (3, III) only. At least 47.7% strains of S. aureus that were sensitive to aminoglycosides contain either aph (3, III) or aac(6')-aph(2") or both; however, three strains susceptible to gentamycin lack resistance genes. These findings are in contrast to those workers who reported that all aminoglycoside-resistant strains carried *aac*(6')-*aph*(2") (Price et al., 1981; Lovering et al., 1988; Dornbusch et al., 1990; Vanhoof et al., 1994; Martineau et al., 2000). The presence of aminoglycoside resistance gene among gentamycin sensitive isolates of S. aureus indicates that there is likely hood development of aminoglycoside resistance among S. aureus upon exposure to these drugs.

Similarly, 83.4% strains of *S. aureus* resistant to erythromycin harbored any of the four genes, namely, *ermA*, *ermB*, *ermC*, and *msrA*; however, an strain sensitive to erythromycin did not

isolates and positive values to MRSA isolates.

carry any of the genes. Previously, it was reported that the ermA gene is dominant among erythromycin resistance genes in S. aureus (Kaur and Chate, 2015). In contrast, we found the presence of the ermC gene in 83.4% strains compared to 49% of ermA gene. Kaur and Chate (2015) reported that majority of MRSA strains showed constitutive MLSB (cMLSB) resistance; however, two isolates had inducible MLSB (iMLSB) phenotype. In this study, 64.5% MRSA and 37.1% MSSA strains belong to iMLSB phenotype; however, 35.4% of MRSA and 43.5% of MSSA strains belong to cMLSB phenotype. This difference could be due to less number of MRSA isolates used in the study, and MSSA isolates were multidrug resistant. Seventeen strains showing sensitivity to erythromycin harbored one of the resistance genes, and one of the strains resistant to erythromycin did not possess any of the resistance genes to indicate that these strains are likely to develop resistance and mediated by an unknown mechanism.

About trimethoprim resistance, 67.8% strains harbored any of the three genes, namely, dfrA, dfrB, and dfrG. The remaining strains showing sensitivity to trimethoprim also carried all or one of the three genes. In this study, 73 of 74 trimethoprim resistance strains possess dfrG and dfrB genes; 45 strains carried the dfrA gene. These findings are in contrast to those who reported the presence of the dfrG gene in 92% strains, dfrA in 7% strains, and one strain carried a dfrB among trimethoprim resistance strains in a travel-associated skin and soft tissue infection study in Europe (Nurjadi et al., 2015).

Like other antibiotic resistance, 26.6% phenotypic resistance strains carried one or all the three tetracycline resistance genes, namely, *tetK*, *tetL*, and *tetM*. One of the strains sensitive to tetracycline was devoid of carrying any genes. However, the majority (69.7%) strain showing sensitivity to tetracycline carried one or all three resistance genes indicating that these isolates could develop resistance after exposure to an antibiotic. From

this study, it is clear that erythromycin and gentamicin were least active; however, vancomycin and clindamycin were the most effective drugs. These results corroborate the finding of Pai et al. (2010), who also reported that vancomycin and clindamycin are the most effective drugs.

SCCmec type V was predominant type among MRSA strains followed by SCCmec type UT6, IV, and III, respectively. This finding is similar to Nadig et al. (2012), who also reported the prevalence of SCCmec type V among isolates from eye infections. To our knowledge, we are the first to inform of the presence of SCCmec type UT6 among *S. aureus* from India. The combination of SCCmec IV, V, and *pvl* gene was reported as the genetic markers for a community-associated MRSA (Bhutia et al., 2015). Similarly, our study showed the presence of SCCmec V (40.6%), IV (21.9%), and *pvl* (64.5%); therefore it can be used as a marker for hospital-associated infections. However, new UT6 SCCmec type is emerging in India. Many untypeable strains carried *ccr* complex but no *mec* complex. This observation thus suggests the ability of such strains to acquire *mec* complex and became a known or unknown SCCmec type.

A total of 25 unique toxin combination was found among *S. aureus* strains, of which at least one toxin gene was present in a given strain. Sotto et al. (2008) reported the presence of *sei* and *sea* genes in *S. aureus* isolated from diabetic foot ulcer. Similarly, we found the presence of *sei* and *sea* genes in both MRSA and MSSA strains. Although we noted the high percentage of *hlg* (98%) and *hla* (92.6%) among in *S. aureus* comprising both MSSA and MRSA, other workers reported the presence of these genes in mupirocin resistant in MRSA isolates in China (Liu et al., 2012). Moreover, the distribution of virulence genes with regards to source and place of isolation was complex. Gowrishankar et al. (2016) reported the isolation of 84% MRSA strains carrying *icaADBC* genes from patients with pharyngitis. Also, in this

values to MRSA isolates.

study, 81.3% MRSA and 84.4% MSSA carrying *icaA/icaD* genes were isolated from the eye and wound infections (**Supplementary Table S3**). Absence of *icaA/icaD* genes in *S. aureus* strains was similar to those of the previous report (Agarwal and Jain, 2013).

Several molecular genotyping tools are used to trace the origin of the strain, and distribution of CC with regard to methicillinresistant, methicillin-sensitive, sources and place of isolation. We determined the population structure of *S. aureus* isolated from ocular and wound infections from different parts of India using MLST, *agr*-typing, *spa*-typing, and PFGE.

Multi-locus sequence typing analysis showed the presence of six major ST(s) comprising ST1, ST5, ST772, ST239, ST672, and ST2233, respectively. While ST239-MRSA-UT6 was the typical type among MRSA isolates from wound infection, ST772-MRSA-V were from eye infections (Nadig et al., 2012). Similarly, ST772-SCC*mec*-V were reported slowly replacing multidrug resistant ST239-SCC*mec*-III in Asian studies (D'Souza et al., 2010). This finding is in contrast to Suzuki et al. (2012), who reported the presence of ST5 and ST764 among MRSA strains from the infected eye and healthy conjunctiva sacs. Also, Mohammadi et al. (2014) showed emergence of SCC*mec*-III with variable antimicrobial resistance profiles in Iran. We found ST772-MRSA-V with *spa*-type t345 and t657 belonging to dominant CC772 among wound infection isolates. Besides, we reported two new *spa*-types among *S. aureus* strains from India.

There were eight CCs, namely, CC30, CC121, CC772, CC813, CC239, CC28841, CC22, and CC5 present among *S. aureus* represents different PFGE clusters. CC30 and CC121 comprising different STs were almost equally distributed among MRSA and MSSA isolates. Whereas CC772-ST772 was dominant among MRSA, CC772-ST1 was prevalent among MSSA isolates. Similarly, CC239-ST239 and CC22-ST22 were prevalent among

MRSA isolates and CC5-ST5, CC813-ST813, and CC28841-ST28841 were more commonly found in MSSA isolates. The prevalent CC among Varanasi isolates (mostly wound infection) were CC772 followed by CC239 besides the presence of CC30, and CC121. However, isolates from wound infection from Delhi showed varied results. Whereas AIIMS isolates showed CC CC30, CC22, and CC813, UCMS isolates showed the presence of CC239 and CC22 CCs. Interestingly isolates from Hyderabad (eye infection) had CC239 but isolates from Bhubaneswar (eye infection) showed the presence of CC772, CC5, CC2884, and CC30.

Mobasherizadeh et al. (2019) reported the prevalence of CC5 and CC30 and other CCs among MRSA isolates isolated from nasal carriage in Iranian hospitals. Similarly, CC8, CC121, CC1, CC45, and CC5 were reported in MRSA isolates from Malaysia (Ghasemzadeh-Moghaddam et al., 2011). These observations indicate the existence of different CCs in India and Asian countries. MLST and *spa*-typing was better than PFGE and toxin genotyping a finding unusual from those who reported a good correlation between various typing schemes. Overall, there was diversity in genotypes, antimicrobial resistance, and virulence determinants among MRSA and MSSA strains.

From this study, it is clear that *S. aureus* strains sensitive to antibiotics but carried antibiotic resistance genes could develop resistance upon exposure to antibiotic(s), and vancomycin and clindamycin were the most effective drugs. ST239-SCC*mec* UT6/t035 were dominant clones among *S. aureus*. There was diversity in genotypes, antimicrobial resistance, and virulence determinants among MRSA and MSSA strains, therefore suggests continuous surveillance of multidrug-resistant strains circulating in the community/hospitals in India, to take adequate measures to control the infection.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Institutional Review Board (IRB) of LV Prasad Eye Institute (LEC/08/110/2009) and by the Institute Ethics Sub-Committee (IESC) of All India Institute of Medical Sciences, New Delhi (IESC/T-34/2013), and the data were analyzed anonymously and reported. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

SA, SJ, SS, and DS conceived the experiments. SA, SJ, and SP conducted the experiments. SA, SJ, SP, SS, BD, GN, NS, and DS analyzed the results. KN performed statistical analysis. SA, SJ, and DS wrote the manuscript. All authors reviewed and approved the manuscript.

REFERENCES

- Agarwal, A., and Jain, A. (2013). Glucose & sodium chloride induced biofilm production & *ica* operon in clinical isolates of staphylococci. *Indian J. Med. Res.* 138:262.
- Arciola, C. R., Baldassarri, L., and Montanaro, L. (2001). Presence of *icaA* and *icaD* genes and slime production in a collection of *Staphylococcal strains* from catheter-associated infections. *J. Clin. Microbiol.* 39, 2151–2156. doi: 10.1128/ JCM.39.6.2151-2156.2001
- Argudín, M., Tenhagen, B.-A., Fetsch, A., Sachsenröder, J., Käsbohrer, A., Schroeter, A., et al. (2011). Virulence and resistance determinants of German *Staphylococcus aureus* ST398 isolates from nonhuman sources. *Appl. Environ. Microbiol.* 77, 3052–3060. doi: 10.1128/AEM.02260-10
- Baranovich, T., Zaraket, H., Shabana, I., Nevzorova, V., Turcutyuicov, V., and Suzuki, H. (2010). Molecular characterization and susceptibility of methicillinresistant and methicillin-susceptible *Staphylococcus aureus* isolates from hospitals and the community in Vladivostok, Russia. *Clin. Microbiol. Infect.* 16, 575–582. doi: 10.1111/j.1469-0691.2009.02891.x
- Bhutia, K. O., Singh, T., Adhikari, L., and Biswas, S. (2015). Molecular characterization of community-& hospital-acquired methicillin-resistant & methicillin-sensitive *Staphylococcus aureus* isolates in Sikkim. *Indian J. Med. Res.* 142:330. doi: 10.4103/0971-5916.166600
- Busch-SØRensen, C., SØNmezoglu, M., Frimodt-Moller, N., Hojbjerg, T., Miller, G. H., and Espersen, F. (1996). Aminoglycoside resistance mechanisms in *Enterobacteriaceae* and *Pseudomonas* spp. from two Danish hospitals: correlation with type of aminoglycoside used. *Apmis* 104, 763–768. doi: 10.1111/j.1699-0463.1996.tb04940.x
- Dhawan, B., Rao, C., Udo, E., Gadepalli, R., Vishnubhatla, S., and Kapil, A. (2015). Dissemination of methicillin-resistant *Staphylococcus aureus* SCCmec type IV and SCCmec type V epidemic clones in a tertiary hospital: challenge to infection control. *Epidemiol. Infect.* 143, 343–353. doi: 10.1017/S095026881400 065X
- Dornbusch, K., Miller, G., Hare, R., Shaw, K., and Group, E. S. (1990). Resistance to aminoglycoside antibiotics in gram-negative bacilli and staphylococci isolated from blood. Report from a European collaborative study. J. Antimicrob. Chemother. 26, 131–144. doi: 10.1093/jac/26.1.131

FUNDING

This study was supported by the Department of Science and Technology (Grant No. SR/SO/HS-117 to DS). This study, in part, was also supported by the fund contributed by the Department of Biotechnology, New Delhi, to the Institute of Life Sciences, Bhubaneswar. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

SA and SJ are grateful to the Institute of Life Sciences, Bhubaneswar and Department of Science and Technology, New Delhi, respectively for providing Senior Research Fellowship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2019.02763/full#supplementary-material

- D'Souza, N., Rodrigues, C., and Mehta, A. (2010). Molecular characterization of methicillin-resistant *Staphylococcus aureus* with emergence of epidemic clones of sequence type (ST) 22 and ST 772 in Mumbai, India. *J. Clin. Microbiol.* 48, 1806–1811. doi: 10.1128/JCM.01867-09
- Duran, N., Ozer, B., Duran, G. G., Onlen, Y., and Demir, C. (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. *Indian J. Med. Res.* 135:389.
- Enright, M. C., and Spratt, B. G. (1999). Multilocus sequence typing. Trends Microbiol. 7, 482–487. doi: 10.1016/S0966-842X(99)01609-1
- Freidlin, J., Acharya, N., Lietman, T. M., Cevallos, V., Whitcher, J. P., and Margolis, T. P. (2007). Spectrum of eye disease caused by methicillin-resistant *Staphylococcus aureus. Am. J. Ophthalmol.* 144, 313–315. doi: 10.1016/j.ajo. 2007.03.032
- Ghasemzadeh-Moghaddam, H., Ghaznavi-Rad, E., Sekawi, Z., Yun-Khoon, L., Aziz, M. N., Hamat, R. A., et al. (2011). Methicillin-susceptible *Staphylococcus aureus* from clinical and community sources are genetically diverse. *Int. J. Med. Microbiol.* 301, 347–353. doi: 10.1016/j.ijmm.2010.10.004
- Ghaznavi-Rad, E., Goering, R., Shamsudin, M. N., Weng, P., Sekawi, Z., Tavakol, M., et al. (2011). *mec*-associated *dru* typing in the epidemiological analysis of ST239 MRSA in Malaysia. *Eu. J. Clin Microbiol. Infect Dis.* 30, 1365–1369. doi: 10.1007/s10096-011-1230-1
- Ghebremedhin, B., Olugbosi, M., Raji, A., Layer, F., Bakare, R., König, B., et al. (2009). Emergence of a community-associated methicillin-resistant *Staphylococcus aureus* strain with a unique resistance profile in Southwest Nigeria. J. Clin. Microbiol. 47, 2975–2980. doi: 10.1128/JCM.00648-09
- Gilot, P., Lina, G., Cochard, T., and Poutrel, B. (2002). Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of *Staphylococcus aureus* strains isolated from cows with mastitis. J. Clin. Microbiol. 40, 4060–4067. doi: 10.1128/JCM.40.11.4060-4067. 2002
- Godebo, G., Kibru, G., and Tassew, H. (2013). Multidrug-resistant bacterial isolates in infected wounds at Jimma University Specialized Hospital, Ethiopia. Annals Clin. Microbiol. Antimicrob. 12:17. doi: 10.1186/1476-0711-12-17
- Goh, S.-H., Byrne, S., Zhang, J., and Chow, A. (1992). Molecular typing of *Staphylococcus aureus* on the basis of coagulase gene polymorphisms. *J. Clin. Microbiol.* 30, 1642–1645.

- Gowrishankar, S., Kamaladevi, A., Balamurugan, K., and Pandian, S. K. (2016). In vitro and in vivo biofilm characterization of methicillin-resistant *Staphylococcus aureus* from patients associated with pharyngitis infection. *Biomed. Res. Int.* 2016, 1–14. doi: 10.1155/2016/1289157
- Hammer, Ø, Harper, D., and Ryan, P. (2001). Paleontological statistics software: package for education and data analysis. *Palaeontol. Electron.* 4:9.
- Hirotaki, S., Sasaki, T., Kuwahara-Arai, K., and Hiramatsu, K. (2011). Rapid and accurate identification of human-associated staphylococci by use of multiplex PCR. J. Clin. Microbiol. 49, 3627–3631. doi: 10.1128/JCM.00488-11
- Hsu, L.-Y., Koh, T.-H., Singh, K., Kang, M.-L., Kurup, A., and Tan, B.-H. (2005). Dissemination of multisusceptible methicillin-resistant *Staphylococcus aureus* in Singapore. *J. Clin. Microbiol.* 43, 2923–2925. doi: 10.1128/JCM.43.6.2923-2925.2005
- Hwang, S.-M., and Kim, T.-U. (2007). Changes in coagulase serotype of Staphylococcus aureus isolates in Busan, 1994-2005. Korean J. Microbiol. 43, 346-350.
- Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., et al. (2002). Relationships between *Staphylococcus aureus* genetic background, virulence factors, *agr* groups (alleles), and human disease. *Infect. immun.* 70, 631–641. doi: 10.1128/IAI.70.2.631-641.2002
- Kaur, D. C., and Chate, S. S. (2015). Study of antibiotic resistance pattern in methicillin resistant *Staphylococcus aureus* with special reference to newer antibiotic. *J. Glob. Infect. Dis.* 7, 78–84. doi: 10.4103/0974-777X.157245
- Kim, J.-S., Song, W., Kim, H.-S., Cho, H. C., Lee, K. M., Choi, M.-S., et al. (2006). Association between the methicillin resistance of clinical isolates of *Staphylococcus aureus*, their staphylococcal cassette chromosome *mec* (SCC*mec*) subtype classification, and their toxin gene profiles. *Diagn. Microbiol. Infect. Dis.* 56, 289–295. doi: 10.1016/j.diagmicrobio.2006.05.003
- Kondo, Y., Ito, T., Ma, X. X., Watanabe, S., Kreiswirth, B. N., Etienne, J., et al. (2007). Combination of multiplex PCRs for staphylococcal cassette chromosome *mec* type assignment: rapid identification system for *mec*, *ccr*, and major differences in junkyard regions. *Antimicrob. Agents Chemother*. 51, 264–274. doi: 10.1128/AAC.00165-06
- Lindsay, J. A., and Holden, M. T. (2004). Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378–385. doi: 10.1016/j.tim.2004.06.004
- Liu, Q., Han, L., Li, B., Sun, J., and Ni, Y. (2012). Virulence characteristic and MLST-agr genetic background of high-level mupirocin-resistant, MRSA isolates from Shanghai and Wenzhou, China. PLoS One 7:e37005. doi: 10.1371/ journal.pone.0037005
- Liu, Y., Wang, H., Du, N., Shen, E., Chen, H., Niu, J., et al. (2009). Molecular evidence for spread of two major methicillin-resistant *Staphylococcus aureus* clones with a unique geographic distribution in Chinese hospitals. *Antimicrob. Agents Chemother*. 53, 512–518. doi: 10.1128/AAC.00804-08
- Lovering, A., Bywater, M., Holt, H., Champion, H., and Reeves, D. (1988). Resistance of bacterial pathogens to four aminoglycosides and six other antibacterials and prevalence of aminoglycoside modifying enzymes, in 20 UK centres. J. Antimicrob. Chemother. 22, 823–839. doi: 10.1093/jac/22.6.823
- Martineau, F., Picard, F. J., Lansac, N., Ménard, C., Roy, P. H., Ouellette, M., et al. (2000). Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of *Staphylococcus aureus* and *Staphylococcus epidermidis*. *Antimicrob. Agents Chemother*. 44, 231–238. doi: 10.1128/aac.44.2.231-238.2000
- Maslow, J. N., Mulligan, M. E., and Arbeit, R. D. (1993). Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. *Clin. Infect. Dis.* 17, 153–162. doi: 10.1093/clinids/17.2.153
- Mehrotra, M., Wang, G., and Johnson, W. M. (2000). Multiplex PCR for detection of genes for *Staphylococcus aureus* enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. *J. Clin. Microbiol.* 38, 1032–1035.
- Mitchell, G., Séguin, D. L., Asselin, A.-E., Déziel, E., Cantin, A. M., Frost, E. H., et al. (2010). *Staphylococcus aureus* sigma B-dependent emergence of smallcolony variants and biofilm production following exposure to *Pseudomonas aeruginosa* 4-hydroxy-2-heptylquinoline-N-oxide. *BMC Microbiol.* 10:33. doi: 10.1186/1471-2180-10-33
- Mobasherizadeh, S., Shojaei, H., Azadi, D., Havaei, A. A., and Rostami, S. (2019). Molecular characterization and genotyping of methicillin-resistant *Staphylococcus aureus* in nasal carriage of healthy Iranian children. J. Med. Microbiol. 68, 374–378. doi: 10.1099/jmm.0.000924

- Mohammadi, S., Sekawi, Z., Monjezi, A., Maleki, M.-H., Soroush, S., Sadeghifard, N., et al. (2014). Emergence of SCC*mec* type III with variable antimicrobial resistance profiles and *spa* types among methicillin-resistant *Staphylococcus aureus* isolated from healthcare- and community-acquired infections in the west of Iran. *Int. J. Infect. Dis.* 25, 152–158. doi: 10.1016/j.ijid.2014.02.018
- Monday, S. R., and Bohach, G. A. (1999). Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37, 3411–3414.
- Nadig, S., Velusamy, N., Lalitha, P., Kar, S., Sharma, S., and Arakere, G. (2012). *Staphylococcus aureus* eye infections in two Indian hospitals: emergence of ST772 as a major clone. *Clin. Ophthalmol.* 6, 165–173. doi: 10.2147/OPTH. S23878
- Nelson, J. L., Rice, K. C., Slater, S. R., Fox, P. M., Archer, G. L., Bayles, K. W., et al. (2007). Vancomycin-intermediate *Staphylococcus aureus* strains have impaired acetate catabolism: implications for polysaccharide intercellular adhesin synthesis and autolysis. *Antimicrob. Agents Chemother.* 51, 616–622. doi: 10.1128/AAC.01057-06
- Norazah, A., Liew, S., Kamel, A., Koh, Y., and Lim, V. (2001). DNA fingerprinting of methicillin-resistant *Staphylococcus aureus* by pulsed-field gel electrophoresis (PFGE): comparison of strains from 2 Malaysian hospitals. *Singapore Med. J.* 42, 015–019.
- Nurjadi, D., Schäfer, J., Friedrich-Jänicke, B., Mueller, A., Neumayr, A., Calvo-Cano, A., et al. (2015). Predominance of *dfrG* as determinant of trimethoprim resistance in imported *Staphylococcus aureus*. *Clin. Microbiol. Infect.* 21, 1095.e5–1095.e9. doi: 10.1016/j.cmi.2015.08.021
- Pai, V., Rao, V. I., and Rao, S. P. (2010). Prevalence and antimicrobial susceptibility pattern of methicillin-resistant *Staphylococcus aureus* [MRSA] isolates at a tertiary care hospital in Mangalore South India. *J. Lab. Physicians* 2:82. doi: 10.4103/0974-2727.72155
- Panda, S., Kar, S., Choudhury, R., Sharma, S., and Singh, D. V. (2014). Development and evaluation of hexaplex PCR for rapid detection of methicillin, cadmium/zinc and antiseptic-resistant staphylococci, with simultaneous identification of PVL-positive and-negative *Staphylococcus aureus* and coagulase negative staphylococci. *FEMS Microbiol. Lett.* 352, 114–122. doi: 10. 1111/1574-6968.12383
- Panda, S., Kar, S., Sharma, S., and Singh, D. V. (2016). Multidrugresistant *Staphylococcus haemolyticus* isolates from infected eyes and healthy conjunctivae in India. *J. Glob. Antimicrob. Res.* 6, 154–159. doi: 10.1016/j.jgar.2016.05.006
- Paniagua-Contreras, G., Sáinz-Espuñes, T., Monroy-Pérez, E., Rodríguez-Moctezuma, J. R., Arenas-Aranda, D., Negrete-Abascal, E., et al. (2012). Virulence markers in *Staphylococcus aureus* strains isolated from hemodialysis catheters of Mexican patients. *Adv. Microbiol.* 2:476. doi: 10.4236/aim.2012. 24061
- Price, K., Kresel, P., Farchione, L., Siskin, S., and Karpow, S. (1981). Epidemiological studies of aminoglycoside resistance in the USA. J. Antimicrob. Chemother. 8(Suppl. A), 89–105. doi: 10.1093/jac/8.suppl-A.89
- Schmitz, F.-J., Fluit, A. C., Gondolf, M., Beyrau, R., Lindenlauf, E., Verhoef, J., et al. (1999). The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. *J. Antimicrob. Chemother.* 43, 253–259. doi: 10.1093/jac/43.2.253
- Shanmuganathan, V., Armstrong, M., Buller, A., and Tullo, A. (2005). External ocular infections due to methicillin-resistant *Staphylococcus aureus* (MRSA). *Eye* 19, 284–291. doi: 10.1038/sj.eye.6701465
- Shittu, A. O., Okon, K., Adesida, S., Oyedara, O., Witte, W., Strommenger, B., et al. (2011). Antibiotic resistance and molecular epidemiology of *Staphylococcus aureus* in Nigeria. *BMC Microbiol.* 11:92. doi: 10.1186/1471-2180-11-92
- Shukla, S. K., Karow, M. E., Brady, J. M., Stemper, M. E., Kislow, J., Moore, N., et al. (2010). Virulence genes and genotypic associations in nasal carriage, community-associated methicillin-susceptible and methicillinresistant USA400 Staphylococcus aureus isolates. J. Clin. Microbiol. 48, 3582– 3592. doi: 10.1128/JCM.00657-10
- Sotto, A., Lina, G., Richard, J.-L., Combescure, C., Bourg, G., Vidal, L., et al. (2008). Virulence potential of *Staphylococcus aureus* strains isolated from diabetic foot ulcers: a new paradigm. *Diabetes Care* 31, 2318–2324. doi: 10.2337/dc08-1010
- Suzuki, T., Hayashi, S., and Ohashi, Y. (2012). Genotypic characterization of staphylococcus aureus isolates from eyes with keratitis. Invest. Ophthalmol. Vis. Sci. 53, 6139–6139.

- Tenover, F. C., Arbeit, R., Archer, G., Biddle, J., Byrne, S., Goering, R., et al. (1994). Comparison of traditional and molecular methods of typing isolates of *Staphylococcus aureus. J. Clin. Microbiol.* 32, 407–415.
- Van Belkum, A., Tassios, P., Dijkshoorn, L., Haeggman, S., Cookson, B., Fry, N., et al. (2007). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. *Clin. Microbiol. Infect.* 13, 1–46. doi: 10.1111/ j.1469-0691.2007.01786.x
- Vanhoof, R., Godard, C., Content, J., and Nyssen, H. (1994). Detection by polymerase chain reaction of genes encoding aminoglycoside-modifying enzymes in methicillin-resistant *Staphylococcus aureus* isolates of epidemic phage types. *J. Med. Microbiol.* 41, 282–290. doi: 10.1099/00222615-41-4-282
- Wang, L., Hu, Z., Hu, Y., Tian, B., Li, J., Wang, F., et al. (2013). Molecular analysis and frequency of *Staphylococcus aureus* virulence genes isolated from bloodstream infections in a teaching hospital in Tianjin. *China Genet. Mol. Res.* 12, 646–654. doi: 10.4238/2013.March.11.12
- Zecconi, A., Cesaris, L., Liandris, E., Dapra, V., and Piccinini, R. (2006). Role of several *Staphylococcus aureus* virulence factors on the inflammatory response in bovine mammary gland. *Microb. Pathogen.* 40, 177–183. doi: 10.1016/j.micpath. 2006.01.001

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Aggarwal, Jena, Panda, Sharma, Dhawan, Nath, Singh, Nayak and Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.