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Abstract

The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and
environmental causes. Historically, most research has not focused on autosomal recessive
ID (ARID), which is a significant cause of ID, particularly in areas where parental consan-
guinity is common. Identification of genetic causes allows for precision diagnosis and
improved genetic counseling. We performed whole exome sequencing to 21 Turkish fami-
lies, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multi-
ple affected siblings born to unaffected parents and/or shared ancestry, we consider all
families as ARID. We revealed the underlying causative variants in seven families in MCPH1
(c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAG-
GATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30),
TUSC3 (c.793C>T, p.Q265*) and ZNF335 (¢.808C>T, p.R270C and ¢.3715C>A, p.
Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male sib-
lings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family
the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) vari-
ant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previ-
ously published. Additionally in one family, two affected children were homozygous for the
c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID.
No causative variants were found in the remaining 11 families. A wide variety of variants
explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.
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Introduction

Intellectual disability (ID) is an early-onset neurodevelopmental disorder affecting 1% of the
general population [1]. ID is characterized by a significant impairment in cognitive ability and
adaptive behavior affecting memory, language, problem solving, and visual comprehension,
which can lead to impairments in activities of daily living such as self-care and interpersonal
communication.

Environmental factors, such as teratogens, infections, malnutrition, and neurological
trauma as well as genetic conditions can cause ID. The literature supports a strong genetic eti-
ology for ID, with a varying proportion of cases (ranging from 17% to 50%) being attributable
to genetic causes [2-5]. Variants in more than 1,000 genes have been connected to ID [6]. Sup-
port for rare de novo variants as a major cause of ID in simplex cases have been reported [7].
Microarray and exome sequencing have demonstrated the importance of de novo copy num-
ber variations (CNVs) and single-nucleotide variations (SNVs) in ID. While research elucidat-
ing chromosomal aberrations, CNVs, autosomal dominant, and X-linked variants as causes
for ID has been well established, it was not until recently that studies focusing on autosomal
recessive forms of ID (ARID) have gained attention [6,8]. ARID either presents as the sole clin-
ical feature (nonsyndromic) or with additional features (syndromic), and it is extremely het-
erogeneous [9,10]. To date, there are fifty-five genes in the phenotypic series [PS249500] for
non-syndromic ARID in the Online Mendelian Inheritance in Man (OMIM) database [6].
ARID appears to be a common form of ID, an unsolved healthcare problem creating an enor-
mous socioeconomic burden on society, especially in the underdeveloped countries where
there is a high rate of consanguinity [8,11]. To reveal the causative variants in ARID, we
performed Whole Exome Sequencing (WES) in 21 families affected by non-syndromic
ID; these families either had multiple affected family members or pedigrees suggestive of
consanguinity.

Methods
Ethics statement

This study was approved by the University of Miami Institutional Review (USA), the Marmara
University Medical School Ethics Committee (Turkey), and the Ankara University Medical
School Ethics Committee (Turkey). A signed informed consent form was obtained from each
participant or, in the case of a minor, from the parents.

Subjects

We included families with ID and a pedigree structure suggestive of autosomal recessive inher-
itance. These were a mix of multiplex families with parental consanguinity (7 families), simplex
families with reported parental consanguinity (5 families), or parental origin from a small
town (9 families). All families were from Turkey and evaluated at Marmara University Medical
School or Ankara University Medical School. All affected children received a thorough physi-
cal examination and were evaluated by a pediatrician, geneticist, and neurologist, when
available.

Patients with major anomalies, syndrome specific phenotypic features, and specific neuro-
logical signs were excluded from the study. Patients with non-specific minor anomalies (e.g.,
clinodactyly) and neurological signs (e.g., seizures) were not excluded from the classification
of non-syndromic ID, as most patients with ID have such findings. DNA was extracted from
patient blood samples for genomic analysis.
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Whole exome sequencing and bioinformatics analysis

In 6 families, we performed WES in two affected siblings, and in 15 families, only the probands
were sequenced. Agilent SureSelect Human All Exon 50 Mb was used for the capture and
HiSeq 2000 was used for the sequencing per our previously published protocol [12]. We fil-
tered variants based on minor allele frequency of <0.005 for recessive and <0.0005 for domi-
nant using ExAC (http://exac.broadinstitute.org/; accessed 08/15/2018) and GnomAD (http://
gnomad.broadinstitute.org/; accessed 08/15/2018), a genotype quality (GQ) score >35 for the
variant quality, and minimum read depth of > 8. Combined Annotation Dependent Depletion
(CADD: http://cadd.gs.washington.edu/info), Sorting Intolerant from Tolerant (SIFT: http://
sift.jcvi.org/) and Mutationtaster (http://www.mutationtaster.org/) were used for the in silico
prediction. ClinVar (https://www.ncbinlm.nih.gov/clinvar/) and Human Gene Mutation
Database (HGMD: http://www.hgmd.cf.ac.uk/ac/index.php) were used for the mutation data-
bases. Genomic evolutionary rate profiling (GERP: http://mendel.stanford.edu/SidowLab/
downloads/gerp/index.html) score was used to determine variant conservation. While autoso-
mal recessive inheritance with both homozygous and compound heterozygous models were
chosen during the initial analysis, all inheritance modes were subsequently investigated. Mis-
sense, nonsense, splice site, in-frame INDEL and frame-shift INDELs were selected. We
searched for variants in genes already implicated in ID. These genes were retrieved from
OMIM with query words including “intellectual disability” or “mental retardation” or “micro-
cephaly” or “cognitive impairment” in Clinical Synopsis (S1 Table). We used CoNIFER (Copy
Number Inference From Exome Reads) [13] and XHMM (eXome-Hidden Markov Model)
[14] to detect Copy Number Variants (CNVs) [15]. For the CNV analysis, we evaluated genes
in our list. We filtered out common CNVs using our WES controls that consists of >500
individuals and Database of Genomic Variants (DGV; http://dgv.tcag.ca/dgv/app/home).
ACMG 2015 Guidelines were used for the variant interpretation [16]. Sanger sequencing was
used for variant confirmation and co-segregation (dx.doi.org/10.17504/protocols.io.tzxep7n)
(S2 Table).

For those families without causative variants in known ID genes, we obtained runs of
homozygosity (>2 MB) shared by affected members of each family (53 Table). Only homozy-
gous INDELSs, single nucleotide variants, and CNVs mapping to runs of homozygosity were
included in the analysis.

Results

On average, 99%, 94% and 89% of the captured regions were covered by 1X, 5X, and 10X
reads, respectively. Average read depth was 59X in our cohort.

Known variants associated with intellectual disability

We identified two variants that have previously been reported to cause ID in two genes
(Table 1). In family S223, one male proband (II:1) was homozygous for c.427dupA (p.
T143Nfs*5) in MCPH]. In family S25, both affected brothers (II:1 and II:2) were found to be
hemizygous for c.459_462delAGAG (p.R153Sfs*41) in PQBP]I.

Novel variants in known genes associated with intellectual disability

Whole exome sequencing of the probands resulted in identification of seven novel variants in
seven genes known to cause ID (Table 1 and S4 Table). These variants were associated with
varying phenotypes (Table 2). Variant segregation was confirmed with Sanger sequencing (Fig
1). Homozygous variants in CC2D1A and ASPM led to frameshift mutations. Additionally,
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Fig 1. The electropherograms of the identified variants and pedigrees of the families in this study. WT: Wildtype, MUT: Mutant.
https://doi.org/10.1371/journal.pone.0208324.9001
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homozygous nonsense variants in TUSC3 and WDR62 and a heterozygous variant in SLCIA6
occurring at a splice site were identified. Lastly, a homozygous substitution in RARS and two
heterozygous variants in ZNF335 were found. These results are described in more detail in

Table 1.

Mutated FAM183A as a causative candidate for intellectual disability

Whole exome sequencing revealed a nonsense variant (c.377G>A; p.W126*) in FAM183A4, a
novel candidate gene for ARID. Two siblings, MR25-11:1 and MR25-11:2, were homozygous
for the variant, and in the family, the variant segregated in an autosomal recessive fashion

(Fig 1).

Discussion

We have identified causative variants in 10 out of 21 Turkish families with nonsyndromic

ARID.

11 families remained unsolved in our cohort (S1 Fig and S5 Table).

Known variants associated with intellectual disability

The two families with previously reported causative variants for ID are phenotypically consis-
tent with the previously described findings. Both brothers (II:1 and II:2) in family S25 show
findings indicative of Renpenning syndrome [MIM 309500], an X-linked condition [17].
Zhang et al (2017) discusses the molecular pathogenesis of mutations in PQBPI, pointing
toward the promotion of ubiquitin-mediated degradation of fragile X mental retardation
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protein (FMRP) resulting in synaptic dysfunction [19]. WES, elucidating the presence of a
known causative variant, accompanied with phenotypic data confirmed a diagnosis of Micro-
cephaly 1 in proband S223-II:1 [18].

Novel variants in known genes associated with intellectual disability

CC2D1A variants are associated with ARID (MRT3) [MIM 608443]. This disorder is character-
ized by significantly below average general intellectual functioning associated with impairments
in adaptive behavior which manifest during the developmental period. Analysis in Drosophila
links CC2D1A, a member of the mammal lethal giant discs (Igd) protein family, to endosomal
trafficking of Notch proteins, well known transmembrane receptors that regulate cell fate dur-
ing development [20]. Basel-Vanagaite et al. (2006) reported homozygosity for a protein trun-
cating mutation in CC2DIA in affected members of 9 consanguineous Israeli-Arab families
with nonsyndromic ID [21]. The homozygous deletion at c.811delG (p.A271Pfs*30) of
CC2D1A found in family AUI0 is the fifth variant associated with ID reported in this gene.

TUSC3 variants are known to cause Mental Retardation, Autosomal Recessive 7 (MRT7)
[MIM 611093]. Including the finding reported here, four independent autosomal recessive
variants in TUSC3 are known to cause ARID [22-24]. The exact molecular pathogenesis is
unknown. One study suggests the involvement of N-glycosylation in higher brain functions
[24], while another postulates disturbed magnesium levels due to TUSC3 impairment may
play a role in the pathogenesis of intellectual disability [22]. This novel nonsense variant at
c.793C>T (p.Q265*) in TUSC3 in family MR32 further demonstrates the significance of this
gene’s association with ARID.

Seventeen variants in numerous domains of WDR62 have been reported to be associated
with Microcephaly 2, primary, autosomal recessive, with or without cortical malformations
(MCPH2) [MIM 604317] [25-28]. Cellular studies indicate that WDR62 is a crucial protein in
enabling spindle poles to position the cytokinetic furrow and prolong neural precursor genera-
tion, a process that is uniquely vital to the proper growth of the human cerebral cortex [25].
The attributes of the proband, S228-11:1, described in Table 2, are consistent with this pheno-
type. This novel homozygous nonsense variant in WDR62, ¢.3406C>T (p.R1136*) along with
the phenotype of the proband further implicate this gene’s involvement in ARID.

Variants in SLC9A6 are associated with Mental retardation, X-linked syndromic
(MRXSCH), Christianson type [MIM 300243]. SLC9A6 encodes a monovalent sodium-selec-
tive sodium/hydrogen exchanger (NHE) found in the membranes of intracellular organelles
such as mitochondria and endosomes; NHEs participate in a wide array of essential cellular
processes [29]. MRXSCH is characterized by profound ID, epilepsy, ataxia, and microcephaly.
The phenotype of the female proband (S234-II:1), described in Table 2, is consistent with the
presentation of MRXSCH. Linkage analysis and DNA sequencing of families with MRXSCH
have identified multiple variants in the SLC9A6, the majority of which are truncating and/or
splice mutations [30-34]. The novel heterozygous splice-site variant, ¢.1631+1G>A in
SLCYAG6, adds to the body of literature on pathogenic splice-site variants reported in this gene.

ZNF335 mutations are associated with Microcephaly 10, primary, autosomal recessive
(MCPHI10) [MIM 615095]. One homozygous variant in ZNF335 (5236-11:1), causing both a
missense change and a splice site defect, is linked to this syndrome [35]. This same study dem-
onstrated that ZNF335 deficiency causes disrupted neuronal proliferation and differentiation
in vitro and in vivo mouse models [35]. Both discovered variants in our study are predicted to
be disease causing and are likely to result in a hypomorphic variant of ZNF335. This, in combi-
nation with the gene’s association with MCPH10 and altered neuronal growth in vitro and in
vivo, make it likely that these mutations are the cause of this family’s ID.
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Variants in ASPM are associated with Microcephaly 5, primary, autosomal recessive
(MCPHS5) [MIM 608716]. ASPM has been implicated in the determination of human cerebral
cortical size via maintenance of a cleavage plane orientation allowing for symmetric, prolifer-
ative division of neuroepithelial cells during brain development [36]. Several aberrations in
ASPM have been reported in the literature with a clear majority resulting in premature termi-
nation [37-41]. Similarly to previously reported variants, the novel homozygous deletion
€.5219_5225delGAGGATA (p.R1740Tfs*7) found in ASPM (S243-11:1) leads to a premature
stop codon, suggesting that this variant is involved in ARID.

Lastly, variants in RARS are associated with Leukodystrophy, hypomyelinating, 9 (HLD9)
[MIM 616140]. RARS encodes the cytoplasmic arginyl-tRNA synthetase, an enzyme essential
for RNA translation and a key player in myelination, among the subunits of the multisynthase
complex [42]. Thus, mutations in RARS cause a hypomylenating disorder of the central ner-
vous system. Previously identified variants in RARS causing the HLD9 phenotype are com-
pound heterozygous mutations [42]. In contrast to previously identified variants in RARS, the
novel variant found in family $244 is a homozygous missense mutation. After exome sequenc-
ing and segregation analysis, these mutations are the only variants that segregate with the fami-
ly’s phenotype. Therefore, we propose that this homozygous missense variant has a role in
ARID and is the most likely cause of ID this family.

Mutated FAM183A as a causative candidate for intellectual disability

In family, MR 25, there were two siblings with ID, low set ears, and microcephaly along with
other correlating phenotypic features (Table 2, Fig 1). The two affected children are homozy-
gous for a FAM183A variant (c.377G>A; p.W126*). This variant, found in MR25-II:1 and
MR25-11:2, is located in the longest shared homozygous genomic region in these siblings (S6
Table). FAM183A is expressed in human brain, including the hippocampus, caudate nucleus,
and medulla oblongata [43]. Five heterozygous large deletions including FAM183A are
reported in the DECIPHER database, (https://decipher.sanger.ac.uk/; accessed 07/08/2018).
Three out of five variants are found in patients with intellectual disability, developmental
delay, or microcephaly; however, the variants’ pathogenicities are not known [44].

The pathogenicity models, expression in brain tissue, and validated autosomal recessive seg-
regation of this variant with the phenotype in family MR 25 support a role for this homozygous
nonsense variant as contributing to the inheritance of ID. More research, including functional
studies, should be done to further support the role of FAM183A in the pathogenesis of ID.

In 10 out of 21 families investigated (47.6%) we identified likely disease-causing DNA vari-
ants. Although CNVs are important cause of ID, we did not detect any CNV in our cohort. As
expected for affected offspring of healthy consanguineous parents, the clear majority of these
were autosomal recessive defects. This yield is comparable to other recent investigations in
highly consanguineous populations [7,45-50].

Supporting information

S1 Table. List of the genes used for the analysis in our cohort. The gene list is created by
using the command ((((mental retardation|Clinical Synopsis]) OR microcephaly|[Clinical Syn-
opsis]) OR intellectual disability[Clinical Synopsis]) OR cognitive impairment[Clinical Synopsis])
AND “prefix pound”[Properties] within the web site https://www.ncbi.nlm.nih.gov/omim
(accessed 10/02/2018). After curation of the gene list, we analyzed single nucleotide variants,
INDELSs and copy number variants in the gene list. Due to limitation of the next generation
sequencing method that we used, we did not analyze the repeat expansions.

(XLSX)
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$2 Table. Sequences of the primers used for the Sanger sequencing.
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$4 Table. Chromosomal position of the identified variants (hgl9).
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S1 Fig. Pedigrees of the unsolved families.
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