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Abstract
Chronic pain is an endemic problem involving both peripheral and brain pathophysiology. Although biomarkers have revolutionized
many areas of medicine, biomarkers for pain have remained controversial and relatively underdeveloped. With the realization
that biomarkers can reveal pain-causingmechanisms of disease in brain circuits and in the periphery, this situation is poised to change.
In particular, brain pathophysiology may be diagnosable with human brain imaging, particularly when imaging is combined with
machine learning techniques designed to identify predictivemeasures embedded in complex data sets. In this review, we explicate the
need for brain-based biomarkers for pain, some of their potential uses, and some of the most popular machine learning approaches
that have been brought to bear. Then, we evaluate the current state of pain biomarkers developed with several commonly used
methods, including structural magnetic resonance imaging, functionalmagnetic resonance imaging and electroencephalography. The
field is in the early stages of biomarker development, but these complementary methodologies have already produced some
encouraging predictive models that must be tested more extensively across laboratories and clinical populations.
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1. Introduction

Pain is the primary reason why people seek health care and is the
top source of disability in the United States.95 Chronic pain is
a disease in its own right36,134 and, if untreated, can lead to
depression,87 insomnia, depressed immune function, substance
abuse,87 impaired cognitive function,2 and costs to families and
caregivers.41

One might expect chronic pain to be diminishing over time, as
medical diagnoses become more sophisticated and research
brings new treatments to bear. Unfortunately, this does not seem
to be the case. In fact, the prevalence of chronic pain is
increasing.32,35,63,64 Multiple factors may be driving this increase,
including obesity, changes in work demands, increased rates of
depression and anxiety, aging populations, and increased
symptom awareness.38,42 Regardless, little progress has been

made in uncovering the physiological basis of pain in individual
patients, although this could potentially drive more effective,
individualized treatment.

In many fields, biomarkers have been developed that point to
specific structural, biochemical, or other pathophysiological
mechanisms, from oncology to cardiology to internal medicine.
Echocardiograms and cardiac biochemical markers are rou-
tinely used to diagnose heart disease.50 Diabetes can be
diagnosed with plasma glucose tests.50 Imaging is routinely
used to help diagnose stroke, neoplasms, embolisms, and other
causes of disease. In some fields, such as cancer, traditional
assessments are increasingly complemented by biomolecular
assays that can indicate the effectiveness of specific molecular
treatment.50

Pain, however, has few biomarkers that are widely used in
clinical practice.153 Some biomarkers are intended to track
pain intensity and complement self-reports as a way of
assessing the incidence or intensity of pain. Others are
intended to reveal underlying pathobiological conditions that
cause pain. As we argue below, this latter type is what is most
badly needed. However, adequate biomarkers for pain-
causing pathology are unavailable for most forms of pain. For
example, structural magnetic resonance imaging (sMRI) of the
spine is frequently used to diagnose conditions leading to low
back pain. This may be useful in specific cases—eg, for
identifying subpopulations with particular treatable patholo-
gies—but they are now widely recognized to have poor
diagnostic validity for pain.17,18,25

Part of the problem is that pain is complex, involving physical,
psychological, emotional, and social aspects.16,150 Perhaps
consequently, a large proportion of pain is idiopathic, with no
known physical or structural cause. A collection of animal studies
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has shown that postinjury pain may be maintained by sensitiza-
tion of an array of nervous system pathways, from spinal
sensitization69 to sensitization in nuclei deepwithin the brain—the
amygdala,19,27,99 nucleus accumbens,76,112,123 and medial pre-
frontal cortex.76,131 In some cases, brain changes potentiate
descending pain facilitation, amplifying spinal cord responses to
noxious events.81,131 Thus, in addition to peripheral pathology,
chronic pain involves hidden pathology in the central nervous
system, which has not been accessible to study in humans until
the recent advent of noninvasive imaging.1,43,136 Accordingly,
there is substantial interest in developing neuroimaging-based
biomarkers that can tell usmore about (1) howpain is constructed
in the brain, (2) what biological varieties of pain there may be,
and—crucially for patients—(3) what form of treatable patho-
physiology an individual patient with chronic pain may have.

The development of such biomarkers has, however, been
controversial. A thoughtful contingency of scholars and ethicists
have rightly pointed out that relying on biological surrogate
measures for pain rather than patients’ self-reports would set
a dangerous precedent and be disastrous for those whose pain is
denied because it does not register in a biomarker-based test.28

However, the space of uses of potential biomarkers is large, and
these ethical concerns apply only to one of many use cases for
biomarkers defined by the U.S. Food and Drug Administration
(FDA)—use as a “surrogate endpoint” to replace symptom
reports.50 The FDA defines a range of other uses for biomarkers,
from determining risk of future pain progression (prognostic
biomarkers) to tracking whether a drug is exerting its intended
pharmacodynamic effects (response biomarkers), or even
predicting whether a treatment will be helpful for an individual
patient (predictive biomarkers). For many of these categories,
biomarkers need not track symptoms directly to be useful, as long
as they reveal biological processes related to the generation or
maintenance of pain.

In certain cases, a surrogate endpoint is necessary. Infants, like
those with severe cognitive impairments and dementia, cannot
tell us how they feel, which makes adequate treatment
difficult.77,100,119 Early-life pain also increases later pain sensitivity
and chronic pain risk.29,104,148 Even in these cases, we need not
use biomarkers as surrogate endpoints, but rather as additional
confirmatory measures, part of a broader pattern of behaviors
(eg, infant cries and facial expressions) that can help people and
their care providers determine the best course of action.

However, the most compelling use of brain biomarkers is in
detecting pathophysiology and defining new biologically-based
diagnoses of pain disorders. Imagine a patient whose back injury
has healed, but whose pain persists due to sensitization in
parabrachial–amygdala pathways. Back surgery would be a poor
choice, as it is unlikely to help and may even make the situation
worse: 20% to 40% of patients experience increased long-term
pain and disability after surgery.3,101,126 Thus, a neuroimaging-
based biomarker for parabrachial–amygdala sensitization could
be a useful predictive biomarker for back surgery.

Accordingly, a number of recent funding initiatives are directed
at development of biomarkers for pain. Some, like the U.S.
National Institutes of Health’s “Helping to End Addiction Long-
Term” (HEAL) initiative, take a multipronged approach. Some
HEAL funding programs focus on preclinical pain markers.
Others, like the Acute to Chronic Pain Signatures program, focus
on human prognostic biomarkers, with imaging- and tissue
“omic”–based biomarkers both playing essential roles.

Here, we review studies that have advanced the field of brain
biomarker development. Hundreds of studies have contributed to
our understanding of the brain bases of pain,1,34 but we restrict

our review to studies that develop brain models suitable for
diagnosing the presence of pain, predict its intensity in individual
people, or predict treatment outcomes. In addition, the studies
we review attempt to validate their predictions on new, out-of-
sample individuals from the same or different populations. These
models generally use multiple brain features to form a prediction
of pain incidence or intensity, based on the idea that pain
encoding is distributed across multiple brain systems.

In addition, we restrict the scope of the review to several
commonly used methods: sMRI and functional MRI (fMRI) and
electroencephalography (EEG). Functional MRI is further sepa-
rated into task-related (eg, painful stimulation–evoked) and
resting-state fMRI (rs-fMRI). These methods are complementary,
and each has its unique strengths and use cases. Structural MRI
relies on relatively standardized acquisition methods available at
virtually every major hospital and can identify stable changes that
confer risk of chronic pain7,89 or result from pain-inducing
injuries.125 Functional MRI can track within-person fluctuations
in pain over time, yielding insights into the brain systems most
closely associated with the experience of pain itself or associated
behaviors. Electroencephalography is the most cost-effective
measure of the 3 and can yield millisecond-level information
about the timing of pain-related signals and about pain-
associated brain oscillations.105 Both rs-fMRI and EEG can yield
measures of stable person-level characteristics, through studies
of individual differences in stimulus-evoked responses, fMRI
connectivity, or patterns of EEG coherence.

1.1. Types of biomarkers

A biomarker is “a defined characteristic that is measured as an
indicator of normal biological processes, pathogenic processes,
or responses to an exposure or intervention, including therapeutic
interventions.”50 The FDA recently developed a glossary in which
different types of biomarkers have been defined. As we describe
below, pain researchers have developed biomarkers that could
be purposed for several of the use cases defined by the FDA,
including diagnostic, prognostic, predictive, susceptibility/risk,
and surrogate endpoint biomarkers.

A diagnostic biomarker is a measure indicative of a certain
condition or disease.50 Applications include confirming the
presence of pain or a chronic pain condition, or a specific pain
condition. A predictive biomarker is used to predict the response
to a treatment (ie, drug, device, or therapy) or an environmental
agent,50 including both beneficial and adverse effects.

Diagnostic and predictive biomarkers can be used together to
stratify patients, ie, to redefine pain subtypes based on biological
categories or “biotypes.” The value of a diagnosis is largely in its
ability to guide treatment. “Pain” and “no pain” may not be useful
clinical categories, in the sense that “pain sufferers” are not
a homogenous population, and there is no one treatment for
“pain.” Perhaps surprisingly, more specific types of pain such as
“knee osteoarthritis” may also have less diagnostic value than we
commonly assume because “arthritis” is a description of
symptoms rather than a disease mechanism. It may be caused
by issues with localized tissue (eg, knee cartilage), a systemic
inflammatory condition such as rheumatoid arthritis, or other
systemic processes causing chronic widespread pain. These
potential causes have different underlying mechanisms and
should be treated differently.

Biomarkers need not identify current pain or disability to be
useful—some of the most important uses involve predicting who
is likely to develop chronic pain in the future and intervene before it
is too late. In some cases, this may be as simple as avoiding
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surgery if the risks of postsurgical chronic pain are high.
Prognostic biomarkers are designed to track future reoccurrence
or progression of a disease.50 Prognostic biomarkers apply to
people who already have an illness; they could, for example, be
used to predict those likely to transition from acute to chronic
pain. In healthy populations, susceptibility markers identify
individuals at risk of a certain condition or disease.50

The final use case for biomarkers is surrogate endpoints, which
are variables intended to reflect an outcome of interest that is
a potential substitute or adjunct (supporting)measure of a disease
state. Some biological or behavioral measures have been so
strongly and consistently linked to disease that they can serve as
the basis for validating a new treatment. Examples include forced
expiratory volume in 1 second (FEV1) for asthma, serum
creatinine in kidney disease, bacterial counts for antiseptics,
and blood pressure for cardiovascular disorders.51 Surrogate
endpoints generally require a long progression of validation on
increasingly large and diverse samples.

We have argued that pain biomarkers should not be used as
surrogate endpoints to falsify patients’ reports.28,147 This is partly
because pain may arise from diverse brain mechanisms, some of
which we can measure and others which we cannot. A patient
with real pain may nonetheless show brain patterns atypical of
pain due to, for example, reorganization after damage. A much
stronger case can be made for supplementing existing pain
measures, for example, as part of a multimodel pain assessment
program. However, we do not rule out the possibility that in the
future, brain measures may be precise enough and sufficiently
well validated that they could serve as surrogate measures for
treatments. If, for example, a reliable biomarker could be
developed for human parabrachial–amygdala hypersensitization
to normally innocuous stimuli, treatments that reduce such hy-
persensitization might one day be considered valuable in their
own right, even if that hypersensitivity is only a small part of any
given patient’s total pain and dysfunction.

1.2. Criteria for evaluating biomarkers

There has been considerable debate about whether pain
biomarkers should be used for clinical and other (eg, legal)
purposes.28 One productive way forward is to treat the use of
biomarkers as an empirical matter: define criteria that should be
met for a biomarker to be considered valid and useful, and
evaluate biomarkers against them. This will allow us to examine
biomarkers of various types—behavior, blood-based, cerebro-
spinal fluid-based, and brain-based—on a level playing field.
There are many such criteria, and some, such as cost-
effectiveness and the potential for misapplication in current
health care environments, extend beyond scientific consider-
ations. Here, we limit the discussion to a partial list of scientific
criteria. For further discussion, see Refs. 28, 151, and 153.

1.2.1. Transparency and usability

A biomarker should have clear, standardized procedures for
applying it to new cases.151 If the model is a spatiotemporal
pattern to be applied across MRI voxels or EEG leads, for
example, it is crucial to define precisely which voxels or leads are
involved, and to what degree. In many cases, a written de-
scription of the measure will be inadequate, and electronic files
defining the spatiotemporal patterns to be applied, along with
data preprocessing and scaling steps, will be required. We
recently reviewed nearly 600 MRI-based models that used
machine learning to develop biomarkers for various brain

disorders.153 Only a fraction of those models have a shared or
shareable procedure for applying them to new cases. Without
such procedures, it is difficult to imagine how they will be
independently validated and applied.

1.2.2. Sensitivity and effect size

Sensitivity and specificity, and the related characteristics positive
predictive value (PPV) and negative predictive value (NPV), are the
basic metrics that characterize diagnostic performance. Sensi-
tivity is the likelihood that a biomarker will yield a positive test result
if a latent condition (eg, pain) is present, also called the “hit rate” or
“recall” for the test. Formally, this can be expressed asP(marker1
|pain), the probability of observing a marker conditional on pain.
The marker might be the expression of a continuous brain
response after applying some cutoff threshold.147 Although
sensitivity is defined for binary events, it is directly and positively
related to the effect size of the relationship between the brain
measure and pain; thus, for continuousmeasures, the correlation
between the intensity of the marker signal and outcome is an
analogue of sensitivity.151

1.2.3. Specificity

Specificity, also calledprecision, is the probability that a biomarker
will respond in the absence of a condition. For pain, this can be
expressed as P(marker2 |no pain) or as 1 minus the false alarm
rate. This is often defined based on disease-free people in the
medical literature, but it is also applied to differential diagnosis.
When it comes to brain states, there are many distinct states and
experiences that are potentially confusable with pain. Specificity
can be defined and quantified relative to a specific set of
alternatives, and testing various plausible alternatives is a long-
term proposition that requires multiple studies. For example, we
and others have tested a biomarker for evoked pain, called the
Neurologic Pain Signature (NPS), against a number of other,
potentially confusable conditions (reviewed in Ref. 147; dis-
cussed further below). Although it is specific relative to (ie, does
not respond to) many salient, arousing affective stimuli, there will
likely be some classes of nonpainful stimuli or mental states that
do activate themarker to some degree. These can both inform us
as towhich conditions share common neural substrates with pain
and provide boundary conditions on its usefulness.

The diagnostic utility of a biomarker is more directly related to
its PPV and NPV. The PPV is the likelihood that the underlying
latent condition is present given a positive test result, P(pain|
marker1). It can be calculated from the sensitivity, specificity, and
prevalence (or “base rate”) of a disorder. The PPV is highly
sensitive to prevalence and specificity. For example, in a disease
that affects 1% of the population, even if sensitivity and specificity
are both 98%, the PPV is only 33%. That is, a positive biomarker
test only implies a 33%chance of having the underlying condition.
If the sensitivity drops to 90%, there is little impact (PPV5 31%),
but if the specificity drops to 90%, the PPV drops to 9%. Thus,
testing and optimizing for specificity is crucially important in
biomarker development.28,65

1.2.4. Generalizability

Inevitably, the conditions under which a biomarker is applied will
differ from those under which it was developed in some ways.
Generalizability refers to whether a prediction will hold when
applied to a test data set or condition that differs from the original
training set. Generalization can be assessed across individuals,
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variations in testing procedures and analysis pipelines, equipment
(eg, different scanners), and populations (for a more extensive
discussion, see Ref. 65). As the test conditions vary from the
training conditions, diagnostic accuracy invariably decreases,
although some biomarkers are more generalizable than others.
For example, we have tested the NPS in 34 unique cohorts of
participants from collaborators worldwide (counting only published
results to date153,162) and validated its generalizability across
multiple types of somatic and visceral pain (see below).

Many machine learning based studies use cross-validation to
assess generalization to out-of-sample participants. The idea is to
randomly split the participants into training (eg, 80% of
participants) and testing (eg, 20%of participants), often stratifying
on outcome and/or other variables. A biomarker is developed on
the training data, which may involve selecting or combining
across multiple variables to achieve maximum accuracy, and
then, the final marker is tested on the held-out test sample.
Cross-validation is a well-established safeguard against bias and
overoptimistic accuracy estimates, but it also has limitations and
can fail.143 In our survey of machine learning based neuroimaging
biomarkers for clinical conditions, cross-validation was used in
nearly all articles, but only a small subset of articles (about 9%)
tested their marker in an independent cohort.153 Assessing
generalizability across multiple sources of variation will be crucial
as translational efforts move forward,28 and some recent efforts
have been aimed explicitly at optimizing generalizability.65

Another important aspect of generalizability is ecological
validity. To be translationally useful, biomarkers developed in
research laboratories should be applicable to clinical or other
appropriate settings.

1.2.5. Interpretability and explainability

A biomarker should be interpretable in several senses (see Ref.
153 for more discussion). First, it should have convergent validity
with other methods, eg, human electrophysiology, lesion studies,
and invasive techniques in animal studies (eg, optogenetics,
chemogenetics, and imaging).28 This type of external validation is
important for confidence that a biomarker is biologically meaning-
ful and is underpinned by plausible mechanisms. It is also
a crucial aspect of falsifiability. Second, for biomarkers to be
credible and trusted by users, it is advantageous if the principles
underlying their predictions can be explained (eg, in terms of
crucial brain regions, systems, or neurochemicals).

2. Multivariate pattern analysis and machine
learning analysis

Multivariate pattern analysis (MVPA) and machine learning have
been often used to construct biomarkers. Multivariate pattern
analysis is a set of methods that model task or mental states (eg,
pain) using distributed patterns of neural activity.54 In univariate
approaches, tasks or states are predictors, and brain signals are
the outcomes to be explained—usually one voxel at a time. In
MVPA approaches, mental states are assumed to reflect
combinations of brain signals working together.Machine learning
is a complementary concept. Machine learning comprises a set of
algorithms, data selection methods and processing procedures
developed to identify predictive models from complex, multivar-
iate data. In the MVPA space, encoding refers to how single
voxels encode task features or mental states, and decoding
refers to the process ofmaking predictions about such features or
states from brain data.98 Biomarkers are essentially decoding
models.

The features of a data set are variables used to train a model.
Many kinds of brain features can be used. In fMRI, signals might
be task-evoked activity in a set of voxels, activity in components
extracted with independent component analysis (ICA), fluctuation
energy at certain frequencies, functional or effective connectivity
across a set of regions, graph theoretic properties such as global
network efficiency, and more. In sMRI, features could include
local gray matter density estimates with voxel-based morphom-
etry, cortical thickness, bending energy, gray matter volume in
various structures, and other measures. For EEG and magneto-
encephalography (MEG), features can include stimulus-evoked
potentials, energy at various oscillation frequencies, the ampli-
tude and phase of coherence measures across sensors, and
activity in latent sources.105 Often, features are selected or
combined together into higher-level units during machine
learning analysis.

Compared with univariate analyses, optimized MVPA patterns
often have dramatically larger effect sizes, and thus increased
sensitivity, in relation to tasks and mental states.57,65 This is
because most mental states are accomplished by distributed
networks—signal in multiple brain areas is relevant.153 When this
is true, models that capture those distributed signals will
outperform those based on local signals. In addition, MVPA
patterns have shownmuch greater specificity as well.57 Although
single voxels are not very selective for individual tasks or mental
states, different tasks can produce distinct patterns of activity
across voxels, even when those voxels are all activated by
multiple tasks.154 Suppose that a set of voxels each include
neural populations that respond to 2 tasks. Thus, they are both
activated by both tasks. However, the density of neurons
dedicated to task 1 and task 2 will vary across voxels. This will
influence the relative level of activity across voxels and allow the
tasks to be discriminated based on the observed multivoxel
patterns.

2.1. Analysis choices in biomarker construction

There are a wide variety of potential choices to be made when
performing MVPA, including which outcomes (tasks or mental
states) to predict and which features to include. Outcomes are
generally either categorical (eg, a stimulus class, subject re-
sponse, or disease status) or continuous (eg, measures of pain or
function, or age), and can vary within-person, between-person,
or both.

Feature selection is also a critical part of the process. One
fundamental choice concerns the spatial scope of the analysis.
Many early applications of predictive modeling were applied
within individual brain regions, particularly in the visual system, to
“decode” object features based on local topography.55,61 For
translational purposes, it has become popular to build models
that include features distributed across the whole brain. This
integrates all the measures available across the brain, and
sometimes even across multiple types of images, into a single
predictive model.

The traditional wisdom has been that constructing such maps
is not feasible because the number of features (eg, voxels)
exceeds the number of observations (eg, subjects or trials),
causing problems with model overfitting and interpretability.
However, statistical techniques, including kernel form regression
or classification, dimension reduction, and penalization, can help
stabilize maps even when large numbers of voxels are included in
the model. Also, techniques such as cross-validation and
multistudy prospective testing permit valid and essentially
unbiased tests of model performance. If effect sizes are large
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and brain activity or related measures are robustly related to the
outcome, then predictive maps with high accuracy can be
estimated even using small samples.21

Another important consideration is how to deal with con-
founds. Drug use, comorbid pathology, age, sex, and head
movement are specific concerns for clinical decoding studies.
Some of these might be part of the disorder and not easily
separated. For example, a prognostic biomarker for chronic
postsurgical painmay involve co-occurring factors such as fear of
pain and depression. However, it could still serve as a useful
biomarker. In addition, some biomarkers might reflect conse-
quences rather than causes of pain but still be useful. For
example, motor cortical connectivity changes might result from
reduced mobility but still correlate with pain. What is key in these
situations is to understand, to the degree possible, which
biomarkers are causally related to pain pathogenesis, and which
may be more closely related to other co-occurring variables.

Several studies have investigated ways to control for con-
founds and/or test whether they are likely driving relationships
between biomarkers and outcomes.26,111,128,133 Some helpful
procedures include: (1) regressing out the confound within the
cross-validation loop; this is important because doing this outside
the loop might create dependence and lead to pessimistic
performances128; (2) testing whether a biomarker relates more
strongly to the outcome of interest (eg, pain) than any potential
co-occurring variables (eg, sleep loss or drug use); (3) testing the
mediation between variables, eg, if a biomarker mediates the
relationship between sleep loss and pain, it is related to pain even
when controlling for sleep loss; (4) during training, identify
biomarkers unrelated to co-occurring variables by stratifying
samples andmatching these on confounds; and (5) disaggregate
some variables, such as sex, and test whether predictions are
better within subgroups than across the whole population.

One confound that deserves special attention in decoding
analyses is head motion.86 Head motion might have large
influences on decoding performance (eg, predicting pain
condition vs control where patients with pain might have more
difficulties to lie still in the scanner). There are several ways to
mitigate this, including behavioral training before scanning,86

real-time feedback during scanning, and postprocessing meth-
ods such as scrubbing,109 aCompCor,96 ICA-AROMA,129

RETROICOR,46 and more (for comparisons, see Refs. 102
and 118).

2.2. Types of algorithms

2.2.1. Classification algorithms

Classification is a supervised learning technique used to establish
rules for identifying the category/class to which a new data point
will fall under. Common techniques include support vector
machines (SVMs), k-nearest neighbors, and Gaussian naive
Bayes.

Many classification algorithms seek to find a hyperplane that
separates observations in the feature space by category/class. In
this setting, the distance between the hyperplane and the closest
data points on either side is referred to as the margin. Support
vector machines find the hyperplane that has the largest margin.
A quadratic programming algorithm is used to estimate the
coefficients that maximize the margin. Support vector machines
are effective in high-dimensional spaces—eg, with whole-brain
patterns.

The k-nearest neighbor algorithm is both simple and effective.
Classification of a new data point is performed by searching

through the entire training set for the K most similar instances
(neighbors) and performing a simple majority vote of their
category/class. The algorithm is simple to implement, robust to
noisy training data, and effective with large training data sets.
Finding the neighbors can be difficult in very high-dimensional
data (eg, many voxels), which can negatively affect the
algorithm’s performance.

Gaussian naive Bayes is another simple yet powerful algorithm
for classification. It involves using Bayes’ theorem to compute the
conditional probability for each class given each of a set of input
features (eg, voxels) is treated independently. It is called “naive”
because it assumes that each feature is independent. This is
a strong and often unrealistic assumption, but in many cases,
trying to model the complex dependencies across features can
be counterproductive for prediction. Thus, the approach is
effective for a large range of complex problems. It requires a small
amount of training data to estimate the necessary parameters
and is fast compared to more complex methods.

2.2.2. Regression algorithms

Regression algorithms are used to predict the value of
a continuous outcome variable, given the values of a feature
vector. Common techniques include multiple linear regression
and regression trees. Because of the number of features exceeds
the number of observations, penalized regression techniques are
often used in practice.

This involves building prior knowledge and constraints into the
regression equation (ie, the cost function) to encourage desirable
characteristics. For example, L1 penalization, used in LASSO

regression, constrains the absolute value of regression coef-
ficients and promotes sparsity (nonzero weights on only a few
features). L2 penalization, used in ridge regression, constrains the
geometric mean of the coefficients. A key difference between
these 2 approaches is that while ridge regression shrinks all of the
model coefficients towards zero, LASSO shrinks the coefficients
corresponding to the less important features to zero, thereby
removing them from the model. Thus, LASSO can be used for
feature selection when there are a large number of features.
Elastic net regression combines both types of penalties into
a single model. The consequence of using this combination is to
effectively shrink coefficients (like in ridge regression), while
setting some coefficients to zero (as in LASSO). This approach
tends to perform better than LASSOwhen features are correlated
with one another, as in brain imaging. In this setting, LASSO tends
to choose only one of the correlated features, while setting the
rest to zero.

In addition to operating on voxels, dimension-reduction steps
before regression can extract components, which then become
predictors. Principal component analysis, ICA, and latent factor
analysis are all examples (see, eg, the LASSO-PCR algorithm
described in Refs. 146 and 147). This is advantageous when
working with brain data because the data decomposition can
capture covariation across voxels, reducing the problem of
arbitrary selection of voxels within a correlated set found with
LASSO. Operating on components can also increase model
interpretability.

2.2.3. Decision trees

Decision trees are another important class of predictive modeling
algorithms and can be used for both regression and classification.
They are used to segment feature space (eg, values on a set of
brain voxels) into a number of smaller regions associated with
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particular outcome values. Treemethods are both nonparametric
and nonlinear. They are easy to learn and fast for making
predictions, and are accurate for a broad range of problems.
Random forests are a type of additive model that makes
predictions by combining decisions from a sequence of decision
trees. Each tree is constructed independently using a different
random subsample of the data.

2.2.4. Decoding models and multivariate extensions

The most straightforward applications of all the algorithms
described above use the algorithms as decoding models. Brain
states can be represented as a vector of features using individual
voxels,21,147 a collection of regions of interest (ROIs), temporal or
spatial frequencies, or patterns of connectivity.31,117 Correlations
across these features are usually accounted for in some way (eg,
this covariance is modeled in the regression process). In all the
cases above, a multivariate model of the brain is used to predict
a univariate outcome, usually a task or behavior thought to index
a mental state. This goal matches the goal of biomarker
development.

In some cases, one might wish to identify patterns that predict
combinations of task or behavioral variables without specifying in
advance what those combinations are. For example, one might
wish to model differences across 4 different types of painful
stimuli without prior knowledge of which distinctions the brain
“cares about.” Or, one might want to predict a latent behavioral
variable that is a combination of correlated variables—eg, pain
intensity, affect, and interference measures—without prespecify-
ing how those variables should be combined. Techniques
including partial least squares, canonical correlation, or semiblind
ICA are all extensions that can “decode” multiple outcomes
simultaneously.93

2.2.5. Encoding–decoding models

Encoding–decoding models are another extension of the
modeling framework described above. In the encoding part of
the model, a set of features describing a stimulus are used to
predict the activity in each individual voxel.98 For example, a visual
stimulus might be decomposed into a set of features using Gabor
filters,62 words into semantic features,93 and speech into
acoustic features.103 The voxel’s activity is regressed on these
features, providing a tuning curve for the voxel in the feature
space. This is repeated for all voxels, much as in standard
univariate mapping. The encoding model can be validated by
predicting the brain maps evoked by new, out-of-sample test
stimuli.62 To make predictions about the task/behavior a person
is experiencing, the decoding part of the model takes a brain
image and generates the most likely task/behavioral features
given activity in each voxel, aggregated across voxels into a single
overall prediction.66 Thus, overall, encoding–decoding models
add considerable flexibility in modeling stimulus–brain
relationships.

2.2.6. Deep learning

Deep learning is part of a family of machine learning methods
based on multilayer neural networks. It exploits hierarchical
feature representations learned directly from the raw data,
instead of using features designed using domain-specific
knowledge. Neural networks are related to data compression
approaches and other techniques described above, and can be
formally equivalent or nearly so to these techniques depending on

the way networks are constructed. For example, a 2-layer
network consisting of an input layer (eg, with one node per brain
voxel) and an output layer with one node per psychological
category can implement a linear classifier such as logistic
regression. Deep neural networks contain one or more in-
termediate (or “hidden”) layers, providing a series of hierarchical,
usually nonlinear transformations of the input data. These
networks differ from other machine learning techniques in that
the hidden layers encode complex features learned from the data,
thereby achieving increasingly higher levels of abstraction and
complexity.

There are 2 major classes of deep learning models that differ in
how information is propagated through the network. Feedforward
networks propagate information in a single direction, going from
the input to the output layer. Recurrent networks contain
feedback connections that allow the information layer or higher-
level layers to affect lower-level representations. In addition,
recent efforts add memory features, allowing activity from past
inputs to persist and affect the current activity and output. An
example is long short-term memory networks. Another widely
used development is the addition of convolutional layers, which
have connections that are constrained so that they map a space
of representations from one layer to a single unit in the next layer,
allowing the model to generalize across a space of lower-level
representations.

3. Pain biomarkers: state of the field

To provide a picture of current work on neuroimaging-based
biomarkers for pain, we searched for articles on PubMed (through
December 31, 2018) using 3 different search terms (“biomarker,”
“MVPA,” and “machine learning”) combined with “pain” and
“neuroimaging” (eg, pain AND neuroimaging AND machine
learning). Other measures considering biomarkers, including
behavioral measures and facial expressions, are reviewed in detail
by Lötsch and Ultsch.85 Articles were grouped by the imaging
method, and the 4 most widely used techniques were selected for
this review: fMRI, rs-fMRI, sMRI, and EEG (n5 50 studies). Studies
that did not include a proper cross-validation method were
excluded (n5 3), as this is one of the basic steps and requirements
to validate a predictive model. In total, 47 studies were included.
Figure 1 presents an overview of the studies and clearly indicates
an increase in the use of machine learning techniques for pain
prediction, as in many fields. Compared to the number of machine
learning based models in other fields, including Alzheimer, Par-
kinson, autism, attention deficit hyperactivity disorder, and oth-
ers,153 the number remains relatively small.

3.1. Functional magnetic resonance imaging

3.1.1. Evoked pain

Although decoding in fMRI was already used in the early 2000s,
mostly in vision research, it was not until 2010 that the first article
was published predicting pain.56,90 Marquand et al.90 demon-
strated the feasibility of predicting subjective heat pain intensity
from whole-brain fMRI volumes using Gaussian process re-
gression. This provided a relatively rare example of the use of
machine learning to predict a continuous outcome. A second
study predicted pain intensities using a regularization algorithm,
induced by an injection with an ascorbic acid.110 Further
developments were shown by Brown et al.,13 who used a second
test set as a form of prospective validation. They first measured
fMRI activity during painful and nonpainful thermal stimulation and
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trained an SVM that was used to classify pain in a cross-validation
sample, with accuracy of 86.6%, and a hold-out test sample, with
accuracy of 74.6%. The whole-brain SVM model included
positive weights in regions known to receive nociceptive
input—chiefly the mid-insula, anterior cingulate cortex, and
somatosensory cortex—which is an important neuroanatomical
validation. The whole-brain model also outperformed models
based on individual ROIs, suggesting that distributed models are
helpful.

The conclusion that distributed predictive models are helpful
was supported by Brodersen et al.,12 who used whole-brain
activity before and during near-threshold laser stimulation to
predict whether a stimulus would be experienced as painful or not
(accuracy was 57.6% and 61.4%, respectively).12 They found
that several individual regions were predictive of pain (eg, right
and left primary somatosensory cortex and right insula), but
considering multiple areas together significantly improved the
prediction accuracy.

LikeMarquand et al.,90 Cecchi et al.20 used a regressionmodel
to predict pain, this time combining machine learning with
a dynamic nonlinear psychophysical model.20 The psychophys-
ical model captured the transformation of noxious input into pain,
accounting for nonlinear and time-delayed effects of the rate of
change and stimulus history (including “offset analgesia”-type
effects). This continuous signal was then predicted using fMRI
time series data. This study illustrates the advantages of
combining machine learning and dynamic psychophysical
models.

With the exception of Brown et al.,13 studies to this point had
focused on within-person prediction12,20,90,110—which means
that the brain model differed across individuals—without
attempting to develop a biomarker tracking pain intensity that
could be applied to new individuals. In addition, these studies
did not test specificity relative to other types of nonpainful
sensory and emotional events. In 2013, Wager et al.147

developed a regression model that predicted pain intensity
across individuals and across 4 separate studies.147 The model
was named the NPS as a way of providing a label that could
indicate when the same model (eg, the same, pre-trained
regression weights) was being used in subsequent studies. The
NPS was trained and initially tested on a cross-validation
sample and tested prospectively on 3 subsequent studies. It
showed high sensitivity and specificity (94% or more) for
discriminating pain from nonpainful warmth, pain anticipation,
and pain recall when applied to new individuals. It also
discriminated pain from the “social pain” induced by viewing
stimuli related to romantic rejection, which had previously been
found to activate many “pain-processing” areas,37 including
the insula, anterior cingulate cortex, and secondary somato-
sensory cortex.68 Finally, the NPS response was suppressed
by the opiate remifentanil but unaffected by a placebo
manipulation (open vs hidden remifentanil, which affected pain
reports), showing differential responses to pharmacological
and psychological interventions.

Importantly, it was not claimed that the NPSwas amodel for all
pain under all circumstances, but rather amodel of a brain system
that contributes to pain experience and report, likely alongside
other psychological and brain processes. The existence of other
components has been borne out by a number of other studies
since.8,11,82,155,156,162 Some psychological manipulations, how-
ever, do appear to influence NPS responses.60,82

A later modeling effort identified a “signature” intended to
capture additional variability related to psychological influences
anddecision-makingprocesses.156Modelswere trained to predict
pain after controlling for stimulus intensity and the previously
developedNPS, and a groupmodel (named theStimulus Intensity-
Independent Pain Signature-1 [SIIPS-1]) was constructed. This
model was positively associated with pain in 98% of the
participants and mediated influences of expectancy cues and
perceived control in 2 independent, prospective hold-out studies.

Figure 1. Timeline of machine learning articles for pain: a timeline showing the number of published articles per neuroimaging technique or combinations of
techniques for pain studies investigating biomarkers (47 in total). Studies include the use of EEG, task fMRI (denoted fMRI), rs-fMRI, sMRI, or a combination of
techniques (denoted combined) and use a cross-validationmethod for their predictivemodel. EEG, electroencephalography; fMRI, functional magnetic resonance
imaging; rs-fMRI, resting-state functional magnetic resonance imaging; sMRI, structural magnetic resonance imaging.
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Further studies have continued to identify the specificity of the
NPS across different conditions, showing no responses to
aversive pictures,21 observations of others in pain,67 and pain
anticipation.67,82 Studies have also shown generalization to
multiple types of evoked pain, including thermal, mechanical,
laser, electrical, and visceral (rectal distension67,162). The NPS
also shows moderately high test–retest reliability, comparable
with, but somewhat lower than the reliability for self-reported
pain.152

In parallel, other studies have used fMRI decoding for specific
purposes and to develop new methods.138 In an interesting
study, Liang et al.79 showed that visual, tactile, and auditory
stimuli evoke distinct patterns of activity in primary sensory
cortices corresponding to all 3 modalities.79 Thus, primary visual
activity could provide above-chance decoding of whether
a stimulus is somatosensory or auditory. This fits with a body of
recent work, showing that brain information is distributed much
more broadly than many of us initially assumed.

3.1.2. Chronic pain

A recurring theme in chronic pain research is the idea that
patients exhibit long-term brain reorganization that makes them
react differently to evoked pain. Several early studies used
evoked responses to predict whether individuals experienced
chronic pain. For example, Baliki et al.6 found that patients with
chronic low back pain (cLBP) showed reduced responses to
painful stimulus offset in the nucleus accumbens. Although the
model was not cross-validated, they did show that the effect held
up in a subsequent scanning run from those participants. Callan
et al.15 used fMRI during evoked electrical stimulation on the back
to classify patients with cLBP vs healthy controls with 92.3%
accuracy in a cross-validation sample. Likewise, Harper et al.52

applied pressure pain to patients with temporomandibular
disorder (TMD) and healthy controls. They were not able to
classify patients from controls above-chance based on fMRI
activity, however, they were able to discriminate pressure pain
from rest and discriminate between facial pain (involved in TMD)
and thumb pain (a control area) in patients with TMD but not in
healthy controls. Thus, the study is a nice illustration of how
positive controls (basic positive findings for pressure vs rest) can
help make null findings (patient vs control) more useful.

Another pain disorder that has received attention is fibromyal-
gia. Using fMRI data during a visual stimulation task, researchers
were able to distinguish between patients with fibromyalgia and
healthy controls with 82% accuracy.53 Increased visual sensitivity
in patients was also correlated with their pain intensity. This
suggests that fibromyalgia may involve sensory abnormalities
beyond pain—an idea borne out in subsequent studies.83,84 In
one study, López-Solà et al.84 found that patients with
fibromyalgia both showed increased NPS responses to pressure
pain and altered fMRI responses to basic visual and auditory
stimuli, captured by an SVM classifier.84 These features were
combined into a model that classified patients from matched
controls with 93% cross-validated accuracy.

3.2. Evaluation

The use of fMRI for acute pain has allowed for a diverse range of
methods, classifiers, and pain stimuli (Table 1). Both pain
intensity scores90 and low and high pain is investigated using
thermal or laser stimuli.12,13,147 More recently, chronic pain has
been investigated, with promising results.15,84 Interestingly, fMRI
has been used primarily for diagnostic purposes, and a priority for

the future is the development of prognostic and predictive
biomarkers. In addition, models have focused on pain but
neglected other outcomes, including functionality, resistance to
distraction under pain, and other pain-relevant outcomes.

Most models show good classification performance, and
some have been validated in related samples13,84 or tested for
generalizability to new samples.147,156 Some models predicting
evoked pain, particularly the NPS, have been extensively
validated across samples, but evoked pain models predicting
clinical pain have not been validated in independent samples.
This is a priority for future work. In terms of interpretability,
activation of the insula, anterior cingulate, secondary somato-
sensory cortex, and thalamus are recurring themes, demonstrat-
ing some convergence. However, whether the models produce
consistent or divergent brain patterns is difficult to ascertain, and
more directmodel comparisons are needed. In summary, a range
of evoked pain models exist, and the most promising models
should be tested further, particularly for utility across clinical pain
conditions.

3.3. Resting-state functional magnetic resonance imaging

3.3.1. Chronic pain

Functional connectivity measures provide an appealing way to
characterize individual differences without relying on experimen-
tal tasks. It has been used to differentiate patients with pain from
controls in subacute back pain, functional dyspepsia, fibromyal-
gia, migraine, neuropathic pain, and chronic pelvic pain (CPP).
Most studies have applied machine learning procedures to
identify patterns of pairwise connectivity that differentiate patients
vs controls. Some studies have also used graph theoretic
measures or other higher-order summary properties. A few
studies have also begun to develop prognostic biomarkers.

In functional dyspepsia, several studies have combined functional
connectivity with machine learning procedures applied to pairwise
connectivity patterns. In one study, connectivity changes that were
correlated with symptom scores were used as features for
classification, resulting in 88% accuracy in an independent test
set, relying mostly on features in the limbic/paralimbic system and
prefrontal cortex.97 Liu et al.80 classified patients vs controls by
subjecting regional homogeneity values to SVM analysis, with 87%
cross-validated accuracy.80 Regional homogeneity measures the
similarity of synchronization between the time series of a voxel and its
closest voxels.158 This is an exampleof using ahigher-order property
that can be extracted from fMRI; however, it may also be very
sensitive to head movement. Ruling out confounds, including
movement, is an ongoing issue and will become more and more
important as translational efforts progress.

In an attempt at differential diagnosis across disorders, another
study attempted to find differences in functional connectivity in
areas involved in the salience network and default mode network
between patients with fibromyalgia, rheumatoid arthritis, and
healthy controls.130 A predefined model was not able to
successfully classify the different groups. Exploratory analyses
identified a model with diagnostic accuracy up to 78.8%, but this
may be overoptimistic because of model selection bias; further
studies are necessary to investigate the best-performingmodel in
new test subjects.

Functional connectivity in rs-fMRI has also been shown to
provide reasonable classification accuracy between healthy
controls and patients with migraine.24 A diagonal quadratic
discriminative analysis resulted in an overall accuracy of 81%
based on 6 pain-related areas.
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Althoughmost studies have used static connectivity (averaging
across time), some have begun to use dynamic connectivity
measures to predict pain. Dynamic connectivity estimates
associations among brain voxels at each time point in a time
series, providing an expanded set of features formachine learning
(at a cost in signal-to-noise). Cheng et al.23 used elastic net
regression to predict state and trait neuropathic pain from both
static and dynamic functional connectivity measures. They found
stronger associations with trait pain (r5 0.72) and found that the
most predictive features of these models were dynamic. Re-
latedly, another recent study used rs-fMRI to investigate low-
frequency oscillations (LFOs) in patients with chronic pain.114

Aberrations in LFOs were found to be predictive of trait pain
intensity, but not state pain intensity.

The studies above used data collected from a single site and
thus did not test generalizability across cohorts and scanners.
One recent study of chronic back pain used 3 independent data
sets, along with graph theoretic measures, to classify patients
with chronic back pain vs controls. Models based on both SVM
and deep learning resulted in above-chance, although modest,

accuracy (68% and 64% accuracy, respectively).88 These
accuracy levels are likely a realistic reflection of the state of the
art for rs-fMRI–based identification of patients with pain. In
addition, analysis of the network changes captured by themodels
identified a reorganization of connectivity modules centered on
sensorimotor cortical regions. This provides some input into
a current ambiguity in the field about the relative importance of
somatosensory vs limbic (eg, frontostriatal) systems in pain
chronification. However, more systematic model comparisons
will be needed to identify the systems crucial for the performance
of complex connectivity-based models.

3.3.2. Prognostic and predictive biomarkers

Prognostic biomarkers are rare, although they are an intensive
focus of current funding efforts. Other approaches that are
currently used (ie, besides machine learning) may further develop
and become useful predictive biomarkers.10 In the first example,
to the best of our knowledge, of an imaging-based prognostic
biomarker for pain, Baliki et al.7 found that functional connectivity

Table 1

Summary of all fMRI articles discussed in this review.

First author (Ref) Type of pain Pain condition (total sample size) Type of biomarker Prospective validation Model evaluation

Brodersen et al.12 Evoked HC (16) Diagnostic No Acc 5 57.6% (before stimulus)
Acc 5 61.4% (during stimulus)

Brown et al.13 Evoked HC (24) Diagnostic Yes Acc 5 86.6% (train 1 test)
Acc 5 74.6% (validation)

Callan et al.15 Chronic cLBP (13)
HC (13)

Diagnostic No Acc 5 92.3%
Sens 5 92.3%
Spec 5 92.3%

Cecchi et al.20 Evoked HC (14) Diagnostic No Acc 5 75%

Harper et al.52 Chronic TMD (9)
HC (10)

Diagnostic No Acc 5 60% (TMD vs controls)
Acc 5 85.1% (pain vs rest)
Acc 5 75% (face pain vs thumb pain in TMD)
Acc 5 55% (face pain vs thumb pain in HC)

Harte et al.53 Chronic FM (17)
HC (17)

Diagnostic No Acc 5 82%
Sens 5 82%
Spec 5 82%

Liang et al.79 Evoked HC (14) Diagnostic No S1: Acc 5 65%
A1: Acc 5 71%
V1: Acc 5 64%

López-Solà et al.84 Chronic FM (37)
HC (35)

Diagnostic Yes Acc 5 93%
Sens 5 92%
Spec 5 94%

Marquand et al.90 Evoked HC (15) Diagnostic No MSE 5 239.42 (GPR)

Prato et al.110 Evoked HC (14) Diagnostic No r 5 0.80

Tu et al.138 Evoked HC (32) Diagnostic No Acc 5 77.6%
MAE 5 1.62

Wager et al.147 Evoked HC (114) Diagnostic Yes Study 1:
Sens 5 .94%
Spec 5 .94%
Study 2:
Sens 5 93%
Spec 5 93%
Study 3:
Sens 5 85%
Spec 5 73%
Study 4:
Sens 5 86%
Spec 5 62%

Woo et al.156 Evoked HC (183) Diagnostic Yes Explained variance 5 9.7% (train 1 test)
Explained variance 5 6.7% (validation)

A1, primary auditory cortex; Acc, accuracy; cLBP, chronic low back pain; FM, fibromyalgia; fMRI, functional magnetic resonance imaging; GPR, Gaussian process regression; HC, healthy control; MAE, mean absolute error;

MSE, mean squared error; S1, primary somatosensory cortex; Sens, sensitivity; Spec, specificity; TMD, temporomandibular disorder; V1, primary visual cortex.
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in frontostriatal circuits predicted the transition from subacute to
chronic back pain 1 year later, with an area under the receiver
operator curve score (comparable with accuracy for present
purposes) of 0.81.7 Subsequently, Kutch et al.71 predicted 3-
month symptom change in patients with urologic CPP syndrome
in the multisite MAPP study.71 Functional connectivity data
identified 73.1% of patients correctly as improvers or nonim-
provers. However, this did not predict longer-term (ie, 6 and 12
months) chronicity. Finally, another innovative study used graph
theoretic measures to predict the magnitude of placebo
responses to treatment for knee osteoarthritis.132 The right
dorsolateral prefrontal cortex was more strongly connected to
other regions in strong placebo responders. This effect was
tested in an independent cohort and had an area under the curve
of 0.95—a high value that indicates that the study should be
tested for generalizability and reproducibility in other laboratories.

3.4. Evaluation

These studies, summarized in Table 2, reveal generally modest
accuracy in case–control classification and prognosis, although
some promising models warrant further testing. Analyses of
specificity are markedly absent from the literature, and the
development of models designed to generalize across sites has
only just begun.23,88 Most studies are case–control diagnostic
studies, but it is encouraging that prognostic and predictive
biomarkers are entering the space.7,71,132 In terms of interpret-
ability, it is difficult to assess convergence in findings across

studies because (1) the connectivity measures and models are
complex, involving large numbers of contributing brain voxels; (2)
nearly every study used a different analytic method; and (3) there
is reasonably good coverage of multiple disorders, but too few
studies in any disorder category to extract meaningful patterns
from the whole. This is an important shortcoming that should be
systematically addressed. Nonetheless, brain systems that
appear to be important include alterations in connectivity in (1)
frontostriatal circuits associated with the “default mode,” often in
the form of hyperconnectivity, and (2) the somatosensory cortex,
often increased connectivity with other brain regions and “default
mode” regions in particular.

3.5. Structural magnetic resonance imaging

3.5.1. Chronic pain

Structural MRI has been used to characterize and predict the
incidence of chronic visceral pain, musculoskeletal pain, and
migraine (for recent reviews on these topics, see Refs. 9 and 127).
As with fMRI, most studies perform case–control diagnostic
classification.

A number of previous studies investigated case–control
differences but did not assess person-level classification. A first
study to do so used an SVM classifier to distinguish patients with
cLBP from healthy controls.139 Gray matter density estimates
from T1 MRIs distinguished the 2 groups with 76% accuracy.
Areas important for classification included the secondary
somatosensory cortex and motor areas. Using similar

Table 2

Summary of all rs-fMRI articles discussed in this review.

First author (Ref) Type of pain Pain condition (total sample size) Type of biomarker Prospective validation Model evaluation

Baliki et al.7 Chronic SBP (52) Prognostic No AUC 5 0.81

Cheng et al.23 Chronic NP (71)
HC (62)

Diagnostic Yes r 5 0.41 (cross-network state pain)
r 5 0.72 (trait pain in NP)

Chong et al.24 Chronic Migraine (58)
HC (50)

Diagnostic No Acc 5 81%

Kutch et al.71 Chronic UCPPS (52) Prognostic No Acc 5 73.1%
Sens 5 69.2%

Liu et al.80 Chronic FD (30)
HC (30)

Diagnostic No Acc 5 86.7%
Sens 5 83.3%
Spec 5 90%

Mano et al.88 Chronic cLBP (75)
HC (90)

Diagnostic Yes Acc 5 68%
Sens 5 68%
Spec 5 67% (train 1 test)
Acc 5 63%
Sens 5 70%
Spec 5 56% (validation)

Nan et al.97 Chronic FD (50)
HC (50)

Diagnostic Yes Acc 5 96% (train 1 test)
Acc 5 88% (validation)

Rogachov et al.114 Chronic AS (71)
HC (62)

Diagnostic No MSE 5 4.94
r 5 0.43

Sundermann et al.130 Chronic FM (17)
RA (16)
HC (17)

Diagnostic No Initial model:
Acc 5 57.6% (RA vs HC)
Acc 5 61.8% (FM vs HC)
Acc 5 69.7% (FM vs RA)
Optimized model:
Acc 5 78.8% (RA vs HC)
Acc 5 73.5% (FM vs HC)
Acc 5 78.8% (FM vs RA)

Tétreault et al.132 Chronic OA (56) Predictive No AUC 5 0.95
r 5 0.61

Acc, accuracy; AS, ankylosing spondylitis; AUC, area under the curve; cLBP, chronic low back pain; FD, functional dyspepsia; FM, fibromyalgia; HC, healthy control; MSE, mean squared error; NP, neuropathic pain; OA, knee

osteoarthritis; RA, rheumatoid arthritis; rs-fMRI, resting-state functional magnetic resonance imaging; SBP, subacute back pain; Sens, sensitivity; Spec, specificity; UCPPS, urologic chronic pelvic pain syndrome.
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approaches, Bagarinao et al.4 were able to distinguish between
individuals with CPP and healthy controls with 73% accuracy.
Robinson et al.113 showed that it was possible to classify patients
with fibromyalgia and healthy controls based on brain volumes,
with a decision tree as best classifier performing at 75.5%
accuracy. Mood and pain intensity self-report measures out-
performed neuroimaging classification (96% accuracy), which is
expected as fibromyalgia is defined largely based on pain self-
reports; however, this discrepancy illustrates how far brain-based
models have to go to fully capture the neurological variations
underlying established behavioral measures.

A subsequent study investigated amorphological signature for
irritable bowel syndrome.72 Using estimates of gray matter
volume, surface area, mean cortical thickness, and mean
curvature, they tried to predict whether subjects belonged to
patients with irritable bowel syndrome or healthy controls. A
sparse partial least squares discriminant analysis was applied
onto the data and discriminated patients from healthy controls
with 70% accuracy.

Mean cortical thickness, surface area, and volume estimates
measured with sMRI were used to distinguish patients with
migraine from healthy controls using a diagonal quadratic
discriminative analysis.124 This resulted in an overall accuracy of
68% when taking chronic and episodic migraine together.
Comparing chronic migraine vs healthy controls and episodic
migraine vs healthy controls resulted in classification accuracies
of 86.3% and 67.2%, respectively. Patients with chronic vs
episodic migraine were distinguished with 84.2% accuracy.

Recently, a study used whole-brain gray matter to discriminate
between subjects with primary dysmenorrhea and healthy
controls with an accuracy of 75.4% and 70.2% in a separate
validation set.22

There are several mechanisms thatmodulate pain such as pain
catastrophizing and cognitive control. Fear of pain has been
found to be an important contributor to the development of
chronic pain.149 One study used gray matter volume in healthy
subjects to predict fear of pain scores with a correlation of r 5
0.41149—however, this analysis was “exploratory,” as it was
influenced by selection of voxels outside the cross-validation
loop. Such studies could be a valuable addition to current
progression models of chronic pain conditions where psycho-
logical processes play a large role.14

3.6. Evaluation

Aswith rs-fMRI, classification accuracies for patients with chronic
pain vs controls are modest, in the 70% to 80% range (Table 3).
This actually reflects much larger effects than are typical in
standard brainmapping studies. For example, a “large” effect size
of d 5 0.8 is required to achieve a modest 2-group classification
of 66% (if variables are normally distributed), and 80% classifi-
cation requires a very large effect size of d 5 1.6. Effect sizes
of d 5 0.5 are typical of standard brain mapping studies.106

However, it is unclear whether accuracy values in this range will
be useful in translational settings. With 80% sensitivity and
specificity (the balanced accuracy in 2-choice binary classifica-
tion is both its sensitivity and specificity), the PPV of a relatively
common disorder affecting 5% of the population is only 17%.

In addition, sensitivity, specificity, and generalizability must be
considered. Future efforts need to focus on comparing brain
features across models. As with rs-fMRI, the most consistent
changes appear to be located in the medial prefrontal cortex
(associated with the “default mode” network) and the somato-
sensory cortex.

Table 3

Summary of all sMRI articles discussed in this review.

First author (Ref) Type of pain Pain condition (total sample size) Type of biomarker Prospective validation Model evaluation

Bagarinao et al.4 Chronic CPP (33)
HC (33)

Diagnostic No Acc 5 72.7%
Sens 5 69.7%
Spec 5 72.7%

Chen et al.22 Chronic PDM (60)
HC (54)

Diagnostic Yes Acc 5 75.1%
Sens 5 83.3%
Spec 5 66.7% (train 1 test)
Acc 5 70.2%
Sens 5 73.3%
Spec 5 66.7% (validation)

Labus et al.72 Chronic IBS (106)
HC (106)

Diagnostic Yes Acc 5 70%
Sens 5 65%
Spec 5 75% (train 1 test)
Acc 5 70%
Sens 5 68%
Spec 5 71% (validation)

Robinson113 Chronic FM (14)
HC (12)

Diagnostic No Acc 5 75.5%
Sens 5 81%
Spec 5 75%

Schwedt et al.124 Chronic CM (15)
EM (51)
HC (54)

Diagnostic No Acc 5 68% (EM 1 CM vs HC)
Acc 5 67.2% (EM vs HC)
Acc 5 86.3% (CM vs HC)
Acc 5 84.3% (CM vs EM)

Ung et al.139 Chronic cLBP (47)
HC (47)

Diagnostic No Acc 5 76%
Sens 5 76%
Spec 5 75%

Wang et al.149 — HC (99) Susceptibility No MSE 5 10.08
r 5 0.41

Acc, accuracy; cLBP, chronic low back pain; CM, chronic migraine; CPP, chronic pelvic pain; EM, episodic migraine; FM, fibromyalgia; HC, healthy control; IBS, irritable bowel syndrome; MSE, mean squared error; PDM,

primary dysmenorrhea; Sens, sensitivity; sMRI, structural magnetic resonance imaging; Spec, specificity.
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Finally, in most cases, case–control classification bio-
markers are not likely to directly reflect or correlate with
symptoms such as pain.72 Further efforts should characterize
what biobehavioral features of people with chronic pain are
being captured by the model. Variables such as age, head
movement (which can affect sMRI), socioeconomic status,
drug and medication use, and more are very difficult to control
for adequately using linear regression, and large-sample
studies are likely to be necessary to understand what these
pain-related models are capturing.

3.7. Electroencephalography

3.7.1. Evoked pain

Pain-decoding evidence from EEG first appeared in 2012, with
a study decoding an individual’s sensitivity to pain.122 Subjects
received equally strong laser stimuli but reported large differences
in pain ratings, showing individual variability in pain perception. An
SVM was trained on time–frequency decompositions of the EEG
signal, classifying if a subject was pain sensitive or insensitive with
83% accuracy. In the study by Huang et al.,58 participants
received short laser heat pulses, and laser-evoked potentials
were used to distinguish between low and high pain intensity and
predict continuous pain ratings. Accuracy was higher within
subjects (86.3%) than between subjects (80.3%). This is an
expected effect of interindividual nuisance variability unrelated to
pain, and some groups have attempted to normalize the scale of
EEG data5 or extract interstimulus EEG features to reduce
interindividual noise.78

In an example of a predictive biomarker, Gram et al.48 found
that machine learning on EEG data collected during a cold-

pressor test was able to predict responders vs nonresponders to

opioid treatment with 72% accuracy. Conventional group–based

analysis did not show any group differences, whereas the SVM

was able to predict individuals’ opioid analgesia.
Another promising direction is multimodal classification based

on combined brain and autonomic signals, as autonomic

responses alone can track pain intensity well in unbiased tests.45

Lancaster et al.74 decoded pain from combined EEG and

physiological data (pulse and skin conductance). Using sparse

logistic regression, they were able to classify thermal pain stimuli

andmultimodal sensory stimuli with an average accuracy of 70%.

Within-subject accuracy reached as high as 79%.
Some studies have reported high classification accuracy for

high vs low pain. Misra et al.92 selected pain-related features from

a time–frequency analysis—theta and gamma power in the

prefrontal cortex and lower beta power in the contralateral

sensorimotor cortex—and used them to classify high vs low pain

heat stimuli with 89.6% accuracy. Likewise, Vijayakumar et al.144

used tonic thermal stimuli to mimic chronic pain aspects. A

random forestmodel was able to classify pain in 10 different levels

with an accuracy of 89.5%. Most information could be decoded

from the gamma band, although all frequency bands contributed

to pain classification. For studies claiming high accuracy in

particular, prospective tests on new samples, and replication by

independent laboratories, are needed.
Converging evidence that low peak alpha frequency and/or

power are important was provided by Furman et al.,44 who

Table 4

Summary of all EEG articles discussed in this review.

First author (Ref) Type of pain Pain condition (total sample size) Type of biomarker Prospective validation Model evaluation

Bai et al.5 Evoked HC (34) Diagnostic No Acc 5 70.4%
MAE 5 1.17

Furman et al.44 Evoked HC (44) Diagnostic No r 5 0.55

Gram et al.47 Chronic Hip pain (81) Predictive No Acc 5 65%

Gram et al.48 Evoked HC (39) Predictive No Acc 5 71.9%

Graversen et al.49 Chronic CP (31) Diagnostic No Acc 5 85.7%

Huang et al.58 Evoked HC (29) Diagnostic No Acc 5 80.3%
MAE 5 1.82 (between)
Acc 5 86.3%
MAE 5 1.03 (within)

Lancaster et al.74 Evoked HC (14) Diagnostic No Acc 5 70% (between)
Acc 5 79% (within)

Li et al.78 Evoked HC (34) Diagnostic No MAE 5 1.19

Misra et al.92 Evoked HC (30) Diagnostic No Acc 5 89.6%

Schulz et al.122 Evoked HC (23) Diagnostic No Acc 5 83%

Vanneste et al.142 Chronic HC (264)
NP (78)

Diagnostic No Acc 5 92.5%

Vijayakumar et al.144 Evoked HC (25) Diagnostic No BCA 5 95.3% (rest vs pain)
BCA 5 89.5% (1–10 pain score)

Vuckovic et al.145 Chronic SCI (31)
HC (10)

Prognostic No LDA (PNP vs PDP):
Acc 5 86%
Sens 5 84%
Spec 5 87%
ANN (PNP vs PDP):
Acc 5 83%
Sens 5 83%
Spec 5 84%

Acc, accuracy; ANN, artificial neural network; BCA, balanced classification accuracy; CP, chronic pancreatitis; EEG, electroencephalography; HC, healthy control; LDA, linear discriminant analysis; MAE, mean absolute error;

NP, neuropathic pain; PDP, patients developing pain; PNP, patients not developing pain; SCI, spinal cord injury; Sens, sensitivity; Spec, specificity.
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found that peak alpha frequency was correlated with later
sensitivity to capsaicin-potentiated heat pain in a subsequent
test (r 5 0.55).

3.7.2. Chronic pain

Early research showed that patients with chronic pancreatitis (a
form of visceral pain) showed differences in spectral EEG after
administration of pregabalin and placebo.49 Based on these
features, an SVM was able to classify patients into a pregabalin-
or placebo-receiving group with 85.7% accuracy. This study
showed the possibility of using EEG as a response (eg,
pharmacodynamic) biomarker.

As with evoked pain, chronic pain has been associated with
elevated EEG theta frequency energy and reduced alpha energy.
In a large study, Vanneste et al.142 used resting-state EEG to
assess thalamocortical dysrhythmia, a characteristic comprised
in part of slowing of alpha frequencies into the theta range
(cf. Ref. 44). This may occur across disorders, including
neuropathic pain, tinnitus, and depression, with spatial patterns
varying across disorders.142 A predictive model differentiated
patients with neuropathic pain from healthy controls with 92.5%
accuracy. Moreover, different disorders were associated with
different spatial patterns, and the model correctly classified most
subjects in multiway classification, providing some evidence for
diagnostic specificity. As with other cases, independent replica-
tion without altering the predictive weights would help validate
this high-accuracy finding.

There are also examples of predictive and prognostic
biomarkers in the EEG literature. In an example of a predictive
biomarker, preoperative EEG during a cold-pressor test was
used to predict postoperative pain treatment after hip
replacement, with 65% accuracy.47 No differences were
found in conventional between-group analyses of responders
and nonresponders. Vuckovic et al.145 developed a prognos-
tic biomarker based on resting-state EEG. Many patients with
a spinal cord injury later develop central neuropathic pain. A
linear discriminant analysis classifier and artificial neural
network classified patients who would develop central
neuropathic pain within 6 months with 86% and 83%
accuracy, respectively, providing a potential presymptomatic
substrate for early intervention.

3.8. Evaluation

Electroencephalography has been used for diagnostic, predictive,
and prognostic biomarkers in evoked and chronic pain; this diversity
of applications reflects benefits related to its low cost and portability
(Table 4). However, current models are all separate studies and it is
unclear how the results converge andwhethermodels rely on similar
features. Furthermore, it is unclear how these compare between
different chronic pain conditions. In addition, prospective validation
and tests of generalizability are very rare. Themost promisingmodels
should be validated, and further research is necessary.

3.9. Multimodal neuroimaging and multiple data sources

Few studies have attempted to combine the discussed techniques
intomultimodal classifiers.One group investigated evoked painwith
both EEG and fMRI,137 using both stimulus-evoked and prestimu-
lus activity. Time–frequency EEGpatterns andBOLD-fMRI patterns
before and after a laser-evoked pain stimulation showed reliable
classification of low and high pain intensities and better perfor-
mance than solely stimulus-evoked activity (83.5% vs 78.2%).

A step towards integrating different modalities was investigated
by Zhang et al.159 They used rs-fMRI and sMRI to predict migraine.
Themodel used rs-fMRI features related to amplitude of LFOs and
regional homogeneity and sMRI regional gray matter volume. An
SVM with a multikernel strategy yielded an accuracy of 83.7%.

This line was continued in a recent study combining functional
connectivity from rs-fMRI, regional cerebral blood flow from
arterial spin labeling, and high-frequency heart rate variability.75

Back pain was exacerbated with maneuvers to induce low and
high pain states in patients with cLBP. Combined features
resulted in an accuracy of 92.5% of within-patient classification of
high and low states. The model also predicted individual
differences in maneuver-induced pain (r 5 0.63).

A multimodal predictive biomarker was developed by Vachon-
Presseau et al.,141 who predicted placebo response using
questionnaires, sMRI, and rs-fMRI in patients with cLBP. Data
from questionnaires yielded an accuracy of 72% in predicting
placebopill responders and nonresponders, whereas sMRI and rs-
fMRI failed to achieve significance. Questionnaire data predicted
placebo responsemagnitude (r25 0.31), as did rs-fMRI to a lesser
degree (r2 5 0.13), although the latter did not generalize to data

Table 5

Summary of all combined techniques discussed in this review.

First author (Ref) Type of pain Pain condition (total sample size) Type of biomarker Prospective
validation

Model evaluation

Lee et al.75 Chronic cLBP (53) Diagnostic No Acc 5 92.5%
AUC 5 0.97

Tu et al.137 Evoked HC (96) Diagnostic No EEG:
Acc 5 83.5%
MAE5 1.15 (prestimulus1 poststimulus)
Acc 5 78.2%
MAE 5 1.27 (poststimulus)
fMRI:
Acc 5 75%
MAE5 1.66 (prestimulus1 poststimulus)
Acc 5 72.5%
MAE 5 1.76 (poststimulus)

Vachon-Presseau et al.141 Chronic cLBP (42) Predictive No r2 5 0.13

Zhang et al.159 Chronic Migraine (21)
HC (28)

Diagnostic No Acc 5 83.7%
Sens 5 92.9%
Spec 5 71.4%

Acc, accuracy; AUC, area under the curve; cLBP, chronic low back pain; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; HC, healthy control; MAE, mean absolute error; Sens, sensitivity; Spec,

specificity.
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collected at other visits. sMRI did not predict placebo pill response.
Table 5 shows a summary of the above described studies.

An important other development will be the use of multiple data
sources and imaging modalities. Previous research has already
shown that physiological responses such as heart rate, skin
conductance, pupil dilation, and body temperature can be used to
predict pain with a performance comparable with neuroimaging
methods (for a review, see Ref. 85). Different aspects of pain may
be reflected in brain and physiological responses, thus represent-
ing nonoverlapping information and adding in the performance.74

For chronic pain conditions, neuroimaging may be combined with
physiologic measures such as physical functioning157 or urine
metabolomics for neuropathic pain.40 It would be advantageous to
pursue this direction, as few studies have investigated a combina-
tion of data sources and this could lead to converging evidence.
Classifiers such as SVM also perform well with multiple data types,
which makes it easy to use several data sources.13

3.10. Other methods

Besides thediscussedneuroimagingmethodsabove, othermethods
such as arterial spin labeling, functional near-infrared spectroscopy,
and diffusion tensor imaging may be promising as well, but less
research has been performed using thesemethods. Functional near-
infrared spectroscopy, for example, has found to be effective in
classifying high and low evoked pain.108,115 Some systems are
portable and relatively inexpensive, which makes functional near-
infrared spectroscopy an interesting candidate for biomarkers.39

Arterial spin labeling is promising as a way of measuring stable blood
flow during rest or tonic pain states.135 Arterial spin labeling scans
have been used to differentiate between presurgical and postsurgical
states.100 Diffusion tensor imaging studies have been used to classify
healthy controls and patients with trigeminal neuralgia160,161 and
predict treatment responders.59 Finally, a study using decoding in
magnetoencephalography was able to predict high and low pain
scores in subjects with primary dysmenorrhea.70 Future studies will
reveal more of the possibilities of these neuroimaging methods.

4. Discussion

In this review, we described a variety of pain-predictive models
using fMRI, rs-fMRI, sMRI, and EEG, complementing other more
restricted reviews.9,116 Although many of these models show
great promise, further steps need to be taken to improve
biomarkers. High-accuracy models must be tested across
research groups with prospective hold-out samples. Cross-
validation is only a partial solution because it is still possible to
inadvertently overfit models and capitalize on chance.143 Over-
fitting is a substantial problem in decoding models. There are
many possible steps and manipulations in the analysis pipeline,
which could result in p-hacking and overfitting. Some of the
discussed results might also be guilty of this. There are very few
tests of specificity or attempts to train models with high specificity
and generalizability. Developing prognostic and predictive bio-
markers in particular will also require larger samples.

Increasing sample size and testing sensitivity and specificity
across disorders will be greatly facilitated by data-sharing
initiatives, including the Pain and Interoception Imaging Network
(PAIN) repository,73 OpenPain (principal investigator: A. Vania
Apkarian), UKBiobank,91 andOpenfMRI.107 Open data platforms
will also aid in the problem of overfitting, making reproducibility,
validation, and generalization easier to investigate. In addition, it is
important to share models, so that their performance can be
evaluated across contexts and samples.

Recently, researchers have identified 4 depression biotypes
based on patterns of fMRI connectivity. Two of these responded
more favorably to a brain stimulation treatment.33 However,
whether this will hold up on validation, and whether other studies
can use the same training methods,30 remains to be seen.
Clearly, there is a need for continued, multistudy validation of
established biomarkers across laboratories.

Ultimately, cooperation and competition initiatives may be
necessary for replication and validation of biomarkers in new data
sets.120 This could beperformedby aggregatingdata across sites (as
in the MAPP consortium71 and Placebo Imaging Consortium162) or
through competitions that hold test data “in escrow” to prevent
groups fromoverfitting the training data (eg, Kaggle competitions).121

Furthermore, it is important to actively assess the convergent
validity of biomarkers. Models are often not directly comparable,
and it is unclear how results and models from different studies fit
together, and how they form a coherent, cumulative understand-
ing. The gap between animal and human studies is large (and
growing), and models should increasingly use results and
concepts from animal neuroscience to constrain and corroborate
human predictive models.140

The field will likely develop many more biomarkers the coming
years. It would be helpful to evaluate these new articles and
recommend state-of-the-art studies. Less optimistic views of the
current developments should also be considered.94 Important
points to evaluate in new studies could include (1) sample size; (2)
use of validated or standardized methodology; (3) adequate
analysis and correction for potential movement and clinical
confounds; (4) transparent and shareable models; (5) neuroscien-
tific explanation and external validation; (6) independent cohort(s) for
validation and/or generalization; and (7) data/tool open availability at
the time of publication, among others. Attention to these criteria will
help the field to curate and promote state-of-the-art approaches
andmove the field towardsbiomarkers useful both in understanding
the neural bases of pain and in translational applications.
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