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Abstract

DNA methylation is closely related to senescence, so it has been used to develop statistical

models, called clock models, to predict chronological ages accurately. However, because

the training data always have a biased age distribution, the model performance becomes

weak for the samples with a small age distribution density. To solve this problem, we devel-

oped the R package eClock, which uses a bagging-SMOTE method to adjust the biased dis-

tribution and predict age with an ensemble model. Moreover, it also provides a bootstrapped

model based on bagging only and a traditional clock model. The performance on three data-

sets showed that the bagging-SMOTE model significantly improved rare sample age predic-

tion. In addition to model construction, the package also provides other functions such as

data visualization and methylation feature conversion to facilitate the research in relevant

areas.

Introduction

DNA methylation is a heritable epigenetic modification with an essential role in various physi-

ological and pathological processes [1–4]. Its most common form is the covalent attachment of

a methyl group to the 5-carbon atom of DNA cytosine, which usually generates a 5-methylcy-

tosine (5mC) in the context of cytosine–guanine dinucleotides (CpGs) [5].

DNA methylation and senescence always have a close relation [6, 7]. Hence, some statistical

models, called clock models, have been developed to predict chronological ages from DNA

methylation sites [8–11]. The most important one is a clock model using 353 CpG sites to pre-

dict ages on various human tissues, giving a high correlation between the actual ages and the

predicted DNA methylation (DNAm) ages [8]. Further studies show that DNAm ages are also

associated with diseases, such as cancer and cardiovascular disease [12–14], pointing to the

utility of DNAm age as a biomarker of biological aging [15].

In addition to lifespan age, there are also clock models used to predict gestational age,

mainly based on the DNA methylation status of the placenta [16, 17]. The predicted DNAm

gestational age also highly correlates with the chronological one and shows a close relationship

with some pregnancy complications, such as preeclampsia with accelerated placental DNAm

aging [16].
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A clock model is a penalized regression model using the squared error loss function to cal-

culate empirical risk and the norm of the regression coefficients to calculate structural risk.

The model performance heavily depends on the data quality, and many factors can influence

this aspect. In addition to the experimental techniques to build the Infinium DNA methylation

microarray, which are critical to the data quality of a single sample, the age distribution of the

whole training sample set also plays an important role. A biased distribution can make a

model perform poorly in predicting ages with a low distribution density.

For instance, when training a gestational age clock model from placental methylation, a sample

can only be collected after delivery of the baby and the placenta. So most samples have a gesta-

tional age greater than 30 weeks, which corresponds to moderate preterm and full-term births.

For samples with a further younger gestational age, they are scarce, which makes the sample dis-

tribution seriously biased to large gestational ages and impairs the ability of the trained model to

predict small ones. However, differences in gestational age as small as one week can significantly

influence neonatal morbidity and mortality and long-term outcomes [18–23]. Hence, the model’s

accuracy across the whole gestational age range becomes essential.

To solve this problem, we developed the R package eClock (ensemble-based clock). It

improves the traditional machine learning strategy in handling the imbalance problem of cate-

gory data [24], and combines bagging and SMOTE (Synthetic Minority Over-sampling Tech-

nique) methods to adjust the biased age distribution and predict DNAm age with an ensemble

model. This is the first time applying these techniques to the clock model, bringing a new

framework for clock model construction. eClock also provides other functions, such as training

the traditional clock model, displaying features, and converting methylation probe/gene/DMR

(DNA methylation region) values. To test the performance of the package, we used 3 different

datasets, and the results show that the package can effectively improve the clock model perfor-

mance on rare samples.

Materials and methods

Package overview

The package has three modules (Fig 1A). The first one is a machine learning module for clock

model construction. For datasets with a biased age distribution, after training/testing sets divi-

sion, it adjusts the distribution on the training set using a combination of bagging and

SMOTE methods and generates clock models in an ensemble form. Then, the testing set with-

out age adjustment is used to evaluate the model performance. For datasets without age bias,

normal clock models using the single penalized regression method or bagging ensemble mod-

els without age distribution adjustment can be built. The second module is a data visualization

module. It carries on the results from the first module and makes various plots to show the

model performance and the features selected. The third module is for Infinium DNA methyla-

tion microarray data. It converts the DNA methylation value from probe level to the gene or

DMR level so that the candidate features for training a clock model can be probes and genes,

and DMRs. To explain the biological significance of these features, the package also automati-

cally annotates the methylation probes, genes, or DMRs selected.

Data collection and preprocessing

The Infinium 27K and 450K BeadChip data on normal and preeclampsia human placentas

covering various gestational ages (from 8wk to 45wk), were obtained from Gene Expression

Omnibus (GEO) datasets GSE31781 [25], GSE36829, GSE59274 [26], GSE74738 [27],

GSE69502 [28], GSE98224 [29, 30], GSE125605, GSE100197, GSE75196, and GSE73375

(Table 1). Among them, GSE98224, GSE125605, GSE100197, GSE75196, and GSE73375

PLOS ONE eClock

PLOS ONE | https://doi.org/10.1371/journal.pone.0267349 May 6, 2022 2 / 19

https://doi.org/10.1371/journal.pone.0267349


contained both normal and preeclampsia placental data. SeSAMe was used to perform data

preprocessing [31, 32]. Then, we merged the datasets so that only their overlapping probes

shared by the Illumina 27K and 450K platforms were kept.

We downloaded the Illumina 27K dataset on whole blood samples from GSE41037 [7]. It

contained 394 healthy samples and 325 schizophrenia patient samples and covered the lifespan

age from 16 to 88 years old. Because schizophrenia status had a negligible effect on age rela-

tionships [7, 8], we ignored it in this analysis.

We downloaded the Illumina 450K dataset on post mortem frontal cortex from GSE41826

[33]. It included 145 neuron, glia, and bulk samples from 29 normal and 29 depression donors

and covered the lifespan age from 13 to 79 years old. Because no evidence showing the disease

status accelerated aging [8], we ignored it during the analysis.

Fig 1. Package workflow. (A) The package has three modules: the machine learning module, the data visualization

module, and the feature conversion and annotation module. (B) Workflow of the balanced clock model with several

steps on data distribution adjustment (bagging coupled with SMOTE), elastic net base learner training, selected feature

integration, linear regression base leaner training, and base learner ensemble.

https://doi.org/10.1371/journal.pone.0267349.g001
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Age distribution adjustment

The function resamplebin in the package adjusted a biased age distribution to a balanced one.

It equally divided the original age range of the training dataset into various bins. For each bin,

under or over-sampling was performed on the samples until the final sample number reached

the ceiling of (total training sample number/bin number). Hence, if a bin contained too many

samples, it would be under-sampled with bootstrapping, while if a bin only had a few samples,

it would be over-sampled. However, this over-sampling was not conducted with bootstrapping

because resampling on only a few samples had a risk of over-fitting. Instead, the function

resamplebin used a modified SMOTE method to synthesize new samples via interpolation. If a

sample were randomly selected, resamplebin would search for its nearest neighbor within the

bin and calculate the vector recording their feature value differences. After that, a random

number between -0.5 and 0.5 would be generated to multiply this vector. Then, the new vector

would be added to the original sample vector. The result was the synthesized sample, and its

age was assigned as that of the original sample.

On the other hand, to rescue the samples discarded from the bins undergoing under-sam-

pling, bagging was used on the whole training set to construct an ensemble model. Hence,

although each base learner in it lost some sample information due to the under-sampling, for

the whole ensemble, all the samples were used.

As to the bin width, its initialized value was 1 week for gestational age and 1 year for lifespan

age, but if any of the bins contained less than 2 original samples, the bin width would be

increased by 1 week or 1 year until each bin had at least 2 samples. Compared with the original

age distributions, the adjusted ones were more balanced.

In addition to resamplebin, we also offered another function, simpleboot, which could do

normal bootstrapping on the training dataset without adjusting its distribution to build a nor-

mal bagging-based ensemble model.

Clock model construction

The function singlebalance trained the balanced clock models. It conducted several steps (Fig

1B). First, it randomly divided the whole input dataset into training and testing ones.

Then, resamplebin was called several times for the training dataset to generate several sub-

sets from it with balanced age distribution. Each subset would be used to train a base learner

fitting the sample ages with the methylation features via elastic net regularization,

Table 1. Dataset information.

Dataset Sample origin Platform Sample Size Age/Gestational Age

GSE31781 Placenta 27K 30 normal 8-42wk

GSE36829 Placenta 27K 48 normal 37-42wk

GSE59274 Placenta 27K 23 normal 28-41wk

GSE74738 Placenta 450K 28 normal 36-42wk

GSE69502 Placental chorionic villi 450K 16 normal 14-24wk

GSE98224 Placenta 450K 18 normal + 30 preeclampsia 27-40wk

GSE125605 Placenta 450K 19 normal + 22 preeclampsia 38-45wk

GSE100197 Placenta 450K 43 normal + 22 preeclampsia 25-40wk

GSE75196 Placenta 450K 16 normal + 8 preeclampsia 32-40wk

GSE73375 Placenta 450K 17 normal + 19 preeclampsia 22-40wk

GSE41037 Whole blood 27K 394 normal + 325 schizophrenia 16-88y

GSE41826 Post mortem frontal cortex 450K 145 neron, glia, and bulk samples from 29 normal + 29 depression 13-79y

https://doi.org/10.1371/journal.pone.0267349.t001

PLOS ONE eClock

PLOS ONE | https://doi.org/10.1371/journal.pone.0267349 May 6, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0267349.t001
https://doi.org/10.1371/journal.pone.0267349


minðb0 ;bÞ2Rpþ1
1

N

PN
i¼1

lðyi; b0 þ b
TxiÞ þ l ð1 � aÞ 1

2
k b k2

‘2
þa k bk‘1

� �
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lance performed this in virtue of the R package glmnet [34–36]. In the formula above, the first

part was the squared error loss function calculating the empirical risk, while the second part

was the elastic net penalty. The α parameter there controlling the balance of L1 and L2 penal-

ties was set using the parameter alphas of the function singlebalance (set as 0.5 here). At the

same time, the regularization constant λ was chosen during 10-fold cross-validation. After

that, singlebalance chose the α−λ combination giving a cross-validation error within one stan-

dard error of the minimum to construct the elastic net model.

Each base learner used this elastic net method to select a set of features. Then the features

from all the base learners were combined, and the ones with top feature scores were selected

for the following calculation. The function singlebalance calculated the feature scores referring

to a method on category data [24], and using the formula, ðFþp � F �p Þ � �bp , where Fþp ¼
1

K

PK
k¼1

IðbðkÞp > 0Þ; F �p ¼
1
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IðbðkÞp < 0Þ represented the percentages of base learners with

a coefficient larger or smaller than 0 for the pth feature, and �bp ¼
1

K

PK
k¼1
b
ðkÞ
p was the averaged

coefficient value of this feature across all the K base learners.

Then, these selected features were given back to each sample subset to generate a linear regres-

sion model and predict sample ages using the feature beta values. To ensemble these linear base

learners, each of them was assigned a weight, which was calculated according to the regression R

square between the true sample age and base learner predicted age on the whole training dataset.

Only the base learners with an R square greater than 0.5 would be kept to do the final ensemble,

and their weights would be 0:5 � logð R2

1� R2Þ with the following scale to the sum of 1. The prediction

result of the whole ensemble model was the weighted sum of the base learner results.

If the parameter balancing were FALSE, singlebalance would not make distribution adjust-

ment and instead train a normal bagging model using simple bootstrapping to generate subsets

for the base learners. Hence, it was also used to build the bootstrapped models.

Another function, singleselection in the package, was used to train the normal clock models

with a single penalized regression.

The function crosstraining conducted the 10-round training/testing division and the model

training. For each round, crosstraining divided the input data into training and testing ran-

domly and trained a balanced, or bootstrapped, or normal clock model via calling the function

singlebalance or singleselection.

Model evaluation and data visualization

The scatter plots, residual plots, and clock plots were generated using several functions: scatter-
plot, residualplot, residualcomp, and clockplot. These functions were also integrated into single-
balance, singleselection, and crosstraining so that they could also generate the plots.

Methylation probe annotation

The function extractprobes in the package extracted the selected probes from the model results.

Then the probes were transferred to the function probeannotation to get their annotation

information.

Biological function enrichment analyses

The function enrichment results for the feature-relevant genes were generated using the R

package EnirchR [37, 38].
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Preeclampsia sample DNAm gestational age calculation

The function ensemblepredict could predict response values for new data using a trained elastic

net or ensemble model. So the preeclampsia DNA methylation data and the model trained

from the normal samples were transferred to ensemblepredict together. The model prediction

values were the DNAm gestational ages of the preeclampsia samples.

Probe value summarization to gene

The function probetogene in the package could summarize the probe beta values to corre-

sponding genes. For a gene, the beta values of probes in its TSS200, TSS1500, and 1stExon

regions were averaged to get the gene beta value. The regions could be tuned by the parameter

group450k850k, which could choose one or more gene regions from “TSS200”, “TSS1500”,

“1stExon”, “5’UTR”, “3’UTR”, and “Body”. Only the probes within the gene regions chosen by

this parameter would be used to calculate the gene beta values.

Gene annotation

The function extractprobes extracted the selected genes from the models with genes as features.

Then these genes were transferred to the function geneannotation to annotate their genomic

coordinates and functions.

Probe value summarization to DMR and DMR annotation

The function probetodmr summarized the probe beta values to DMRs. First, it divided the

probes into different clusters according to their genomic coordinates. If the genomic distance

between 2 probes were less than 500 bp, they would be grouped into the same cluster, and each

cluster was considered a DMR. Then, for each DMR, the beta values of the probes within it

would be averaged and used as the DMR value. In addition, probetodmr also annotated the

DMRs. It reported their positions, probes, and the genes related to each DMR.

Balance index calculation

The function resamplebin calculated the balance index for a dataset, with its parameter bal-
anceidx set as TRUE. First, the kernel density of the response was computed on 512 equally

spaced points across the range of the response. Then, the variance of these density values

around their mean was calculated, and the minus log10 value of the variance was the final bal-

ance index. A small balance index indicated a biased response distribution, while a larger one

meant a more balanced distribution.

Results

The balanced clock model has an advantage in fitting rare samples with a

young gestational age

We first used the package on a gestational age dataset from various studies on placental DNA

methylation (Table 1). After data preprocessing and combination, we kept the probes with

high data quality and shared by the Illumina 27K and 450K platforms. The final dataset con-

tained 258 normal (or uncomplicated) placenta and 101 preeclampsia samples, with 18626

probes. Among the normal samples, 3/4 of them were randomly selected as training samples

(194 samples) to train the clock models. The remaining 64 samples without any participation

in the training process were used as a testing dataset to check the model performance on
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normal samples. The 101 preeclampsia samples were used to check the model performance on

disease samples.

The gestational age of the training dataset showed a seriously biased distribution, with most

samples concentrated between 36 weeks and 42 weeks, while rare samples had a gestational

age smaller than that (Fig 2A). To avoid its negative effect on the model performance, we used

the package to adjust this distribution on the training dataset first and then constructed a bal-

anced clock model with the bagging-SMOTE strategy, as described in the Materials and meth-

ods section (Fig 2A). Meanwhile, we also trained another two clock models. The first was a

single panelized regression model (normal model). The second was a bagging-based ensemble

model (bootstrapped model), but it did not make any distribution adjustment. Both the bal-

anced model and the bootstrapped one contained 10 base learners. We then compared the

model performance on the original training and testing datasets without any age distribution

adjustment.

For the same training dataset, the balanced model had an R square of 0.935, the boot-

strapped model had an R square of 0.956, and the normal model had an R square of 0.929

(Figs 2B to 2D and S1A to S1C). For the testing dataset, their values were 0.812, 0.807, and

0.823 (Figs 2E to 2G and S1D to S1F). Hence, these models showed a similar performance, and

the normal model was a little better given its best R square on the testing set.

Fig 2. Performance of the three clock models on the gestational age dataset. (A) The original training dataset has a

biased gestational age distribution (upper). At the same time, the balanced clock model adjusts it to a balanced one

(lower), with samples from all the 10 base learners combined and shown here, including synthesized samples from

SMOTE and repeated samples due to bootstrapping and bagging. (B) to (D) Performance of the balanced model (B),

bootstrapped model (C), and single normal model (D) on the same training dataset. The color gradients of the dots

indicate the density of the samples. (E) to (G) Performance of the three models on the same testing dataset. (H) and (I)

Residuals of the three models in training and testing datasets.

https://doi.org/10.1371/journal.pone.0267349.g002
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However, if checked details, the influence of the biased age distribution became clear. We

used the package to generate a residual plot and compared the sample residuals of the three

models (Fig 2H and 2I). For the samples with a gestational age greater than 35 weeks, which

had a large distribution density, their residuals were similar among the three models. However,

for the much broader gestational age range from 8 weeks to 35 weeks, but with a small sample

number, the balanced model fitted much better than the other two.

Then, we used the package to perform a 10-round model training to get more statistical sig-

nificance. For each round, the normal samples were re-divided into a new training and a new

testing dataset. Three new models were rebuilt from the training without any participation by

the testing. The residual plots indicated that the advantage of the balanced model was repeat-

able across the 10 rounds. For the samples with a rare gestational age, almost all the training

and testing datasets showed a better fitting by their balanced models (Fig 3A and 3B). If

Fig 3. Performance of the three clock algorithms on a 10-round gestational age model construction process. (A)

and (B) Residual plots for the 10 new training and 10 new testing datasets generated from the 10 rounds. (C) and (D)

Averaged residual curves after combining all the residuals in the 10 rounds for training and testing datasets,

respectively. (E) and (F) R squares and MSEs (mean squared errors) for the models generated in the 10 rounds.

https://doi.org/10.1371/journal.pone.0267349.g003
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averaged residuals across the 10 rounds, the final plots also showed the balanced model

obtained a residual much closer to 0 (Fig 3C and 3D).

However, if we checked the overall model performance, the three models had a similar per-

formance (Fig 3E and 3F). The advantage disappearance of the balanced model here was

because the overall performance was mainly contributed by the samples with a large distribu-

tion density, even if their age span was narrow. On these samples, the balanced model did not

have a significant advantage.

Hence, this case study concluded that if the main focus was to find a model with good over-

all performance, all three methods could be considered, and the normal one was a little better.

However, if the purpose was to obtain a good performance across the whole age range, the bal-

anced model was the best.

Additionally, we compared the performance of the balanced model with other pub-

lished gestational age clock models, which were collected in the R package methylclock
[39]. Among them, the Knight’s model used 148 methylation probes to predict the gesta-

tional age, and > 80% of them were covered by the testing dataset here [40]. For other

models, because < 80% of their required probes were covered, their performances were

not checked. As mentioned above, the balanced model had an R square of 0.812 for the

beginning testing dataset. In contrast, for the Knight’s model, its R square was only 3.73e-

3 on this testing set (S2A Fig). However, it did not mean the Knight’s model was weak

because it was originally trained from cord blood samples rather than placenta samples

here. Hence, this weak R square indicated that the models trained from cord blood were

unsuitable for the placenta. For MSE, the balanced model had a value of 13.0, while that of

the Knight’s model was 336. In addition, Knight’s model also showed huge residuals

across all the samples (S2B Fig). The probes used by the Knight’s and the balanced models

were largely different. For the 134 probes used by the Knight’s model in this testing set,

only 1 was shared with the balanced model (S2C Fig).

The clock models have a close relation to gestational age and preeclampsia

Next, we checked the DNA methylation probes selected by our 3 models. For the balanced

model constructed at the beginning, it selected 46 probes. We used the package to annotate

them, and the result showed the probes distributed in regions of CpG Island, N-Shore,

S-Shore, N-Shelf, and OpenSea. For the relation to genes, they were located in TSS200,

TSS1500, 1stExon, 5’UTR, and GeneBody regions. (S1 Table).

The three models totally selected 79 probes, and 17 were shared by them (Fig 4A). For the

genes with TSS200, TSS1500, or 1stExon covered by these probes, totally 59 such genes were

found, and 13 were shared (Fig 4B).

For the 13 shared genes, some aging relevant functions were enriched, such as “Regulation

of telomere maintenance via telomere lengthening” and "Negative regulation of cell cycle

phase transition" (Fig 4C). For the 59 total genes, some synthesis relevant functions were

found, including "Biogenic amine synthesis" and “Triacylglyceride synthesis” (Fig 4D). Given

the tight connection between senescence and energy consumption [41], these synthetic func-

tions might indirectly influence aging. We also checked the 14 genes uniquely selected by the

balanced model. Their functions contained "Senescence and autophagy in cancer" (Fig 4E).

In addition, we searched the GenAge database, a benchmark database of genes related to

aging [42], to find the overlapping of all the 59 genes from our models with the genes collected

in GenAge. However, we only found 1 overlapped gene (CDKN2A). It was from the balanced

model. We then used our package to annotate it, and we found it was a negative regulator of

cell proliferation (S4 Table), indicating its methylation level should be positively related to
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aging. Correspondingly, the sum of its coefficients in the balanced model base learners was

also positive (coefficient sum = 12.3).

On the other hand, because differential DNA methylation in the placenta had been shown

in preeclampsia [26], a pregnancy complication coupled with accelerated placental aging [16],

we next used the models to predict the DNAm gestational age of the 101 preeclampsia samples

mentioned above. All three models showed that the DNAm gestational ages of these disease

samples were significantly larger than their chronological ones, which was different from the

normal samples in the testing dataset. Although these normal samples also did not participate

in the model training, their DNAm gestational ages predicted were similar to the chronological

ones (Figs 4F and S3A and S3B). These results confirmed the accelerated senescence of pre-

eclampsia placenta [16].

Fig 4. Biological functions of the probes selected from the gestational age dataset. (A) and (B) Venn diagrams

showing the relation among the features selected by the three models for probes and genes, respectively. (C) to (E)

Biological function enrichment results for the shared genes (C), total genes (D) of the three models, as well as the genes

selected by the balanced model uniquely (E). (F) The balanced clock shows that the DNAm gestational ages of normal

samples are similar to their chronological ones. However, the DNAm gestational ages of the preeclampsia samples are

significantly larger than their chronological ones, indicating the accelerated senescence.

https://doi.org/10.1371/journal.pone.0267349.g004
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The balanced clock model has an advantage in fitting whole blood samples

with small lifespan age density

We also used the package on a lifespan age dataset from a study on whole blood DNA methyla-

tion [7]. It was from Illumina 27K platform and contained 719 samples with lifespan ages from

16 to 88 (Table 1). We used the package to randomly select 3/4 samples into the training data-

set (539 samples), and the remaining 180 samples were testing samples.

The three algorithms were used on the probe beta values, and the model performances were

evaluated (S4 Fig). In addition, we also converted the original probe beta values to gene beta

values via the package and then trained clock models using genes as features. The lifespan age

distribution in the training dataset also showed a bias because the samples greater than 40

years old were less than the younger ones and the balanced model adjusted it via the bagging-

SMOTE method (Fig 5A).

For the gene-based clocks, the balanced model, bootstrapped model, and single normal

model showed similar performance with R squares of 0.946, 0.955, and 0.965 on the training

data (Fig 5B to 5D), and 0.881, 0.867, and 0.89 on the testing data (Fig 5E to 5G). However, if

looked into the residual status, the balanced model showed better performance than the other

two (Fig 5H and 5I).

Fig 5. Performance of the three clock models on the whole blood dataset. (A) The original training dataset has a

biased lifespan age distribution (upper). At the same time, the balanced clock model adjusts it to a balanced one

(lower), with samples from all the 10 base learners combined and shown here, including synthesized samples from

SMOTE and repeated samples due to bootstrapping and bagging. (B) to (D) Performance of the balanced model (B),

bootstrapped model (C), and single normal model (D) on the same training dataset with genes as features. The color

gradients of the dots indicate the density of the samples. (E) to (G) Performance of these three models on the same

testing dataset with genes as features. (H) and (I) Residuals of the three models in training and testing datasets.

https://doi.org/10.1371/journal.pone.0267349.g005
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Hence, the conclusion of this case study was similar to the former one, indicating the nor-

mal model had a slight advantage in overall R square, while the balanced model was the best to

fit the whole age range.

The features of these models were genes, and the three models selected 179 genes totally

and shared 48 of them (S2 Table and S5A Fig). For the total genes, their enriched function

included “Oxidative stress induced senescence” (S5B Fig). For the 48 shared genes, "Negative

regulation of mitochondrion organization" was noteworthy given the association between

senescence and energy metabolism [41] (S5C Fig). We also checked the 92 genes uniquely

selected by the single normal model because of its large gene number and found they were

enriched in functions such as "snRNA metabolic process" and "oxoacid metabolic process"

(S5D Fig).

In addition, we compared the performances of the balanced model (probe-based) with

other published lifespan age clock models in the methylclock package. For 4 models (Horvath’s

model, BNN model, Levine’s model, and Wu’s model), all of them used probes as features, and

all of their required probes were covered by the testing dataset here [8, 43–45], and their per-

formances were checked. The result showed that the best model was the BNN model (R

square = 0.916, MSE = 20.0), the second-best was our balanced model (R square = 0.901,

MSE = 23.7), and the third model was the Horvath’s model (R square = 0.894, MSE = 25.0)

(S6A Fig). However, it was noteworthy that the performance of BNN and Horvath’s models

should be overestimated because the testing dataset here was a part of their training dataset in

their original studies, while for the balanced model, this testing set did not participate in its

model training. On the other hand, for the residual distribution, the balanced model still kept

its advantage on the low-density samples > 40 years old (S6B Fig). For the required probes of

the models, only a few probes were shared by the models (S6C Fig).

Then, for the 179 gene features selected by our gene-based models, we also checked their

overlapping with the GenAge database. Only 6 of the 179 genes were recorded by the database.

We also mapped the probe features of Horvath’s model and others to genes and then checked

their overlapping with GenAge. For Horvath’s model, only 4 genes appeared in the database,

while for others, such as Wu’s and Hannum’s models, the number was 2. Hence, this low over-

lapping was not unique to our models. It indicated that more attention should be paid to

exploring the biological significance of the methylation gene features to aging.

For the 6 genes covered by our models and GenAge simultaneously (AGPAT2, E2F1,

MAP3K5, TERT, LMNA, and C1QC), E2F1 and C1QC were features selected by all the elastic

net, bootstrapped, and balanced models, and the annotation from our package showed that

E2F1 was involved in cell cycle and DNA replication. At the same time, C1QC participated in

C1 generation (the first component of the serum complement system) (S4 Table). In addition,

GenAge showed that the RNA of C1QC was overexpressed in the aging microarray meta-anal-

ysis, which was consistent with its negative coefficients in our methylation models (elastic net

coefficient = -0.758, bootstrapped base learner coefficient sum = -1.77, balanced base learner

coefficient sum = -9.21).

Distribution adjustment is not suitable for data with an original balanced

response

In addition to probes and genes, we also tried to construct clock models using DMRs as fea-

tures. Hence, we used a 450K-based dataset on 145 samples from the post mortem frontal cor-

tex of the brain [33]. The lifespan age of the samples covered a range from 13 to 79 years old.

Initially, it contained 480492 probes, and after the conversion using the package, the probes

were clustered to different DMRs, and the whole dataset had 202450 DMRs. The sample age
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was distributed more uniformly in this dataset than in the previous placenta and whole blood

ones, but we still tried the balanced model with distribution adjustment (Fig 6A).

For the three DMR-based clock models, the balanced one had an R square of 0.942 on the

training set, while the bootstrapped and the single normal models had values of 0.987 and

0.982 (Fig 6B to 6D). On the testing set, their R squares were 0.853, 0.928, and 0.942 (Fig 6E to

6G). If we checked the residuals, this time, the balanced clock model lost its advantage because,

in both training and testing datasets, the bootstrapped model showed a better residual plot

(Fig 6H and 6I). This advantage disappearance was also observed in the models using methyla-

tion probes as features (S7 Fig).

We attributed this disappearance to the original balanced age distribution in this dataset

(Fig 6A), which made the sampling step of the bootstrapped model also generate subsets with a

balanced response and then get base learners without performance bias. However, the bal-

anced clock model still used the bagging-SMOTE strategy to generate new response distribu-

tion. For this dataset, its original balanced distribution could not be improved significantly,

but the synthesized samples from SMOTE introduced more noise, making the performance

weaker than the bootstrapped model.

Hence, this case study concluded that the SMOTE-based adjustment should not be made if

the age distribution had already been balanced. In this case, the bootstrapped model should be

used.

Fig 6. Performance of the three clock models on the 450K brain dataset. (A) The lifespan age distribution of the

original training dataset before (upper) and after (lower) the adjustment by the balanced clock model, with samples

from all the 10 base learners combined and shown, including synthesized samples from SMOTE and repeated samples

due to bootstrapping and bagging. (B) to (D) Performance of the balanced model (B), bootstrapped model (C), and

single normal model (D) on the same training dataset with DMRs as features. The color gradients of the dots indicate

the density of the samples. (E) to (G) Performance of these three models on the same testing dataset with DMRs as

features. (H) and (I) Residuals of the three models in training and testing datasets.

https://doi.org/10.1371/journal.pone.0267349.g006
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To quantify the imbalance of the original response variable in a dataset, we calculated a sta-

tistic named “balance index” using the package. A small balance index indicated a biased dis-

tribution, and a larger one indicated a relatively uniform one. For the three datasets used here,

the placenta dataset had a balance index of 2.67, the whole blood dataset had a balance index

of 4.03, while that of the brain dataset was 4.12, which meant the placenta dataset had the most

biased response. In contrast, the brain dataset had the most balanced one. Hence, the balanced

model had an advantage in fitting the placenta dataset but performed weaker in the brain data-

set, no matter the feature used, methylation probes, or DMRs.

As to DMRs, the three models totally selected 107 of them from the 450K brain dataset and

shared 22 of them (S3 Table and S8A Fig). From the DMR annotation result of the package,

the total 107 ones covered the TSSs of 42 genes, and 12 were shared by all the models (S8B

Fig). The 42 genes were related to translational functions such as “Translation factor activity,

RNA binding” and “tRNA processing” (S8C Fig). In contrast, the shared genes exhibited a

connection to the neural system by their enriched functions of “Glial cell development”, “Neu-

roepithelial cell differentiation” and “Regulation of hippo signaling” (S8D Fig).

Furthermore, we compared the performances of the balanced model (probe-based) and the

bootstrapped model (probe-based) with other published lifespan age clock models. For 7 mod-

els, all of their required probes were covered by the testing dataset, and their performances

were checked. For R square, the top 4 models were: Horvath’s model (R square = 0.953), boot-

strapped model (R square = 0.918), Hannum’s model (0.897), and balanced model (0.827). For

MSE, the ranks of the models changed to bootstrapping model (MSE = 16.4)< Horvath’s

model (MSE = 24.3)< balanced model (34.6) <Hannum model (108) (S9A Fig). Hence, Han-

num’s model obtained a high R square but a weak MSE, indicating its predicted ages had an

overall shift from the true values. For the sample residuals, the bootstrapped and the balanced

models showed the largest advantage (S9B Fig). It should be noted that Horvath’s model still

had an overestimation problem because the brain testing dataset here was also a part of its

training dataset. While for other models, their performances tended to be underestimated

because they were originally not trained from brain data [9, 43, 46]. For the required probes of

the models, the balanced and the bootstrapped models had no overlapping with others.

We also checked the overlapping between the DMR covered genes and the GenAge data-

base and only found that the bootstrapped model had a gene shared with it (RAE1). The anno-

tation result showed that RAE1 functioned in mitotic bipolar spindle formation and mRNA

nucleocytoplasmic transport (S4 Table).

Discussion

Age-related DNA methylation alteration exists in various species [6, 7, 47, 48]. Hence, DNA

methylation has been used to construct clock models to predict chronological age [8–11].

The performance of a clock model is influenced by the age balance, and its accuracy is

weakest at the extremes of the age distribution. However, it is usual to meet a dataset with

biased age, so it is necessary to deal with this issue. Hence, we developed the R package eClock,

which includes three kinds of clock models. The first one is a balanced model based on the

bagging-SMOTE strategy and can improve the age distribution and train an ensemble model.

The second one is a bootstrapped model using bagging but without distribution adjustment.

The third is a traditional clock model using a single elastic net regression. We used three data-

sets to test the package and these three models and found each has its advantages.

The three models have very similar overall R squares, but the single normal model always

has a little larger R square on the testing data, so we suggest using this one to optimize the

overall R square.
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However, to obtain a good performance across the whole age range, the balanced model or

the bootstrapped model should be used. The choice between them depends on the original dis-

tribution status.

In most cases, this distribution is biased, and the balanced model is more appropriate than

the bootstrapped model. Its adjustment step increases the weights of the rare samples, and so

the loss function reaches its minimum when the errors are small not only on the major samples

but also on the rare ones.

However, for cases that the original data distribution is not biased, such as the brain dataset

here, the bootstrapped model is better. Because of the original balance, the bootstrapping step

of this model can also get an unbiased distribution for its base learners. Meanwhile, it avoids

the noise introduced by the SMOTE step of the balanced model.

To facilitate the judgment on distribution balance and model choice, we introduce the bal-

ance index to the package, and a small one indicates a biased distribution. In contrast, a larger

one indicates a more balanced status. The balance indexes of the placenta and whole blood

datasets are 2.67 and 4.03, and the balanced model shows an advantage. However, for the

brain dataset with a balance index of 4.12, the bootstrapped model surpasses the balanced one.

Hence, we suggest that if the index is less than 4, the balanced model should be used, and if it

is greater than 5, the bootstrapped one should be chosen. If a balance index is between 4 and 5,

it is better to try both models.

This package introduces a new framework to clock model construction for the first time

and efficiently improves the prediction in rare sample ages. In addition, it also provides other

functions such as methylation feature conversion and annotation, which improve the

interpretability of the model results. We hope this package can make some contribution to rel-

evant areas.

Supporting information

S1 Fig. Performance of the three models on the gestational age dataset shown by clock

plots. (A) to (C) Clock plots generated by our package show the clock model performance on

the same training dataset. The scale around the dial indicates the gestational age, and each

pointer represents one sample. The color gradients of the pointers indicate the density of the

samples. (A) is the result for the balanced model, (B) is for the bootstrapped model, and (C) is

for the single normal model. (D) to (F) Performance of these three models on the same testing

dataset.

(TIF)

S2 Fig. Comparison between the balanced model and the Knight’s gestational age model

on the placenta testing dataset. (A) Because Knight’s model is a cord blood-based model, it is

unsuitable for the placenta data here and shows a much weaker performance than the balanced

model. In contrast, the balanced model has an R square of 0.812 and an MSE of 13.0. (B) The

balanced model also performs well on sample residuals. (C) The 2 models only share 1

required probe.

(TIF)

S3 Fig. The gestational age clocks are associated with pregnancy complication status. (A)

and (B) Both the bootstrapped clock (A) and the normal clock (B) show the DNAm gestational

ages of normal samples are similar to their chronological one. However, the preeclampsia sam-

ples’ DNAm gestational ages are significantly larger than their chronological one, indicating

the accelerated senescence.

(TIF)
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S4 Fig. Performance of the three clock models on the whole blood dataset with probes as

features. (A) to (C) Performance of the balanced model (A), bootstrapped model (B), and sin-

gle normal model (C) on the same training dataset with probes as features. The color gradients

of the dots indicate the density of the samples. (D) to (F) Performance of these three models

on the same testing dataset with probes as features. (G) and (H) Residuals of the three models

in training and testing datasets.

(TIF)

S5 Fig. Biological functions of the genes selected from the whole blood dataset. (A) Venn

diagram showing the relation among the genes selected by the three models. (B) to (D) Biolog-

ical function enrichment results for the total genes (B), shared genes (C) of the three models,

as well as the genes selected by the single normal model uniquely (D).

(TIF)

S6 Fig. Comparison between the balanced model and other 4 lifespan age models on the

blood testing dataset. (A) The 3 best models are the BNN model (R square = 0.916,

MSE = 20.0), the balanced model (R square = 0.901, MSE = 23.7), and the Horvath’s model (R

square = 0.894, MSE = 25.0). (B) The balanced model performs the best on the residuals of the

low-density samples with a lifespan age > 40 years old. (C) The models share only a few

required probes. Because the BNN model uses Horvath’s probes to train its Bayesian neural

network (BNN), the probes of these 2 models are the same.

(TIF)

S7 Fig. Performance of the three clock models on the brain dataset with probes as features.

(A) to (C) Performance of the balanced model (A), bootstrapped model (B), and single normal

model (C) on the same training dataset with probes as features. The color gradients of the dots

indicate the density of the samples. (D) to (F) Performance of these three models on the same

testing dataset with probes as features. (G) and (H) Residuals of the three models in training

and testing datasets.

(TIF)

S8 Fig. Biological functions of the genes covered by the DMRs selected from the 450K

brain dataset. (A) Venn diagram showing the relation among the DMRs selected by the three

models. (B) Venn diagram showing the genes covered by the DMRs selected. (C) and (D) Bio-

logical function enrichment results for the total genes (C) and shared genes (D) covered by the

DMRs.

(TIF)

S9 Fig. Comparison among the balanced model, the bootstrapped model, and other 7 life-

span age models on the brain testing dataset. (A) The 4 best models are the bootstrapped

model (R square = 0.918, MSE = 16.4), the Horvath’s model (R square = 0.953, MSE = 24.3),

the balanced model (R square = 0.827, MSE = 34.6), and the Hannum’s model (R

square = 0.897, MSE = 108). The BNN and PedBE models also had an R square > 0.5, while

there are also 3 models with an R square < 0.5 (the Levine’s, Wu’s, and Horvath’s skin models)

and are not shown here. (B) The balanced and the bootstrapped models perform the best on

the residuals across the samples.

(TIF)

S1 Table. Gestational age relevant probes selected by the three models.

(XLSX)
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S2 Table. Lifespan age relevant genes selected from the whole blood dataset by the three

models.

(XLSX)

S3 Table. Lifespan age relevant DMRs selected from the 450K brain dataset by the three

models.

(XLSX)

S4 Table. Overlapping between clock model selected gene features and the GenAge data-

base.

(XLSX)
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