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Abstract

The lifecycle of Rickettsia rickettsii includes infection of both mammalian and arthropod

hosts, with each environment presenting distinct challenges to survival. As such, these path-

ogens likely have distinctive transcriptional strategies for infection of each host. Herein, we

report the utilization of next generation sequencing (RNAseq) and bioinformatic analysis

techniques to examine the global transcriptional profile of R. rickettsii within an infected ani-

mal, and to compare that data to transcription in tissue culture. The results demonstrate sub-

stantial R. rickettsii transcriptional alteration in vivo, such that the bacteria are considerably

altered from cell culture. Identification of significant transcriptional changes and validation of

RNAseq by quantitative PCR are described with particular emphasis on known antigens

and suspected virulence factors. Together, these results suggest that transcriptional regula-

tion of a distinct cohort of genes may contribute to successful mammalian infection.

Introduction

Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF), the most

severe tick transmitted infection in the western hemisphere with human case fatality rates

comparable to the most dangerous of all North American bacterial diseases [1]. This bacterium

survives in nature through an endozoonotic cycle of infection of mammalian and tick hosts.

As such, the bacteria are faced with diverse challenges for infection of and transition between

individual hosts. This feature of zoonotic infection suggests that the bacteria have different

pathogenic strategies for each host, and, therefore, likely experience significant transcriptional

variations throughout the life cycle. This concept is supported in other bacterial pathogens

whereby synchronization of gene expression is critical for successful infection [2]. Herein, we

examine the hypothesis that R. rickettsii undergoes distinct transcriptional changes in vivo in a

mammalian model of infection by comparing the global transcriptome of bacteria from labo-

ratory culture and during fatal infection of M. musculus.
Rickettsia species transcriptional profiles have been examined in response to temperature

changes, iron starvation, and time in culture [3–9]. These studies demonstrated a limited

response to temperature change, but significant transcriptional changes when R. rickettsii are

exposed to a blood meal while within the transmitting tick [7]. In depth examination of R. rick-
ettsii within the tick established that the genes encoding for the Type IV Secretion System
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(T4SS), potentially secreted proteins, iron acquisition proteins, and surface exposed proteins

are all regulated in response to blood. In contrast, analysis of R. conorii eschar samples indi-

cated a significant decrease in translation machinery and upregulation of transcripts associated

with stress [10]. This in vivo analysis of R. conorii differs from the current study in the method

of Rickettsia transmission (tick versus needle inoculation) and tissue source (eschar versus

morbidly infected liver). Additionally, the authors note that R. conorii in eschars may be

undergoing host immune clearance in the inoculation eschar [10]. Together, these transcrip-

tomic studies establish that Rickettsia species, and particularly R. rickettsii, have the ability to

regulate transcription in response to environmental variations.

When developing an experimental strategy to expand upon these previous transcriptional

analyses, we considered multiple material sources. Our first goal was to characterize the R. rick-
ettsii transcriptome within the infected mammal; therefore, we chose to analyze R. rickettsii
within the liver of moribund C3H/HeN mice, because this sample contains multiple infected

host cells types with the largest rickettsial load currently established [11]. The highest ratio of

R. rickettsii to M. musculus RNA was predicted to produce the highest number of sequencing

reads that could be attributed to the bacteria, and thus the most complete analysis of rickettsial

transcription within an infected animal.

The in vivo transcriptome data necessarily needed to be compared to another condition to

identify transcriptional changes. There are multiple in vitro culture conditions that could serve

as a comparison to in vivo samples. After considering multiple conditions, we reasoned that

the best comparison would be to R. rickettsii from infected Vero cells. This condition was cho-

sen because much of the current understanding of R. rickettsii biology was generated through

Vero cell culture. First, Ellison et.al. [5] describes a global transcriptional analysis of Vero cell

propagated R. rickettsii under different environmental conditions. By utilizing Vero cell cul-

tured R. rickettsii in the current experimental setup, we would be able to more accurately com-

pare our findings to that published data. Additionally, Ammerman et.al. [12] is the current

standard for in vitro propagation of R. rickettsii. We reasoned that most past and future in vitro
propagations would utilize this culture method, so this RNA would be the most viable for com-

parison to in vivo transcription.

Transcriptional analysis of surface-exposed and secreted proteins of obligate intracellular

Rickettsia are of particular importance because of the essential functions mediated by these

proteins, including host cell invasion, escape from the phagolysosome, intracellular motility,

and manipulation of the host response to infection [13–16]. Experiments designed to identify

surface proteins as defined by exposure to surface biotinylation have identified approximately

70 likely surface exposed rickettsial proteins [9, 17]. Of these proteins, the surface cell antigen

(Sca) family of autotransporters have been individually localized to the bacterial surface [9,

18–21]. Secretion of Sca proteins is dependent upon the Sec-dependent Type V Secretion, but

Rickettsia also encode for Sec-Tol, Tat, Type I, and Type IV Secretion Systems [22]. As such, R.

rickettsii is likely to encode for a plethora of surface and secreted proteins, and demonstration

of transcriptional regulation of these potential virulence factors will aid future analyses of R.

rickettsii pathogenesis.

Herein, we utilized next-generation sequencing technologies to compare quantities of and

changes to R. rickettsii RNA in vivo during mouse infection and in vitro during tissue culture.

The transcriptional alterations observed in vivo indicate that the bacterium is actively adapting

to the mammalian host, and that our current understanding of in vitro R. rickettsii RNA and/

or protein content is different than is found within the infected animal. We report changes to

genes encoding for rickettsial surface proteins, Type IV Secretion System, and ribosomal sub-

units. The results of this study will serve as a basis for analyzing the pathobiology of R. rickettsii
infection within the mammalian host.

R. rickettsii in vivo transcription
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Materials and methods

Cell lines and RNA samples

African green monkey kidney cells (Vero, ATCC) were cultured and maintained under stan-

dard conditions as described previously [19]. Briefly, 150cm2 flasks of confluent Vero cells

were infected at 1 bacteria per host cell. The bacteria were allowed to infect at 34˚C 5%CO2 for

five days with the media being changed at day 3. R. rickettsii were purified from Vero cells by

needle lysis and centrifugation over a sucrose cushion [12]. Total RNA was isolated twice from

two separate R. rickettsii Sheila Smith propagations for a total of four replicates (2 technical

replicates for each of 2 biological replicates). These samples are subsequently referred to as “in
vitro.” Similarly, total RNA was isolated from liver tissues of C3H/HeN mice at five days post

infection with 1x107 intravenous R. rickettsii [11]. These mice were moribund and were eutha-

nized prior to succumbing to R. rickettsii infection. RNA was isolated twice from two separate

livers for a total of four replicates (2 technical replicates for each of 2 biological replicates).

These samples will subsequently be referred to as “in vivo.”

RNA isolation, DNAse treatment, and enrichment of prokaryotic mRNA

Total RNA was isolated from the eight total samples using Purelink RNA Mini Kit (Ambion).

DNA was removed from the RNA purification using Ambion Turbo DNAse according to

manufacturer’s instructions. Removal of DNA contamination was verified by sca1 PCR as pre-

viously described [11]. Quality control was performed on a Fragment Analyzer (Advanced

Analytical) to determine the RNA quality number (RQN). All RNA samples had a RQN> 7.6

(7.6–9.8). After confirmation of RNA structural integrity, 5μg RNA was subjected to Microbe-

Express and MicrobEnrich (Invirogen) protocols to remove bacterial rRNA and mammalian

RNA, respectively.

cDNA synthesis and sequencing

cDNA libraries were constructed using the Ion Total RNA-Seq Kit v2 (Life). Templates for

RNASeq were prepared with the Ion PI Hi-Q OT2 200 Kit (Life) using the Ion OneTouch 2

System for Ion Proton System semiconductor sequencing. These templates were sequenced

using the Ion PI Hi-QSequencing 200 Kit and Ion PI Chip v2, on the Ion Proton Sequencer.

Preliminary analysis of the ensuing sequencing data pertaining to quality of the run, read

lengths, and coverage was performed using the Torrent Suite software. Total reads, usable

reads, and mean read length for each sample are indicated in S1 Table.

Sequence analysis

The sequence reads from the four in vivo samples were first scanned for adapters and quality

filtered using cutadapt with Partek Flow [23]. Next, reads from Rickettsia rickettsii were identi-

fied using a modification of the two-step method, whereby samples were first downloaded

from NCBI on 08/2016, then aligned to Mus musculus GRCm38.p4 with tophat2, then the

unaligned fastq reads were aligned to R. rickettsii Sheila Smith (NC_009882.1), using TMAP

[24]. The four in vitro samples were aligned to the R. rickettsia genome using the SeqManN-

GEN portion of DNASTAR [25]. To determine the number of reads that were mapped to R.

rickettsii genes, htseq was used to determine gene counts. The htseq counts for each gene were

converted to RPKM using the formula: (number of reads)/[(gene size/1,000)x(total reads/

1,000,000)] [26], and these values were averaged for the four in vivo sequencing reactions.

DESeq2 was used for differential gene expression analysis by contrasting the in vitro and in

R. rickettsii in vivo transcription
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vivo groups [27]. DEseq utilizes an adjusted value of significance (padj) which is described in

“Statistical analyses.” A summary of the analysis pipeline is diagramed in S1 Fig.

qRT-PCR validation

R. rickettsii gDNA loads in mouse organs were quantified by TaqMan quantitative PCR

(qPCR). Total chromosomal DNA from liver tissue (in vivo) and purified R. rickettsii (in vitro)

was purified using PureLink Genomic DNA mini kit (Invitrogen) and normalized to 50μg/ml.

TaqMan qPCR reactions were run as previously described [11] on the LightCycler 480 II sys-

tem (Roche). PCR reactions were run as follows: 58˚C for 3min, 95˚C for 10min, followed by

50 cycles of 95˚C for 15s and 58˚C for 60s. Standard curves were generated using the plasmids

pEC3 (sca1) and pYC82 (actin). gDNA content in organs are expressed as the number of R.

rickettsii sca1 copies per murine M. musculus or C. aethiops actin gene copies.

Changes to the transcriptional content of specific genes were determined by quantitative

reverse transcription PCR (qRT-PCR). 200ng of DNA-fee RNA was subjected to Superscript

Vilo (Invitrogen) reverse transcription. The quantity of each cDNA was determined by qPCR

using the primers described in S2 Table. PCR reactions were run as follows: 95˚C for 10 min,

followed by 50 cycles of 95˚C for 30s, 63˚C for 30s, and 72˚C for 60s followed by melting

curve. R. rickettsii gDNA was used for calculation of standard curve. qPCR-derived fold change

values are expressed as:

fold change ¼ log
2

cDNAin vivo
gDNAsca1 in vivo=gDNAactin in vivo

� �

cDNAin vitro
gDNAsca1 in vitro=gDNAactin in vitro

� �

2

4

3

5

Identification of open reading frames with signal sequences

To identify sec-dependent signal peptides the R. rickettsii protein reference sequence

(GCF_000018225.1_ASM1822v1) was input into the signal sequence prediction algorithms: 1)

Phobius [28] 2) PRED-TAT [29] 3) SignalP4.1 [30] and 4) LipoP [31]. Proteins categorized as

“Secreted Proteins” were identified by 3 of the 4 servers (S3 Table).

Sequence deposition

The 8 sequence output files and metadata are available from NCBI Sequence Read Archive

under the accession number PRJNA382417. A summary of all RNAseq data is found in S4

Table.

Animal research

Animal experiments were conducted in accordance with protocols approved by the Institu-

tional Biological and Recombinant DNA Safety Committee (IBRDSC) and Institutional Ani-

mal Care and Use Committee (IACUC) at the Louisiana State University School of Veterinary

Medicine. The University has a file with the Office of Laboratory Animal Welfare (OLAW), an

approved Assurance Statement (#A3612-01).

Statistical analyses

Correlation between qPCR and RNAseq results was performed by Shapiro-Wilk Test for Nor-

mality and Pearson analysis of correlation in Graphpad Prism. “padj” values for fold change sig-

nificance are computed in the DESeq2 package. This value uses the used Benjamin-Hochberg

correction method. Padj values of<0.01 are considered significant [32].

R. rickettsii in vivo transcription
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Results

RNAseq

The central hypothesis considered herein is that R. rickettsii utilizes genetic regulation to

employ a specific transcriptional program for infection of the mammalian host. Accordingly,

the experimental objective was to query R. rickettsii for transcriptional differences between

bacteria derived from common cell culture and within the infected animal, called “in vitro”
and “in vivo” respectively. To generate in vitro RNA samples, we purified R. rickettsii Sheila

Smith from routine Vero cell culture at the time of maximum rickettsial burden. Bacteria at

this stage of in vitro culture were the inoculum source for infection of mammals, and can

therefore be considered at pre-infection transcriptional state. Additionally, transcriptional

responses of R. rickettsii to environmental stimuli in Vero cell culture have been examined pre-

viously [5].

As a comparison, we purified in vivo whole RNA from within R. rickettsii infected M. mus-
culus liver at the point where the animals were considered mortally infected [11]. This sample

was chosen because it represents the highest rickettsial burden throughout mouse infection.

This high bacterial burden would produce the highest ratio of Rickettsia to host RNA for tech-

nical purposes, and would also represent the highest number of input Rickettsia for the most

heterogeneous R. rickettsii population. We performed four total RNA extractions on two dif-

ferent biological samples for each experimental group. These eight total RNA samples were

subjected to reverse transcription and deep sequencing to determine the quantity and arrange-

ment of RNA in each sample.

The most immediate challenge in analyzing the transcriptome of obligate intracellular bac-

teria is the pervasiveness of host RNA in the in vivo environment. This overabundance of host

transcript masks the available Rickettsia-specific sequencing information. In order to over-

come this obstacle without artificially amplifying rickettsial RNA, we used RNAseq with exten-

sive bioinformatics analysis. This technology is based on direct cDNA sequencing and allows

the detection and quantification of RNA from very small amounts of cellular materials [33].

Importantly, this method does not rely on non-specific amplification of cDNA, as is required

to get sufficient cDNA for chip-based Rickettsia transcriptomics [8]. To maximize the preva-

lence of rickettsial mRNA we first performed depletion of eukaryotic RNA and bacterial ribo-

somal RNA before reverse transcription and deep sequencing. Of the 94–78 million reads per

sample, the majority were discarded during quality control, leaving approximately 15 million

usable output reads. Even after depletion of eukaryotic RNA, only 0.81–6.68% of in vivo
sequencing reads mapped to the R. rickettsii genome. Reads that mapped to rRNA and tRNA

were not analyzed, thereby leaving an average coverage depth of 19–128 reads per gene of the

R. rickettsii protein coding sequence. As such, the results described herein represent a vigorous

assessment of the transcriptional program of R. rickettsii within the infected mammal.

The 1345 predicted protein-encoding open reading frames of R. rickettsii Sheila Smith were

analyzed for total in vivo cDNA quantity and expression changes. The average expression

value of individual genes was calculated for the four in vivo samples, and is expressed as aver-

age reads per kilobase per million reads (RPKM), a value that normalizes for gene length.

Expression changes to individual genes were calculated in the DEseq2 software package, and

are expressed as fold change of in vivo samples as compared to in vitro. Fold change values are

associated with an adjusted value of statistical significance (padj) where p<0.01 is considered

significant. In all, 235 genes were significantly upregulated in vivo and 264 genes were downre-

gulated in vivo. These values represent 17% upregulated genes and 20% downregulated genes,

thus demonstrating substantial transcriptional differences between in vitro and in vivo Rickett-
sia rickettsii.

R. rickettsii in vivo transcription
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Validation of RNAseq by quantitative RT-PCR

16 genes were chosen for individual analysis in order to validate the RNAseq data by an inde-

pendent experimental method. To this aim, both RNA and gDNA were re-isolated from the

RNAseq source material. The isolated RNA samples were subjected to DNAase treatment,

reverse transcription, and quantitative PCR (qRT-PCR) to determine cDNA concentration for

each of the 16 genes. In order to control for rickettsial nucleotide concentration in the PCR

reaction, we utilized gDNA copies present in the biological sample. The concentration of R.

rickettsii sca1 copies per murine actin gDNA was determined in each sample, with a sca1/actin
ratio of 3.27 for the in vivo infected liver sample and 78.32 in the in vitro sample. By adding

equal amounts of cDNA and dividing the calculated cDNA concentration by the gDNA ratio,

we are able to properly control for changes to the quantity of input Rickettsia RNA. This data

transformation allows for accurate determination of the fold change in expression of each of

the tested genes despite the contaminating host RNA. The qRT-PCR data for the 16 analyzed

genes was compared to the fold change values obtained by RNAseq (Fig 1). Logically, if the

two data acquisition mechanisms produce consistent results, then the two data sets should

have a strong linear correlation. The results from each quantification method were compared

and demonstrate a significant correlation with p = 0.0015. With these consistent results, we

can extrapolate that the RNAseq data faithfully identifies changes to transcription.

Genes encoding for secreted proteins

As R. rickettsii is an obligate intracellular pathogen, many necessary pathogenic functions

occur at the bacterial surface. While several functions have been attributed to surface proteins,

nothing is known about changes to the bacterial surface during the R. rickettsii lifecycle.

Accordingly, the R. rickettsii Sheila Smith genome was queried by four signal sequence predic-

tion algorithms (LipoP, Phobius, PRED-TAT, SignalP4.1) for the presence of a secretion sig-

nal. In all, 59 genes were predicted by 3 or more of the prediction algorithms to possess a

secretion signal. This analytical method identified genes encoding for the well-known surface

proteins OmpA, OmpB, Sca1, Sca2, 17kDa antigen, Adr1, and Adr2, but failed to identify

some proteins previously identified by surface biotinylation [17].

The genes with predicted signal sequences were analyzed for in vivo RNA quantity (RPKM)

and fold change of in vivo with relation to in vitro (Fig 2, S3 Table). In all, 12 genes were upregu-

lated in vivo and 26 genes were significantly downregulated in vivo. As expected, the gene encod-

ing for the ubiquitous surface protein ompB was the most frequently detected transcript, with

high expression in vivo and insignificant expression change across the two conditions. By compar-

ison, ompA, sca1, 17kDa antigen (A1G_07075), adr1, and adr2 were all significantly downregu-

lated in vivo. Upon identifying these differences in RNA content, we conclude that the antigen

profile of R. rickettsii in vivo will likely be significantly different than has been observed for cul-

tured bacteria. The most impressively upregulated gene, ostA (A1G_05645), encodes for an outer

membrane barrel that contributes to LPS biosynthesis and inorganic solvent tolerance [34]. Inter-

estingly, 9 of the 21 LPS genes involved in LPS biosynthesis and transport are significantly regu-

lated (S5 Table), suggesting that R. rickettsii may alter the quantity or chemical structure of LPS.

R. rickettsii also encodes for 14 proteins containing Ankyrin repeat domains. The Ank

domain containing proteins typically interact with eukaryotic proteins or DNA, and are there-

fore assumed to be secreted through Type I or IV Secretion Systems [35]. Indeed, Ank proteins

from Orientia tsutsugamushi and R. typhi have been found within the host cytoplasm [36, 37].

The R. rickettsii ank genes were variably regulated (Fig 3, S5 Table). Analysis of total in vivo
expression shows that both A1G_02960 and A1G_00070 were highly expressed (RPKM

>1000). Conversely, A1G_01255 and A1G_00065 have extremely low expression in vivo.

R. rickettsii in vivo transcription
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Type IV Secretion System

All Rickettsiales encode for a Type IV Secretion System (T4SS), consisting of a polypeptide

complex that translocates proteins into the extracellular environment or directly into a host

cell. Studies have established that T4SS are essential to pathogenesis in various bacterial species

[38]. The genetic makeup of the Rickettsia T4SS has been thoroughly investigated, whereby the

genetic complexity and conservation suggests that this system is essential for completion of the

Rickettsia lifecycle [39–41]. Some of the genes encoding for T4SS are duplicated or scattered

thereby producing many identically annotated genes [39]. Upregulation of the T4SS genes on

one of the major operons in R. rickettsii was reported in the infected arthropod, while another

Fig 1. Comparison of transcriptional fold changes as determined by RNAseq and quantitative RT-PCR. In vivo / in vitro fold

change values as determined by RNAseq (Y-axis) and qRT-PCR (X-axis). Pearson analysis of correlation p = 0.0015.

https://doi.org/10.1371/journal.pone.0182290.g001

R. rickettsii in vivo transcription
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major operon was downregulated [7]. In our case, the A1G_02205–02240 region (virB9, virB8,

virB9, virB10, virB11, virD11)was significantly downregulated in vivo and A1G_00815–00840

was not significantly changed (Fig 4, S5 Table).

In vivo suppression of genes encoding for ribosomal proteins

Possibly the most conspicuous transcriptional change observed in vivo is the consistent and

significant down regulation of the genes encoding for the large and small ribosomal subunits.

It is pertinent to note that all RNA samples were treated to remove bacterial ribosomal RNA

(rRNA) prior to sequencing. However, rRNA depletion does not affect the concentration of

mRNA nucleotides that encode for the protein components of the ribosome. 28 of the 47

genes encoding for ribosomal subunit proteins (rpl, rpm, rps) were significantly downregu-

lated, with no genes upregulated in vivo (Fig 5, S5 Table). This is a striking downregulation of

the translational apparatus, and mirrors the results found in R. conorii inoculation eschars

[10]. This finding suggests that R. rickettsii is potentially reducing its translational capacity in
vivo, and is consistent with a stringent response [42].

Discussion

Herein, we describe the use of RNAseq technology to ascertain quantity of and changes to R.

rickettsii RNA content in vivo compared to in vitro. The in vitro RNA samples are prepared

Fig 2. Analysis of R. rickettsii genes with predicted sec-dependent signal sequences. Four signal sequence prediction programs were

utilized to identify 59 genes encoding for secreted or surface exposed R. rickettsii proteins. The quantity of transcript is expressed as average

reads per kilobase per million reads (RPKM) for in vivo sequencing reactions. Additionally, each gene is graphed for transcriptional changes as

expressed as fold change of in vivo over in vitro. Colored bars transcriptional change padj<0.01.

https://doi.org/10.1371/journal.pone.0182290.g002

R. rickettsii in vivo transcription
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from R. rickettsii in routine Vero cell culture at the point of maximal bacterial burden. The

transcriptome of those bacterial samples is compared to in vivo R. rickettsii derived from

infected murine liver at the point of maximum morbidity. As such, comparison of these sam-

ples establishes adjustments made by the bacterium in response to the challenges of mamma-

lian infection. The RNAseq data was validated by qRT-PCR to establish the validity of the

Fig 3. Changes to genes encoding for Ankyrin repeat (Ank) domain proteins. Transcription of 14 genes encoding for Ank domain

proteins are analyzed for average in vivo expression (RPKM) and changes in vivo in relation to in vitro. Colored bars padj<0.01.

https://doi.org/10.1371/journal.pone.0182290.g003

R. rickettsii in vivo transcription
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transcriptomic data (Fig 1). RNAseq analysis of changes to the transcriptome demonstrated

significantly altered transcription in 37% of the genes of the R. rickettsii genome. Importantly,

we demonstrate changes to the quantity of transcripts encoding for secreted proteins (Fig 2),

Ank domain containing proteins (Fig 3), the Type IV secretion apparatus (Fig 4), and transla-

tion machinery (Fig 5). Together, these results demonstrate that R. rickettsii actively adapts to

its environment, and the quantity of many known or potential virulence factors are signifi-

cantly changed in vivo.

The high bacterial load in the liver in this mouse model of R. rickettsii infection is different

than occurs in the well-known guinea pig model of infection. R. rickettsii- associated liver

pathology in human cases has been described in the past, with specific mention of mononuclear

hepatitis [43–45]. Liver pathology has also been noted for infection with the closely related bac-

terium, R. conorii [46]. Additionally, rickettsial infection of cells of mononuclear and hepatocyte

cells has been extensively examined in the past [47–49]. As such, the infected cell types and

lesions observed in the mouse model of R. rickettsii infection are observed in human infections.

Since the vast majority of analyses into the molecular mechanisms of obligate intracellular

bacteria pathogenesis are performed in a tissue culture setting, a relevant question pertains to

Fig 4. Analysis of genes encoding for Type IV Secretion System. The 18 annotated virB genes are

analyzed for total in vivo transcription (RPKM) and changes to transcription in vivo as compared to in vitro.

Colored bars padj<0.01.

https://doi.org/10.1371/journal.pone.0182290.g004

R. rickettsii in vivo transcription

PLOS ONE | https://doi.org/10.1371/journal.pone.0182290 August 23, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0182290.g004
https://doi.org/10.1371/journal.pone.0182290


the makeup of the bacteria within the infected animal. Herein, we establish that the transcrip-

tional makeup of the bacteria in vivo is different than has been traditionally analyzed in vitro.

An example of this phenomenon is described in Fig 2 where many genes encoding for secreted

and surface proteins are regulated in vivo. This group of proteins includes the defined antigens

on the R. rickettsii surface, including OmpA and OmpB [50–53]. The importance of defining

in vivo expression of these surface proteins is exemplified by complications stemming from

vaccination against the Borrelia burgdorferi OspA antigen which is entirely repressed within

the infected mammal [54–56]. Of the major R. rickettsii surface antigens, ompA, sca1, adr1,

adr2, and 17kDa antigen (A1G_07075) are all downregulated in vivo (Fig 2, S3 Table). How-

ever, despite decreased in vivo expression, there is substantial transcript present for all of these

antigens, suggesting that targeting the encoded proteins still has potential for preventative effi-

cacy. In contrast, the most prevalent transcript encoding for secreted proteins is the major sur-

face antigen ompB. This gene is expressed at very high levels both in vivo and in vitro, and

therefore remains a primary target for future attempts at preventative vaccination. Based on

the expression levels demonstrated in Fig 2, there are additional genes with high in vivo expres-

sion levels (>1000 RPKM), including ostA, A1G_02215, pal, and A1G_02060. We posit that

these and other highly expressed secreted proteins merit further investigation into the poten-

tial for contributing to R. rickettsii pathogenesis and for advancing efforts at preventative

therapeutics.

Many of the R. rickettsii genes that catalyze the biosynthesis or transport of lipopolysaccha-

ride (LPS) are actively regulated (S5 Table). Regulation of the quantity or makeup of LPS in

mammalian pathogens is well documented [57]. In fact, the intracellular bacterium Coxiella
burnetii actively regulates LPS content as an immune evasion strategy [58–60]. R. rickettsii con-

tains a polysaccharide-rich electron-translucent region surrounding the bacterial membrane

[61]. This LPS-rich area has been found to vary in its physical properties, but the source of this

variation is unknown. As such, the transcriptional changes in LPS biosynthesis and transport

suggests that R. rickettsii LPS structure may vary between cell culture, within the infected

Fig 5. Downregulation of genes encoding for large (rpl / rpm) and small (rps) ribosomal subunits. Genes encoding for protein subunits of the

large ribosomal subunit (rpl, rpm) and small ribosomal subunit (rps) graphed for changes in transcription in vivo in relation to in vitro. 28 of 47 genes

are significantly repressed in vivo. Colored bars padj<0.01.

https://doi.org/10.1371/journal.pone.0182290.g005
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mammal, and in arthropod hosts [62]. Exploration of the consequences of this phenomenon

may illuminate rickettsial pathobiology.

The R. rickettsii Ank domain containing proteins are also presumed to be secreted. Multiple

roles for Ank proteins within the mammalian host cytoplasm have been defined [35]. The R.

rickettsii ank genes are variably regulated with no discernable expression pattern (Fig 3). How-

ever, A1G_01760 is a particularly interesting gene, because it encodes for a Rickettsia ankyrin-

repeat protein 1 (RARP-1) homolog with a predicted N-terminal Sec secretion signal and C-

terminal Ank domain [63]. The very high level of in vivo transcription (average RPKM = 763)

suggests that this protein is readily transcribed/translated, and should be found in abundance

outside of the host cell. A1G_02960 and A1G_00070 are also upregulated and highly expressed

in vivo, but lack a probable Sec secretion signal. These high levels of expression suggest a signif-

icant in vivo function if these two proteins are secreted into the host cell.

All Rickettsia species encode for a Type IV Secretion System (T4SS). T4SS have been dem-

onstrated to be essential in various other pathogens [38]. The genes encoding for the Rickettsia
rickettsii T4SS macromolecular structure (virB) are found in a series of scattered genetic loci

with multiple gene duplications [40]. There are two major loci encoding for VirB proteins, and

the locus containing virB4 and five vir6 genes is not regulated (Fig 4). In contrast, the virB9,

virB8, virB9, virB10, virB11, virD11 (A1G_02205–02240) locus is significantly repressed in vivo
(Fig 4). These findings suggest that the transmembrane Type IV secretion apparatus is present,

but may be underrepresented within the infected mammal.

As demonstrated in Fig 5, genes encoding for translational machinery are significantly

downregulated in vivo. It is again important to note that rRNA depletion has no effect on the

presence of mRNA encoding for ribosomal proteins. The downregulation of genes encoding

for ribosomal proteins is similar to a previous report describing translation machinery down-

regulation R. conorii within inoculation eschars [10]. Though R. conorii eschar sample and R.

rickettsii liver samples are quite different, both analyses reached the same conclusion, thereby

suggesting that this may be a widespread phenomenon.

In contrast to the shared observation of ribosomal mRNA downregulation, in vivo analysis

of R. conorii eschar samples and R. rickettsii liver produced quite different results. The upregu-

lated transcripts reported in R. conorii did not correlate with the present study. 22 of the 31

reported upregulated R. conorii transcripts could be definitively assigned to a R. rickettsii
homolog. Only 14 of the 22 shared genes were upregulated in in vivo in both R. conorii and R.

rickettsii. Taken together, these results suggest that while both in vivo analyses found a decrease

in translational machinery, the R. conorii global transcriptome in an inoculation eschar differs

from R. rickettsii in the infected liver. This is not unexpected as Rickettsia in human eschar and

murine liver are experiencing different challenges. Though Rickettsia are frequently cultured

from inoculation eschars [64–66], it is clear that these bacteria are located in a zone of limited

fluid perfusion within significantly necrotic dermis and epidermis. In contrast, liver derived R.

rickettsii are infecting a heterogeneous population of mononuclear cells (Kupffer cells), endo-

thelial cells, and hepatocytes [11]. As such, care must be taken when comparing the only two

transcriptional analysis of Rickettsia species in a mammal.

In summary, we have utilized RNAseq technologies to define the in vivo transcriptome of

R. rickettsii, the causative agent of Rocky Mountain spotted fever. The global RNA profile in
vivo is vastly different than is found in routine tissue culture. This data further advances the

suitability of those genes that are highly expressed or upregulated in vivo as research topics.

We have described regulation of RNAs encoding for secreted proteins, LPS production, Type

IV secretion, and translational machinery. The observed regulation correlates with our

hypothesis that R. rickettsii utilizes transcriptional alterations during pathogenesis in the mam-

malian host. Investigation into the molecular mechanisms of transcriptional regulation will

R. rickettsii in vivo transcription
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greatly increase our understanding of the pathogenesis of these severe human infections, and

experimental disruption of regulation may contribute to development of interruptive

therapeutics.
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