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A B S T R A C T   

Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern 
in the growing population. Vitamin B-complex plays an essential role in many body functions. With the intro-
duction of nanotechnology in the food industry, new and innovative techniques have started to develop, which 
holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 
(UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in 
food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, 
physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and 
composites along with their applications, are discussed in detail. Among various nanomaterials, organic nano-
materials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in 
foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also 
highlighted in this review.   

1. Introduction 

Micronutrient malnutrition is widely known as hidden hunger 
caused due to the shortage of dietary micronutrients, including minerals 
and vitamins. It has a detrimental effect on human health as it has 
affected more than 2 billion people across the globe, and its high prev-
alence is majorly observed in Africa and South Asia. According to World 
Health Organization (WHO, 2019), more than 800 million people are 
undernourished, and more than 2 billion people are at risk of developing 
micronutrient malnutrition . Inadequate micronutrients mainly affect 
school-going children and women of reproductive age, resulting in 
stunted growth, generation of health problems, and severe birth-related 
defects. Vitamin B-complex is a micronutrient that comprises eight 
water-soluble vitamins, which form essential and closely interrelated 
roles. The complex involves vitamins B1 (thiamine), B2 (riboflavin), B3 
(niacin), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin), B9 (folate), 
and B12 (cobalamin) (Bonto, Camacho, & Camacho, 2018; Xie et al., 
2018). The main physiological processes regulated by these vitamins are 
the metabolism of carbohydrates, amino acids, fatty acids, and lipids 
and the synthesis of proteins, cholesterol, neurotransmitters, S-adenosyl 
methionine, and nucleotide bases (Romina Alina et al., 2019). 

Moreover, it is known that vitamin B-complex deficiency leads to ane-
mia, digestive issues, skin conditions, infections, peripheral neuropathy, 
and psychiatric disorders. The prevalence of deficiencies is differently 
present globally and discussed in Table 1. 

Nanotechnological tools in fortification offer many benefits, 
including improved stability, shelf life extension, sustained release, 
organoleptic properties, and improved bioavailability due to better 
release profile kinetics. Various nanomaterials are used for fortification, 
including organic, inorganic, carbon, and composites, but among these, 
organic nanomaterials are used in large numbers because these are lipid- 
based nanomaterials (liposomes, solid lipid nanoparticles, nano-
structured lipid complex, nanoemulsion, and cubosomes), biopolymeric 
nanomaterials, polysaccharides nanomaterials, and protein nano-
materials (Dima, Assadpour, Dima, & Jafari, 2020). Nanomaterials are 
becoming indispensable for fortifying food with vitamin B-complex to 
prevent and control micronutrient malnutrition in the growing popu-
lation. Micronutrient deficiency poses a risk to health as well as to the 
global economy. Therefore, eliminating this disease has become of the 
utmost importance, and it also plays a vital role in fulfilling the United 
Nations (U.N.) designed sustainability goal number 2 (SDG-2), namely, 
Zero hunger. 
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Many papers are on vitamin B-complex supplementation, fortifica-
tion, biofortification, and post-harvest fortification (Tiozon, Fernie, & 
Sreenivasulu, 2021; Modupe & Diosady, 2021; Xie et al., 2021). But not 
much work on nanofortification of foods with vitamin B-complex is 
available; therefore, this review highlights the importance of nano-
fortification of vitamin B-complex, its journey, and the need for nano-
fortification methods, advanced nanotechnology tools, global 
regulations, and future trends. This work is one of its kind as it presents a 
comprehensive discussion on different nanomaterials used for vitamin 
B-complex fortification. 

2. How does nanofortification come into play? 

Codex Alimentarius, jointly led by Food and Agricultural Organiza-
tion (FAO) and World Health Organization (WHO), defines the term 
’fortification’ as the process of purposely escalating the content of 
essential micronutrients, like, vitamins, minerals, amino acids, etc., to 
enhance the nutritional quality of food in a population (Cardoso, Fer-
nandes, Gonzaléz-Paramás, Barros, & Ferreira, 2019; Whiting, Kohrt, 
Warren, Kraenzlin, & Bonjour, 2016). It can be purely commercial, and 
sometimes it is a public health policy. This strategy can potentially 
benefit by reaching a large population (Dwyer, Wiemer, Dary, Keen, 
King, Miller, Philbert, Tarasuk, Taylor, Gaine, Jarvis, & Bailey, 2015). 
The fortification technique shifted to the nanofortification technique 
because the conventional techniques failed to provide satisfactory flavor 
profiles, good stability, and high bioavailability, resulting in elevated 

demand for nanofortification. Nanofortification is a technique that uses 
nanomaterials to encapsulate the nutrients because they have a small 
size that helps exhibit a high polydispersity index, high loading capacity, 

Table 1 
Summary of the prevalence of deficiency of vitamin B-complex, risk factors, and its symptoms.  

Vitamins Prevalence Risk factors Symptoms Ref. 

Thiamine 
(B1) 

Majorly in Japan, Thailand Diet of mostly white rice, alcoholism, 
dialysis, chronic dialarhoea, diuretics.  

• Beriberi is a chronic neurological and 
cardiovascular disease  

• Wernicke-Korsakov syndrome 

(Strobbe & Van Der 
Straeten, 2018) 

Riboflavin 
(B2) 

Developing countries Vegans, Alcohol consumption Dermatitis, cheilosis, glossitis, anemia, insomnia, 
conjunctivitis 

(Uebanso et al., 2020) 

Niacin (B3) Developing countries, 
populations in famine 
conditions 

Genetic disorders, malabsorptive 
conditions, and alcoholism 

Diarrhea, dementia, dermatitis. (Williams et al., 2017) 

Pyridoxine 
(B6) 

Developing countries Isoniazid, protein-energy undernutrition, 
malabsorption, alcoholism 

Neuropathy, seborrheic dermatitis, glossitis, 
cheilosis, depression, confusion, and seizures. 

(Coburn, 2015) 

Folate (B9) Insufficient data Poor diet, alcoholism, anticonvulsants, 
gastrointestinal disorder 

Unexplained fatigue, anemia, and muscle 
weakness. 

(Pique, Taber, Thompson, 
& Maitland, 2021) 

Cobalamin 
(B12) 

Insufficient data Alcohol consumption, vegetarian diet, 
malabsorption, genetic disorder. 

Megaloblastic anemia, atrophic gastritis, poor 
balance, memory trouble. 

(Ata et al., 2020)  

Fig. 1. Timeline of nanofortification process.  

Fig. 2. An illustration of the trending fortification methods and 
nanofortification. 
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and good encapsulation efficiency. The journey of nanofortification 
from fortification is shown in Fig. 1. Nanofortification programs are 
based on dietary recommendations, selecting food delivery vehicles, and 
choosing the target population to eradicate micronutrient malnutrition. 
The practical utilities of nanofortified food with various essential 
micronutrients, like vitamin B-complex, helps in improving human 
health by avoiding their deficiency in the body (Fig. 2). These de-
ficiencies lead to the generation of diseases like the suppressed immune 
system, aging, cancer, anemia, depression, beriberi, diabetes, heart 
diseases, osteoporosis, osteomalacia, etc.. 

3. Need for nanofortification of food with vitamin-B complex 

There are mainly four fortification methods of vitamin B-complex in 
foods: biofortification, microbial biofortification, commercial, and 
home fortification, but, among all these methods, commercial fortifi-
cation is used in large quantities. However, these methods are insuffi-
cient to address the problem of vitamin B-complex fortification because 
vitamin B-complex comprises different vitamins, and the challenges 
faced by every vitamin are different. The challenges are categorized as 
the technological, sensory, safety, and cost of the type of fortificant to be 
used. One of the significant problems associated with adding thiamine is 
that it produces an unpleasant odor and easily breaks during heating. At 
the same time, riboflavin becomes unstable with increasing pH and is 
degraded by reduction. While riboflavin is heat stable during milk 
processing, it has been observed that when exposed to light, it loses 
approximately 20–80% of the riboflavin content within two hours. 
Moreover, many factors like light intensity, high temperature, and high 
surface area define the rate of loss of the contents. Furthermore, tech-
nical problems such as improving bioavailability, overcoming degra-
dation, and improving organoleptic properties of certain fortificants are 
significant concerns that need to be resolved while directly adding 
vitamin B-complex in food products. However, these challenges could be 
addressed by using nanotechnology. 

Nanofortification is an advanced method capable of handling the 
challenges of current fortification methods. It can mask the release of 
undesirable flavor, improve the stability of product, increase the 
bioavailability, and help improve the target population’s micronutrient 
status. Before implementing any substance to the nanofortification 
program, its physical, chemical, and safety attributes should be exam-
ined and accepted by the respective agency. The general criteria for 
nanofortification are nutrient deficiency, regular consumption by the 
target population, food vehicle, non-toxicity by higher consumption, 
acceptable change in organoleptic properties, chemical stability, 
bioavailability, homogeneity, centrally controlled, and scalability. The 
cost of nanofortification should be affordable for the population, active 
participation among governmental organizations, academic institutions, 

research organizations, marketing specialists, and interested interna-
tional organizations. 

4. Advanced nanotechnology methods of fortification 

The FAO report says that millions of people are undernourished 
globally (McGuire, 2015). Thus, it is essential to continue intensive work 
to overcome all food fortification challenges, and therefore, nanotech-
nology in food fortification is beneficial. One of the standard methods to 
provide vitamin B-complexes in the human body is nanoencapsulation, 
as explained with the diagrammatic representation in Fig. 3. The 
nanoconjugated vitamin is added to the staple food in a defined amount. 
The human then consumes this nanofortified food, and the nanoparticle 
delivers the vitamin B-complex to the small intestine, where the blood 
can directly absorb it. However, designing and utilizing green-based 
nanosystems has been initiated rather than chemical approaches. 
Some nanomaterials used in the nanofortification process are discussed 
in this section. 

4.1. Organic nanomaterials 

Organic nanomaterials are most commonly used to fortify vitamin B- 
complex due to their simple design, range of biochemical properties, 
payload flexibility, and high bioavailability. They are classified as lipids, 
polysaccharides, proteins, and biopolymeric nanomaterials, as 
explained in Fig. 4. The section below discusses its detailed applications. 

4.1.1. Lipid-based nanomaterials 
Lipid-based nanomaterials are typically spherical platforms that 

consist of more than one lipid bilayer surrounding an internal aqueous 
compartment. They are generated using top-down (energy-intensive) 
techniques such as spray drying, extrusion, or bottom-up (low-energy) 
techniques such as self-assembly. They have shown improved stability, 
sustained delivery, bioavailability by reducing side-effects, shielding the 
entrapped vitamin from free radicals, metal ions, pH variations, and 
enzymes (Mendes et al., 2016). 

4.1.1.1. Nanoliposomes. Nanoliposomes are biocompatible, easy to 
reduce, and stable, making them a suitable carrier agent for the fortifi-
cation process. One of the remarkable works noted till now is the 
development of thiamine-loaded nanoliposomes prepared by high-speed 
homogenization utilizing phosphatidylcholine (Juveriya Fathima, 
Fathima, Abhishek, & Khanum, 2016). Further, another experiment was 

Fig. 3. A schematic illustration of nanoencapsulation of vitamin B-complex.  

Fig. 4. Different organic nanomaterials like lipid-based nanomaterials, 
biopolymer, and protein-based nanomaterials are used in nanofortification 
(SLNs- Solid lipid nanoparticles; NLC- nanostructured lipid complex). 
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performed in which nanoliposomes were synthesized ultrasonically with 
different hydrophobicity and were used as carriers to deliver cobalamin, 
tocopherol, and ergocalciferol. Characterization based on size, encap-
sulation efficiency, and stability was also performed. Moreover, small 
unilamellar vesicles (SUVs) and multilamellar vesicle (MLVs) are the 
types of liposome-based nanomaterials whose diameter ranges from 40 
to 51 nm and 2.9–5.7 μm, respectively. It was observed that MLVs 
exhibited a higher encapsulation efficiency for all kinds of vitamins, 
making them stable carriers. On the other hand, SUVs showed an 
encapsulation efficiency of 56%, 76%, and 57% for cobalamin, 
α-tocopherol, and ergocalciferol, respectively. Additionally, it was also 
noted that high encapsulation efficiency could increase the hydropho-
bicity of the encapsulated vitamin (Bochicchio, Barba, Grassi, & Lam-
berti, 2016). 

4.1.1.2. Lipid nanoparticles. Lipid nanoparticles are gaining interest as a 
novel and promising carrier system for micronutrients as SLNs and NLCs 
are the primary lipid nanoparticles (Katouzian, Faridi Esfanjani, Jafari, 
& Akhavan, 2017). For instance, interesting work was done for ribo-
flavin encapsulation using fully hydrogenated canola oil, sodium lauryl 
sulfate, and polyethylene glycol (PEG) (stabilizer). Owing to the hy-
drophilic nature of lipid nanoparticles, they can readily absorb the 
vitamin, making them a good encapsulating agent, as encapsulation 
controls its release along with protection from light (Couto, Alvarez, & 
Temelli, 2017). 

4.1.1.3. Nanoemulsion nanomaterials. Nanoemulsions are small drop-
lets (from 10-few hundred nanometers), which are thermodynamic 
unstable but are kinetically stable in colloidal systems. Both high energy 
and low energy methods can be used to prepare them. They can be 
single, double, and pickering nanoemulsions. Whey protein concentrate 
and pectin have been explored for nanofortification of folic acid using 
the spray drying method, and researchers showed that these nano-
materials have immense potential for controlled delivery of micro-
nutrients (Assadpour & Jafari, 2017). Similarly, another successful 
study was done with a whey protein complex with maltodextrin for 

nanofortification of folic acid (Assadpour, Maghsoudlou, Jafari, Ghor-
bani, & Aalami, 2016). 

4.1.1.4. Cubosomes. Cubosomes are developed from the lipid cubic 
phase and are highly stable because of the polymer-based outer corona. 
An experiment consisted of two alternative carriers of cobalamin: phy-
tantriol (PHYT) cubosomes and nano-engineered polymeric capsules. 
Both were incorporated with magnetic nanoparticles in the bilayer of 
cubic lipid nanoparticles and the shell of polymeric nanocapsules. These 
magnetic nanoparticles helped achieve the targeted drug delivery when 
an external magnetic field was applied. Moreover, the structure of the 
cubosome provides a high membrane surface area that can be used for 
loading small drug molecules and membrane proteins. This experiment 
showed that the cubosome-based drug delivery was biocompatible, 
feasible, and stable and can be used for the delivery of vitamins 
(Maiorova et al., 2019). 

4.1.2. Protein nanomaterials 
Food-grade proteins are adequate materials for preparing nano-

particles with good digestibility, low price, biocompatibility, and 
interaction with other nutrients. They are explored for the nano-
fortification of micronutrients, especially vitamin B-complex. For 
instance, zein nanoparticles of size 200 nm were developed efficiently to 
deliver the folic acid at the targeted site without getting damaged in the 
stomach’s atmosphere. The experiment reported that the release 
depended on the pH conditions, concluding that the conjugate was not 
affected under simulated gastric conditions (Kasaai, 2018). Moreover, 
these zein nanoparticles can fortify various food products, but more 
studies are still needed to explore the potentialities of zein nanoparticles 
in this domain. A schematic representation of the overall experiment is 
illustrated in Fig. 5 (Peñalva et al., 2015a). Another work utilizing soy 
protein nanoparticles for fortification improved the intestinal absorp-
tion of cobalamin (Zhang, Field, Vine, & Chen, 2014). Recent work 
showed that bovine serum albumin-nanoparticle (BSA-NPs) were used 
for folic acid and iron fortification in stirred functional yogurt. Coating 
BSA-NPs with amino acids (lysine) allows the positive/negative charge 

Fig. 5. An illustration of the oral administration of spherical zein nanoparticle conjugated with the vitamin in the mice and its biodistribution inside the mice as 
observed by SPECT-CT image and fluorescence microscopy image of its jejunum. The Folic acid (FA) concentration vs. time graph represents the pharmacokinetic 
study of the folic acid serum after a single oral administration. (reproduced with permission from (Peñalva et al., 2015a)). 
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of molecules to absorb electrostatically without the intervention of any 
other compounds (Darwish, Soliman, Elhendy, & El-Kholy, 2021). 
Similarly, casein nanoparticles of size 150 nm were also studied for 
nanofortification of folic acid. The coacervation process was used to 
synthesize them, and amino acids (lysine, arginine) helped stabilize 
them. Consequently, the oral bioavailability of folic acid was 50% higher 
than the traditional aqueous solution (Penalva et al., 2015b). In a study 
reported by (Madalena et al., 2016), β-lactoglobulin (β-Lglb) were 
suitable carriers for riboflavin delivery. 

4.1.3. Polysaccharide nanomaterials 
Poysaachharide nanomaterials are used in nanofortification, pick-

ering emulsion stabilization, and material enforcing agent due to their 
environmentally friendly properties. They are alginates, chitin, chitosan, 
cellulose, dextran, starch, hyaluronic acid, pectin, and pullulan (Plu-
cinski, Lyu, & Schmidt, 2021). A recent study (Jhan, Gani, Noor, & 
Ashraf, 2021) was done by fabricating starch nanoparticles from 
underutilized cereal grains for nanofortification of folic acid. They re-
ported controlled release and were more resistant to in-vitro digestion. 
Recently, studies have started to focus on conjugation complexes of 
polymers with polysaccharide nanomaterials with improved properties. 

4.1.4. Biopolymer-based nanomaterials 
Biopolymeric nanomaterials are present in nanocapsules, nano-

sphere, nanomicelle, and nanogels. They can be made up of single or 
complex biopolymers and precisely control particle characteristics, 
flexible payload, and accessible surface modifications. Bottom-up ap-
proaches generally form their composites. One study conducted using 
thymol-loaded chitosan-based nano scaffolds for coating fish fillets 
showed the effectiveness of improving unstable vitamin B-complex 
stability (Ceylan, Yaman, Sağdıç, Karabulut, & Yilmaz, 2018). Another 
study reported that alginate-pectin nanoparticles enhanced the regu-
lated release of folic acid at gastrointestinal pH (Pamunuwa et al., 
2020). In another exciting work, polylactic co-glycolic acid (PLGA) was 
used for co-administrating folic acid and cobalamin, which showed 
improved bioaccessibility. This approach showed promising results as it 
can release the vitamin at a low pH, enhance the bioavailability, and 
stabilize it by protecting against specific conditions (Ramalho, Loureiro, 
& Pereira, 2021). Additionally, water-soluble β-cyclodextrin, the novel 
polymer, was effectively used to encapsulate riboflavin to enhance 
physicochemical characteristics. An experiment was performed in which 
complexes between water-soluble cationic poly(β-CD-co-guanidine) and 
riboflavin were synthesized through a co-precipitation method. The 
experiment results exhibited that the solubility of riboflavin drastically 
increased in the complex form. Therefore, this finding provides ample 
room for the researchers to explore its utilities in various domains like 
food industries, pharmacology companies, drug development, etc. 
(Heydari, Doostan, Khoshnood, & Sheibani, 2016). Food-grade algi-
nate/chitosan complex nanolaminates obtained using the layer-by-layer 
technique showed controlled release at pH 7 than pH 3, making them a 
good choice for nanofortification and novel functional food 

development (Acevedo-Fani, Soliva-Fortuny, & Martín-Belloso, 2018). 

4.2. Inorganic nanomaterials 

There are various types of inorganic nanomaterials like mesoporous 
silica/amino-silicate composites, clays, calcium carbonates, calcium 
phosphate, and layered double hydroxides (LDH) that are promising 
candidates for fortification (Jampilek, Kos, & Kralova, 2019). Among 
these, mesoporous silica nanoparticles are explored for fortification 
purposes. A recent study based on gated mesoporous silica particles 
(TEM particle size of 862 nm) was used to fortify folic acid in apple and 
orange juices. Simulated digestion studies showed the release of 
encapsulated folic acid at the intestinal stage, longer shelf life over the 
free form, and better stability on exposure to UV–visible light (Ruiz-Rico 
et al., 2017). Simple powders and tablets of nanostructured hybrids 
exhibited enhanced release compared to crystalline folic acid (Pagano, 
Tiralti, & Perioli, 2016). Nanoclays (montmorillonite) are also explored 
for nanofortification purposes of cobalamin that exhibited better ab-
sorption (Akbari Alavijeh, Sarvi, & Ramazani Afarani, 2017). 

4.3. Carbon-based nanomaterials 

Carbon-based nanomaterials include carbon nanotubes, carbon 
nanoparticles, and carbon nano-dots that can also be used in the nano-
fortification process. However, very little work on these nanomaterials 
for fortification purposes is available; therefore, it gives a bigger room 
for researchers to explore their potentialities in vitamin fortification 
(Zawari, Aghaei, & Monajjemi, 2015). 

4.4. Composite nanomaterials 

Composites of proteins and lipids enhance delivery systems with 
desirable characteristics. For example, lipid-protein composite systems 
showed increased targeted delivery, sustained release, and reduced 
cytotoxicity (Dissanayake, Sun, Abbey, & Bandara, 2022). Food protein 
and lipid-based nanoparticles have allured a lot of interest for efficient 
delivery of micronutrients. A novel protein-lipid composite nanoparticle 
consisting of a three-layered structure (barley protein layer, α-tocoph-
erol layer, and phospholipid layer) and an inner aqueous compartment 
was designed to load hydrophilic micronutrients. Its unique design 
helped to absorb hydrophilic micronutrients with high encapsulation 
efficiency . Therefore, this delivery system exhibited excellent efficiency 
in encapsulating cyanocobalamin (vitamin B12) and regulated the 
release profile in a simulated gastrointestinal environment. Overall, this 
novel oral protein-lipid composite nanoparticle showed remarkable 
capability, which can be used as the primary platform for delivering 
many different hydrophilic micronutrients (Liu et al., 2018). Another 
extended study based on succinylation of protein chain improved the 
nanoparticle stability, cellular uptake (increased 20 fold), mucoadhesive 
ability, and prevented leaking in the gastric environment due to 
increased surface charge. (Liu et al., 2019). A few examples of the recent 

Table 2 
Examples of nanomaterials used for vitamin B complex fortification.  

Nanofortication technique Wall material Vitamin Purpose Ref. 

Coacervation  • Lactoferrin  
• β-lactoglobulin 

Folic acid 
(vitamin B9) 

Fabricating a naturally occurring carrier. (Chapeau et al., 2016) 

Ultrasonication  • Chitosan  
• Zinc 

Folic acid 
(vitamin B9) 

Potential carrier for development of novel 
functional foods 

(Bandara et al., 2018) 

Electrospraying and 
Nanospray drying  

• Whey protein concentrate (WPC).  
• Commercial resistant starch. 

Folic acid 
(Vitamin B9) 

Analyzing the encapsulation yield and 
stability. 

(Pérez-Masiá et al., 2015) 

Nano emulsification W1/O/W2 double emulsions with 4 
different lipid sources 

Vitamin B2 Using this process as functional healthier- 
fat food ingredients. 

(Bou, Cofrades, & Jiménez- 
Colmenero, 2014) 

Ionotropic-gelation  • Alginate  
• Chitosan 

Vitamin B2 Encapsulation. (Azevedo, Bourbon, Vicente, & 
Cerqueira, 2014) 

Cold gelation Soybean protein Cobalamin Improved intestinal transport. (Zhang, Field, Vine, & Chen, 
2015)  
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nanofortification of vitamin B-complex are given in Table 2. 

5. Regulatory guidelines across the globe 

Whenever we talk about nanomaterials, their regulations are always 
a concern and should be a priority. Globally, no specific legislation is 
applied regarding the regulation of nanomaterials in the food fortifica-
tion and medical sectors. Many countries still have no particular regu-
lations for the risk assessment of nanomaterials (Nel & Malloy, 2017). 
Recently, the European Union (EU) has taken the lead and made im-
provements in the annexes for nanomaterials to provide more clarity to 
manufacturers, importers, and users (Clausen & Hansen, 2018). It has 
established regulations that any food ingredient derived from nano-
technology applications must undergo a safety assessment before its use 
(Bazana, Codevilla, & de Menezes, 2019). European Chemical Agency 
(ECHA), the competent authority for the Registration, Evaluation, 
Authorisation, and Restriction of Chemicals (REACH), and the Classifi-
cation, Labelling, and Packaging (CLP) Regulation legal acts contain 
several product-specific regulations, including food. 

Furthermore, the REACH Regulation’s recent revision on chemical 
substances introduced nano-specific provisions (Miernicki, Hofmann, 
Eisenberger, von der Kammer, & Praetorius, 2019). Different organiza-
tions like Scientific Committee on Emerging and Newly Identified 
Health Risks (SCENIHR), the European Food Safety Agency (EFSA), and 
Organisation for Economic Cooperation and Development (OECD) are 
working in this direction in the EU (Scott-Fordsmand et al., 2021). Some 
guidelines have also been released by the U.S. Food and Drug Admin-
istration regarding nanotechnology in food. Other organizations such as 
International Standard Organization (ISO), WHO, and Scientific Com-
mittees are working in this direction in the USA (Amenta et al., 2015). 
Globally there is a need for proper food nanofortification with Vitamin 
B-complex. The overall process for implementing the food nano-
fortification initiative and the role of external factors are schematically 
presented in Fig. 6. 

6. Conclusion and future directions 

Vitamin B-complex benefits human health as they are present in 
many foods. However, they present a challenge in the food industry 
because of manufacturing and storage conditions. However, nanotech-
nology has opened several possibilities to improve their stability and 
benefits according to their structure storage conditions. Although 
nanofortification is an alternative to the current fortification process, 
however, a gap persists in long-term health and environmental impact. 

But it has been believed that the nanofortification will help achieve the 
UN sustainable development goal of zero hunger. Although, many 
countries like Switzerland, Nigeria, America, etc., have already started 
nanofortifying their food items with different micronutrients, vitamins, 
etc. Further, with the onset of the current global pandemic caused by 
SARS-CoV-2, it has generated health and medical concerns among 
people leading to rising global food concerns. Moreover, much studies 
are still required to know the excretion routes of nanoparticle from the 
body, and toxicity, which demands rigorous and in-depth study to lay 
down basic biosafety and bioregulatory protocols on their applications. 

However, much research is still needed in the nanofortification of 
vitamin B-complex. The future of this field is very bright and could be 
used to develop more improved fortification techniques and help erad-
icate malnourishment from society. Thus, this review summarizes the 
role of nanotechnology in the fortification of the vitamin B-complex in 
food. It also discusses some associated regulations of nanotechnology. 
Organic nanomaterials are mainly used for the fortification process 
among the various discussed nanomaterials. Hence, this review aims to 
deliver a detailed discussion on the various methods of nanofortification 
of vitamin B-complex along with its recent trends and advancements. 
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Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros, G., Lagaron, J. M., & López- 
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