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Fluorescence spectroscopy 
and multispectral imaging 
for fingerprinting of aflatoxin‑B1 
contaminated (Zea mays L.) seeds: 
a preliminary study
Dragana Bartolić1, Dragosav Mutavdžić1, Jens Michael Carstensen2, Slavica Stanković3, 
Milica Nikolić3, Saša Krstović4 & Ksenija Radotić1*

Cereal seeds safety may be compromised by the presence of toxic contaminants, such as aflatoxins. 
Besides being carcinogenic, they have other adverse health effects on humans and animals. In 
this preliminary study, we used two non-invasive optical techniques, optical fiber fluorescence 
spectroscopy and multispectral imaging (MSI), for discrimination of maize seeds naturally 
contaminated with aflatoxin B1 (AFB1) from the uncontaminated seeds. The AFB1-contaminated 
seeds exhibited a red shift of the emission maximum position compared to the control samples. 
Using linear discrimination analysis to analyse fluorescence data, classification accuracy of 100% 
was obtained to discriminate uncontaminated and AFB1-contaminated seeds. The MSI analysis 
combined with a normalized canonical discriminant analysis, provided spectral and spatial patterns 
of the analysed seeds. The AFB1-contaminated seeds showed a 7.9 to 9.6-fold increase in the seed 
reflectance in the VIS region, and 10.4 and 12.2-fold increase in the NIR spectral region, compared 
with the uncontaminated seeds. Thus the MSI method classified successfully contaminated from 
uncontaminated seeds with high accuracy. The results may have an impact on development of 
spectroscopic non-invasive methods for detection of AFs presence in seeds, providing valuable 
information for the assessment of seed adulteration in the field of food forensics and food safety.

The most hazardous among aflatoxins (AFs) is aflatoxin B1 (AFB1), with the highest potential as an environmental 
carcinogen. The International Agency for Research on Cancer has classified naturally occurring AFs as Group 1 
human carcinogens. Currently, more than 5 billion people worldwide suffer from uncontrolled exposure to AFs, 
and AFs contamination has been linked to increased mortality in farm animals1. The diseases caused by AFs 
consumption are called aflatoxicoses. Chronic aflatoxicosis results in cancer, immune suppression, and other 
“slow” pathological conditions1,2. On the contrary, acute toxicity of aflatoxins has a rapid onset and an obvious 
toxic response3, and leads to death. It has been documented some cases of acute aflatoxicosis in Kenya, India, 
and Malaysia. The acute lethal dose (LD) for adult humans, children, and most animal species is 10–20 mg, 3 mg, 
and 0.5–10 mg/kg body weight, respectively3. Also, they induce other adverse effects to humans and animals, 
such as teratogenic, mutagenic, and hepatotoxic effects3. They do not only impose severe health risks to humans 
and livestock, but also lead to huge economic losses lowering the value of grains as an animal feed and as an 
export commodity4. Maize (Zea mays L.) is among the most important food commodities for human and animal 
consumption worldwide5 and as such, the condition of maize grains is crucial. With an approximated 25% of the 
world’s crop being contaminated each year, losses in the billion-dollar range have been estimated, according to 
Food and Agricultural Organization (FAO) reports4,6.

Food contamination is primarily due to naturally occurring contaminants in the environment. The AFs are 
secondary metabolites produced by molds, particularly by Aspergillus flavus and Aspergillus parasiticus. Cereal 
grains, such as maize, are frequently contaminated with AFB1. During the pre-harvest stage in the field, the AFs 
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contamination can be more severe; nonetheless, there may be an increase during post-harvest, for example, due to 
inappropriate storage and transportation7. Some works has been reported that AFs have been used as bioweapon 
agents by Iraq and the Soviet Union2,8,9.

Food forensicists need a number of tools to detect the many possible food contaminants10 and in this context 
the detection of AF’s is a prerequisite to insure food safety. As low ppb’s concentrations are usually involved, 
it is important to have very sensitive techniques for their determination. Among them, the most common 
analytical methods are the enzyme-linked immunosorbent assay (ELISA), high pressure liquid chromatogra-
phy (HPLC), liquid chromatography coupled to Mass Spectrometry (LC–MS/MS). These techniques are costly, 
time-consuming and special equipment is required11. Hence, optical techniques, including spectroscopy and 
imaging systems, have been employed for rapid and non-invasive evaluation for the quality and safety of seeds12. 
Fluorescence spectroscopy is a rapid, sensitive, specific and non-invasive technique, which is used for analysis of 
fluorescence molecules (fluorophores) contained in the samples. Combined with chemometric tools it is widely 
applied for spectral fingerprints in food analysis13,14, such as screening of toxic contaminants, like aflatoxins15–17. 
Multispectral imaging (MSI) technique, provide simultaneously measuring spectral and spatial information of 
samples (seeds) by imaging their surface reflectance at selected wavelengths18. Applications of the MSI for seed 
analysis have been previously reported by several works12,18. Also, an advantage of this technique is the non-
invasive and rapid evaluation of the overall quality parameters of the seeds lots, as well as the individual seeds12.

In this preliminary study, we applied fluorescence spectroscopy and multispectral imaging on the intact seeds 
to discriminate maize seeds highly contaminated with AFB1 by fungal spores inoculation into plants in field from 
uncontaminated samples, although there was no any visual difference between these two seed lots. The two optical 
methods were used to strengthen reliability of the results. Normalized canonical discriminant analysis (nCDA) 
applied to the multispectral imaging data, and linear discriminant analysis (LDA) applied to the fluorescence 
spectral data were used to analyse and compare uncontaminated and high-AFB1 contaminated seeds. To our 
knowledge this is first work of this type on the seeds contaminated with AFB1 in the natural conditions in field. 
The results may have an impact on development of spectroscopic non-invasive methods/devices for detection 
of AFs presence in seeds, which may have practical applications in agriculture and forensics.

Results
Fluorescence analysis.   Figure 1 illustrates the averaged fluorescence spectra of the control (uncontami-
nated) and highly AFB1-contaminated maize seeds. In the analysed emission region (from 360 to 800 nm) with 
an excitation wavelength of 340 nm, the differences in the spectral shape and the position of emission maximum 
were notable. In the control seeds, two emission peaks at 435 nm and 520 nm were observed. By contrast, the 
high AFB1-contaminated seeds exhibited an emission peak at 475 nm, indicating a red shift of the emission 
maximum position compared to the control samples.

Linear discriminant analysis (LDA) was performed on scores evaluated by the principal components method. 
Multicolinearity problem is often present in fluorescence spectroscopy, but this problem was solved by Principal 
component analysis. This method transforms correlated variables (predictors) into set of uncorrelated variables 
called Principal components. In this way, multicolinearity problem was solved. In our case, we retained the first 
two principal components that absorb 78.3% of total variation. The scores of these two principal components 
were input for linear discriminant analysis. A graphical representation of the scores of the first two principal 
components is given in Fig. 2, clearly showing the discrimination of the seeds into AFB1-contaminated and 
uncontaminated, as well as the fact that this discrimination was achieved only on the PC2 dimension. The left 
side of the graph shows the histograms of the PC2 scores for these two groups. The initial data set was divided 
into a training and a test set in a 46:15 ratio. The results of LDA application are summarized in the confusion 
matrix (Table 1). Classification reliability of 100% was obtained in both sets. 

Multispectral imaging analysis based on reflectance.  Discrimination between AFB1-contaminated 
and uncontaminated seeds was additionally estimated based on the reflectance intensity in the 375–970 nm 

Figure 1.   The normalized fluorescence emission spectra shown in solid and dashed lines correspond to control 
and aflatoxin B1-contaminanted Zea mays seeds, respectively. Excitation was set at 340 nm.
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region. Figure 3A shows images and corresponding nCDA transformed images of the uncontaminted (a, c) and 
aflatoxin contaminated (b, d) seeds. Although the analysed seedlots did not differ visually, their nCDA images 
are showing contrasting differences between the control and the aflatoxin contaminated seeds. We observed that 
the image of the control seeds displayed more blue pixels, while in the highly AFB1-contaminated seeds, there 
were a more red pixels.

As shown in Fig. 3B, the average reflectance (%) of the control seeds is higher than those of the aflatoxin 
contaminated seeds in the two spectral regions, from 450 to 540 nm (visible region (VIS)) and from 780 to 
970 nm (near infrared region (NIR)).

As shown in Fig. 4, the AFB1-contaminated seeds showed a 7.9 to 9.6-fold increase in the seed reflectance 
for some wavelengths in the VIS region. Our results show an average increase of the reflectance by a factor of 
approximately 10.4 and 12.2 at 880 nm and 970 nm respectively in aflatoxin contaminated seeds compared to 
the control samples.

Discussion
It was previously shown that the positions of the emission maxima were red-shifted in the AFB1-contaminated 
maize flour15. These wavelengths correspond to the emission maxima of the various fluorophores, which are 
mainly found in the plant cell wall, such as polyphenols/lignin21. It has been shown previously that some of the 
phenolic, as well as phenylamide compounds, participate in the seeds’ defense response22, such as lignification of 
the maize seed coat23. Also, the carotenoid emit fluorescence in the same spectral region21. Our results imply that 
some of these fluorophores changed in aflatoxin contaminated seeds, which are responsible for the fluorescence 
characteristics. Linear discrimination analysis (LDA) of the fluorescence data obtained classification accuracy 

Figure 2.   Diagram of scattering of scores corresponding to contaminated and uncontaminated seeds in 
the space of the first two Principal components. Each score corresponds to one seed. The left side shows the 
histograms of the scores of the second main component of these two groups.

Table 1.   Training and test sample confusion matrix for 2-class, AFB1-contaminated (C) and control (UN) 
seeds, classification results. a 100% of selected training cases correctly classified. b 100% of test original grouped 
cases correctly classified.

Predicted group membership

Group UN C Total

Training seta Original

Count
UN 35 0 35

C 0 11 11

%
UN 100 0 100

C 0 100 100

Test setb Original

Count
UN 10 0 10

C 0 5 5

%
UN 100 0 100

C 0 100 100
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of 100%, to discriminate control and AFB1-containing seeds (Fig. 2). However, a more complete assessment 
requires further studies to be carried out with a higher number of samples.

The difference in reflectance in the visible region between contaminated and control seeds may be due to 
the change in pigment (e.g. carotenoid) content as a response to contamination24. The changes in these pig-
ments content cause change in reflectance intensity. The increase in reflectance of contaminated seeds may be 
related to the changes in some of the pigments in the seed coat. According to Suwarno et al., the carotenoids 
content affected the aflatoxin contamination of the grain25. Moreover, the colour changes in fungal infected 
cereal grains could be related to the spectral differences in the VIS region26. Also, the structural properties of 
the surface tissue, in the present case seed coat, may affect reflectance intensity27. The thickness of the reflecting 
layer may also affect reflectance intensity, the higher thickness causing a reflectance intensity increase28,29. The 
thickness of maize seed coat may change as a consequence of the structural changes in the seed coat due to the 
AFB1-contamination. The most important wavelengths in the NIR region were 780, 850, 880, 940 and 970 nm, 

Figure 3.   (A) sRGB images (a, b) and corresponding nCDA images (c, d) of Zea mays L. seedslot for control 
(uncontaminated) and AFB1-contaminated seeds. (B) The average reflectance spectra from the multispectral 
images (A) of control and aflatoxin contaminated seeds.

Figure 4.   Difference in reflectance intensity between control and contaminated seed samples in the range 
350–970 nm.
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for both the discriminate aflatoxin and the control seeds. The same spectral wavelengths were also reported in 
the study of Bianchini et al., which were used to predict the seed quality attributes of Jatropha curcas L.30. The 
distinctive spectral patterns correspond to the energy absorption of functional groups containing a hydrogen 
atom (combination of C–H, N–H and O–H), in the NIR region. Such as, the wavelengths at 890 nm and 940 nm 
are associated with fat, and fatty tissues are less reflective. The 970 nm wavelength is associtaed with water31. 
The reflectance data also depended on the color in which the brightest regions are the most reflective30. It has 
been reported that unhealthy tissues, such as non-viable seeds, are not good absorbers of NIR energy and have 
higher reflectance values30,32. The observed reflectance changes in contaminated maize seeds could be explained 
by the changes in the physicochemical properties and pigment content arisen in the AFB1-contaminated seeds. 
In this preliminary study we discriminated highly AFB1-contaminated maize seeds from uncontaminated ones. 
However, in the future work we plan to include various AFB1 concentrations in the study, to see the concentration 
threshold in the application of these methods in discrimination of contaminated from uncontaminated seeds.

In a previous study, fiber optic-fluorescence spectroscopy was used to discriminate artificially contaminated 
pistachio (Pistacia vera L.) kernels with AFB1 from uncontaminated samples16. In our study, two spectroscopic 
methods were applied, to our knowledge for the first time on the seeds contaminated with AFB1 in field condi-
tions, from uncontaminated seed samples. However, these methods can be applied equally on the seeds naturally 
or artificially contaminated in the postharvest period.

Conclusion
By applying fluorescence spectroscopy and multispectral imaging on the intact seeds we discriminated maize 
seeds highly contaminated with AFB1 in field from uncontaminated samples, although there was no any visual 
difference between these two seed lots. Data analysis was performed using normalized canonical discriminant 
analysis (nCDA) applied to the multispectral imaging data and linear discriminant analysis (LDA) applied to the 
fluorescence spectral data. The obtained seeds’ spectral fingerprinting (seeds’ physiological state) could be used 
to detect poisoned food, and may provide valuable information for the assessment of seed adulteration in the 
field of food forensics and food safety. We expect that such indicators may be used in forensics for non-invasive 
and rapid monitoring of unique fingerprint profiles of AFB1 in cereal food.

Materials and methods
Samples.  The samples of maize (Zea mays L.) seeds were provided by the Maize Research Institute „Zemun 
Polje“ (Belgrade, Serbia, harvested in 2019). The use of plants in the present study complies with international, 
national and/or institutional guidelines. A selected group of hybrids was inoculated by the injection of fun-
gal spore suspension into the silk channel. A method developed by Reid et  al. (1996) was used for artificial 
inoculations19. Inoculation was carried out 3 days after 50% of plants reached the silking stage. Per cob, 2 ml 
of inoculum was injected through the silk channel. Five cobs in four replicates were inoculated with such pre-
pared conidial suspension. After harvest, ears were rated for Aspergillus rot and evaluated for levels of aflatoxin 
contamination. The aflatoxin B1 (AFB1) content in seeds were determined using the modified AOAC method 
980.2020. Control (aflatoxin-free) and high AFB1-contaminated (1475 µg kg−1) seeds were used in this prelimi-
nary study.

Fluorescence measurments using an optical fiber.  Fluorescence measurements were performed by 
an FL3-221 spectrofluorimeter (Jobin Yvon Horiba, Paris, France), equipped with a 450 W high-pressure xenon 
lamp and a photomultiplier tube. The data were processed using FluorEssence 3.5 software (Horiba Scientific, 
Kyoto, Japan). The slits on the excitation and emission beams were both fixed at 3 nm. The integration time was 
0.1 s. To remove scattering effects, the Rayleigh masking was applied. Fluorescence emission spectra were taken 
from dorsal surface of the whole seeds, using a quartz optical fibre (4 mm effective diameter). The fluorescence 
emission spectra of seeds were recorded in the range from 350 to 800 nm, after excitation at 340 nm.

Multispectral imaging measurments.  The VideometerLab 4 (Videometer A/S, Herlev, Denmark) 
device was used for the multispectral imaging analysis of seeds. We randomly selected seeds (around 33), from 
control and AFB1-contaminated seed lot. The seeds were placed on a Petri dish (dorsal surface of seed) for imag-
ing. The multispectral images of 4096 × 3000 pixels, 30 µm pixelsize, FOV, were captured at 19 spectral bands at 
specific wavelengths from 365 to 970 nm. The picture and scheme of the VideometerLab4 which is used in this 
study is shown in Fig. 5.

Permission to collect maize (Zea mays L.) seeds.  Dr. Slavica Stanković and Dr. Milica Nikolić are 
employees of the Maize Research Institute, Zemun Polje, Serbia. The seeds are examined on a daily basis at the 
Institute concerning their disease resistance. The results have been published in numerous scientific journals. 
Since it is owned by the Institute for which they work, there is not need to ask for a permit.

Data analysis
Linear discrimination analysis (LDA).  LDA was applied on the whole fluorescence spectra to study 
the discrimination of seeds into AFB1-contaminated and uncontaminated. The samples were divided into two 
groups. The first group had 46 samples (35 uncontaminated and 11 contaminated) and was used to train classi-
fiers. The second group was used for testing classifier and had 15 samples (10 uncontaminated and 5 contami-
nated). For classification of seeds into one of the existing groups, uncontaminated and AFB1 high-contaminated, 
linear discrimination analysis (LDA) was used on scores obtained by the principal components method (PCA). 
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Linear discriminant analysis is a supervised classification method, which can be used to define classification 
rules into predefined classes. The rules defined in this way can be used to classify new samples, samples whose 
class affiliation is unknown. In addition, the LDA can be useful in providing information on which variables 
have the largest contribution to the separation of objects into predefined groups. Technically, the main goal of 
discriminant analysis is to form linear combinations of independent variables, which enable discrimination 
between predefined groups, with minimizing the probability of misclassification. This minimisation implies 
maximizing the relative ratio of variance between and within groups. As the condition for the application of LDA 
is that the number of objects (samples) be greater than the number of variables, which in this case was not met, 
it was necessary to reduce the dimensionality of the vector space. This reduction was performed by the principal 
components method, and the projections of the samples onto the reduced vector space (scores) were used as 
input for the LDA. In the matrix representation, the model with a given number of principal components has the 
following form: X = TP

T
+ E ; X is the matrix of centered data, T is the matrix of scores, P is the lodings matrix, 

and E is the error matrix. A linear canonical discriminant function: yi = a
T
t i , where yi is the discriminant score 

of the i-th sample, and a is the vector of the linear combination coefficients chosen to maximize the relative ratio 
between inter and within group variations, while t i is the score vector of the retained principal components of 
the i-th sample. A cross-validation method was used to assess the accuracy of LDA prediction and involved 
dividing the data set into a training set and a test set. We used IBM SPSS Statistics for Windows, Version 25.0. 
(Armonk, NY: IBM Corp. 2017.) for data analysis.

Normalized canonical discriminant analysis (nCDA).  To discriminate between uncontaminated and 
aflatoxin contaminated seeds the multispectral images were analysed using a normalized canonical discriminant 
analysis (nCDA), as described in Olesen et al. (2015) using the built-in software tools of VideometerLab.
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