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Abstract

Background: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic
losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize,
causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as
F. verticillioides virulence, a systematic investigation of the host-pathogen interaction is needed. The aim of this
study was to computationally identify potential maize subnetwork modules associated with its defense response
against F. verticillioides.

Results: We obtained time-course RNA-seq data from B73 maize inoculated with wild type F. verticillioides and a
loss-of-virulence mutant, and subsequently established a computational pipeline for network-based comparative
analysis.

Specifically, we first analyzed the RNA-seq data by a cointegration-correlation-expression approach, where maize
genes were jointly analyzed with known F. verticillioides virulence genes to find candidate maize genes likely
associated with the defense mechanism. We predicted maize co-expression networks around the selected maize
candidate genes based on partial correlation, and subsequently searched for subnetwork modules that were
differentially activated when inoculated with two different fungal strains. Based on our analysis pipeline, we
identified four potential maize defense subnetwork modules. Two were directly associated with maize defense
response and were associated with significant GO terms such as GO:0009817 (defense response to fungus) and
GO:0009620 (response to fungus). The other two predicted modules were indirectly involved in the defense
response, where the most significant GO terms associated with these modules were GO:0046914 (transition metal
ion binding) and GO:0046686 (response to cadmium ion).

Conclusion: Through our RNA-seq data analysis, we have shown that a network-based approach can enhance our
understanding of the complicated host-pathogen interactions between maize and F. verticillioides by interpreting
the transcriptome data in a system-oriented manner. We expect that the proposed analytic pipeline can also be
adapted for investigating potential functional modules associated with host defense response in diverse plant-
pathogen interactions.
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Introduction

Maize is one of the most significant crops in the world.
Unfortunately maize is susceptible to a variety of patho-
gens, resulting in economic losses. Fusarium verticil-
lioides is an important fungal pathogen causing maize ear
and stalk diseases. More alarmingly, the fungus produces
fumonisins, a group of toxic secondary metabolites harm-
ful to animals and humans [1,2]. Unfortunately, the
development of effective management strategies for
diseases has been stagnant due to a lack of basic under-
standing of this complicated host-pathogen interaction.
The majority of, if not all, plant-microbe interactions that
result in severe economic damages are cryptic and diffi-
cult to comprehend even with today’s technological
advancements. Plants respond to a variety of external
stimuli, in particular microbial pathogens, with sophisti-
cated response mechanisms, which we have recently
started to gain a deeper understanding of. In contrast to
the adaptive immune system found in animal systems,
plant defense systems encode groups of genes to recog-
nize and respond to specific pathogens [3,4]. On the
other hand, plant-associated microbes have coevolved
with their hosts to overcome plant innate immunity and
use a repertoire of effectors, enzymes and toxins to sup-
press host defense. Therefore, characterizing maize
defense against F. verticillioides is critical for better com-
prehension of their mutual interactions as well as further
enhancement of maize resistance.

Recently, the widespread application of high through-
put technologies, such as microarray technology and
next generation sequencing (NGS), has made a signifi-
cant contribution to the study of host-pathogen interac-
tions. In maize-pathogen interactions, several methods
utilizing microarray data have focused on evaluating
gene expression. For instance, Kelley ez al. [5] identified
maize genes involved in host resistance (or susceptibil-
ity) to pathogenic fungus Aspergillus flavus based on
expression changes. Similarly, Campos-Bermudez et al.
[6] identified maize genes and metabolites that showed
expression variation after inoculation with F. verticillioides.
Unfortunately, these analyses, as well as numerous other
published studies, focused on expression differences in
individual genes. For host-pathogen studies other than
plant-pathogen, searching for host-pathogen gene pairs
was performed through correlation analysis. Using Pear-
son’s or Spearman rank correlation, Shea et al. [7] identi-
fied associated gene pairs in a human-bacterial system
with Group A Streptococcus (GAS) and Reid et al. [8]
identified molecular interactions between mouse and Plas-
modium as well as mosquito and Plasmodium. In addition,
Asters et al. [9] successfully constructed networks using
Euclidean distance calculation based on their correlated
gene pairs. While these approaches were successful in
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identifying correlated gene pairs and their networks in
host-pathogen systems, improvements can be made with
systematic investigation of cellular interactions or pro-
cesses for underlying host-pathogen interactions. Net-
work-based approaches [10-13] jointly analyzing gene
expression data and protein-protein interaction (PPI) are
receiving attention as better strategies for predicting biolo-
gical markers or subnetwork modules. For example,
Chuang et al. [10] predicted potential subnetwork mod-
ules associated with breast cancer metastasis using gene
expression data as well as PPI network. Kim et al. [13]
identified fungal virulence-associated subnetwork modules
by seeking functionally coherent genes by using network-
based comparative analysis.

In this study, our objective was to identify potential
maize defense modules against the F. verticillioides in
maize co-expression networks. We analyzed the RNA-seq
data with the pipeline protocols and focused on the maize
networks associated with maize-F. verticillioides interac-
tions. Particularly, in addition to a wild type
F. verticillioides, we used a F. verticillioides mutant, desig-
nated fsrI strain, which shows a drastic reduction in fungal
virulence [14]. Our hypothesis is that the mutation in fsrl
gene disrupts downstream genetic networks that are cru-
cial for maize-F. verticillioides interaction, and by analyz-
ing differentially regulated subnetwork modules we will be
able to identify important disease resistance mechanisms
in maize. We also considered the dynamic changes in
gene expression during maize-F. verticillioides interaction,
and designed our study to collect RNA-seq data from
three colonization phases: establishment of fungal infec-
tion (3 days post inoculation [dpi]), colonization and
movement in vascular bundle (6 dpi) and host destruction
and collapse (9 dpi). Prior to our computational analyses,
we selected representative F. verticillioides virulence genes
and searched for corresponding candidate maize genes
that might be potentially associated with maize defense
response. We used a cointegration-correlation expression
approach to compare time-course expression patterns
between maize and the selected F. verticillioides genes to
obtain candidate maize genes. Based on the maize candi-
dates, we predicted maize co-expression networks by par-
tial correlation and searched subnetwork modules not
only differentially expressed in the two conditions (i.e.,
wild type infected vs. the mutant infected conditions), but
also composed of harmoniously coordinated genes. In this
detection process, subnetwork modules were extended by
the computationally efficient branch-out technique [13]
with the probabilistic pathway activity inference [14].
Based on the analysis, we identified potential maize sub-
network modules associated with maize defense response
that were specifically defense-associated, well coordinated,
and differently activated in the two conditions.
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Materials and methods

Overview of the proposed host-pathogen interaction
analysis pipeline

Figure 1 provides an overview of the proposed pipeline
for network-based comparative gene expression analysis,
particularly focusing on maize-F. verticillioides interac-
tions. As shown in Figure 1A, we first preprocessed the
RNA-seq data by aligning them to the reference gen-
omes and then filtered out genes with insignificant
expression. The preprocessed gene expression data were
analyzed in the next step shown in Figure 1B, where
cointegration-correlation-expression analysis was per-
formed to identify candidate maize genes whose expres-
sion patterns correspond to known F. verticillioides
virulence genes. Figure 1C illustrates the third step of
our pipeline, where the gene expression data of the can-
didate maize genes were used to construct co-expression
networks of the maize genes based on partial correlation
coefficients. Furthermore, the gene expression values
were converted into log-likelihood ratios (LLRs) for sub-
sequent analysis. Finally, based on the co-expression
networks, maize subnetwork modules were identified by
expanding the subnetwork regions around the top 20%
differentially expressed genes, where we utilized a com-
putationally efficient branch-out technique. As a result
of our analysis, we identified four potential maize subnet-
work modules possibly associated with maize defense
response. The detailed description of each step in the
analysis pipeline is provided in the following subsections.

Sample preparation

Maize stalks were inoculated with F. verticillioides wild
type and fsrI mutant as previously described [14]. We
used the inbred line B73, a major source of commercial
maize hybrids, that has no known stalk rot resistance,
for this study. Maize stalk samples were collected 3, 6,
and 9 dpi using manual sectioning, and scanned with
fluorescence microscopy to identify host tissue damage
and/or fungal colonization, particularly in the vascular
bundles. These samples were dissected and collected
separately for RNA extraction and cDNA synthesis fol-
lowing standard molecular biology procedures. For each
sample subjected to sequencing, sectioning was per-
formed on at least three stalk samples from each stage
of infection, and isolated tissues were pooled for RNA
extraction.

RNA sequencing and preprocessing

Figure 1A illustrates the first step of our analysis pipe-
line, where we preprocessed the RNA-seq data to obtain
the normalized gene expression matrix. As previously
described [13], RNA sequencing was processed using
[lumina HiSeq 2000 producing sequencing results with
relatively high quality and high coverage. In this
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sequencing, library preparation and RNA isolation were
performed by Illumina’s simplified sample prep kits and
small RNA sample preparation kit, respectively. Also,
[lumina HCS 1.515.1 and RTA 1.1348.0 also performed
quality prefiltering, uncertainty assessment, base calling,
and sequence cluster identification simultaneously. For
F. verticillioides as well as maize, six independent
sequencing libraries at three time points (i.e., 3 dpi,
6 dpi, and 9 dpi) for both wild type-inoculated and the
mutant-inoculated samples, were obtained so that a
total of 36 sample libraries were prepared. The prepared
reads from the 36 libraries were mapped to the F. verti-
cillioides strain 7600 reference genome [15] and to the
maize B73 genome [16]. The alignment was performed
by Bowtie2 [17] and another NGS data analysis tool
called Sam-tools [18] was used to analyze the alignment
result and obtain the read counts of all F. verticillioides
genes as well as maize genes. In the alignment process,
Bowtie2, optimized for gapped alignment and relatively
longer reads, performed end-to-end mapping and
extracted SAM format files by default mode. Next, filter-
ing out genes with insignificant expression left 57% of
F. verticillioides genes (8,072 genes) and 42.2% of maize
genes (57,676 genes) for our subsequent analysis. During
the filtering process, genes expressed in less than half of
the total replicates, were eliminated. However, genes
that were expressed only in one of the two conditions
(i.e., wild type inoculated vs. mutant inoculated) were
kept when they were expressed in more than 70% of the
replicates in a given condition. This filtering process
was performed to ensure that we retain potentially
important differentially expressed genes while removing
barely expressed genes. Finally, the filtered NGS data
were normalized for relative quantification. For normali-
zation, every read count across all replicates was nor-
malized by the corresponding gene length. It is worth
noting that, at this stage, the expression level was not
normalized across different time points.

Instead, such differences were analyzed in one of the
following steps of our analysis pipeline through cointe-
gration, which investigates the time-course evolution of
the gene expression levels to identify F. verticillioides
and maize genes that may be associated with each other.
Table 1 shows the general statistics of our RNA-seq
datasets prepared for the subsequent analysis. The table
not only demonstrates the differences between the two
F. verticillioides strains, but also indirectly illustrates
how the virulence of F. verticillioides impacts maize
transcription profile over time.

Selection of pathogenicity genes of F. verticillioides

In order to narrow down maize genes to key candidates
likely involved in maize defense mechanism, we selected
representative F. verticillioides virulence genes whose
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Figure 1 Overview of the proposed network-based comparative analysis pipeline for predicting potential maize subnetwork modules

associated with maize defense response. 1st step: the RNA-seq data were preprocessed by aligning them to the reference genome and
filtering out lowly expressed genes for quality control to obtain the gene expression matrix. 2nd step: in order to predict important candidate
genes potentially involved in maize defense modules, a cointegration-correlation-expression approach was applied to identify maize genes,
whose expression patterns correspond to those of selected F. verticillioides pathogenicity genes. 3rd step: co-expression networks surrounding
the candidate maize genes were predicted and a log-likelihood ratio (LLR) matrix was computed for subsequent analysis. Through a seed-and-
extend approach with an efficient branch-out technique, we searched for potential maize subnetwork modules starting from the top 20%
differentially expressed seed genes. Finally, potential maize subnetwork modules involved in defense response were predicted by evaluating the
strength of the association between the module activity level and the pathogenicity of the fungi.
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Table 1. General statistics of the RNA-seq datasets analyzed in the current study
3dpi Wild type 6dpi 9dpi 3dpi Mutant 6dpi 9dpi
Type of run single
Read length 100 (bp)
Fusarium Mean number of reads aligned 82504 200827 235702 24711 63462 138406.3
verticillioides median depth of coverage 58 14.2 166 1.8 4.5 9.8
Mean number of reads aligned 4394510 4183565 3377730 3798777 3589860 3577877
Maize median depth of coverage 321 306 247 2738 26.2 26.2

expression patterns over time would be used as the cri-
terion in the comparison. Among known F. verticillioides
virulence genes, we selected the following four genes for
our analysis after carefully considering their expression
patterns, biochemical and physiological functions, as well
as evolutionary conservation in other pathogenic fungi;
i) FSR1 (FVEG 09767) - associated with fungal stalk
rot virulence and sexual mating [14]; ii) FSTI (FVEG
08441) - associated with fungal growth and develop-
ment particularly on maize ears [19]; iii) FvVE1 (FVEG
09521) - associated with aggressive pathogenesis and
toxin production on maize seedlings [20]; iv) ZFRI
(FVEG 09648) - an important transcription factor con-
trolling fungal growth and toxin biosynthesis on maize
kernels [21]. Once we established our preliminary net-
work-based comparative analysis pipeline procedure,
we were able to subsequently incorporate additional
F. verticillioides virulence genes to improve the robust-
ness of our prediction model.

Cointegration-correlation-expression analysis

Using the four representative F. verticillioides virulence
genes, we performed a comprehensive analysis on ten-
dency of expression levels for maize genes over time
across all replicates to narrow down maize genes into
prime candidates. This step is illustrated in Figure 1B,
where we considered cointegration, correlation, and
expression, so we can jointly analyze the expression levels
of maize genes and selected F. verticillioides virulence
genes. First, cointegration [22] was applied to track a
long-run relationship of expression levels in the two spe-
cies (i.e., maize vs. F. verticillioides), which are nonsta-
tionary and involve time-varying uncertainty. In this
analysis, the expression levels of a maize gene and a viru-
lence gene of F. verticillioides were cointegrated over
time to see whether the given genes share any common
expression trend across all replicates. The Engle-Granger
method of cointegration identifying single cointegrating
relations between the host and the pathogen was applied.
For each representative virulence gene of F. verticillioides,
maize genes whose p-value of the Engle-Granger test was
less than 0.05 were taken into account as candidates.
Second, correlation was used to trace expression patterns
of the two species over all replicates. It quantified the

strength of a linear relationship between maize genes and
each representative virulence gene of F. verticillioides
across all replicates over all time points. Corresponding
maize genes whose Pearson’s correlation coefficient was
higher than 0.65 (p-values less than 0.0035) [Additional
file 1: Table S1] to a F. verticillioides virulence gene were
considered as candidates. Third, expression levels of
maize genes over all replicates were monitored in order
to remove the genes that were barely expressed in our
dataset. Maize genes whose mean expression levels were
in the top 80% of all genes, and non-zero in all replicates,
were taken into consideration as candidates since the
selected F. verticillioides virulence genes were also
expressed in all replicates. Each selected F. verticillioides
virulence gene was used as a criterion to search for can-
didate maize genes through this combined analysis of
cointegration, correlation, and expression. Finally, candi-
date maize genes obtained by comparison with the four
selected virulence genes were combined for subsequent
analysis. In our analysis to identify candidate genes that
may be involved in the maize defense mechanism, we set
the p-value threshold for the Pearson’s correlation and
that for the Engle-Granger test such that, on average,
50% of the candidate genes identified based on a given
pathogenicity gene were also among the candidates pre-
dicted by other pathogenicity genes. This reduces the
dependence of our prediction results on a specific patho-
genicity gene. Figure 2 illustrates the underlying motiva-
tion of the proposed combined approach based on
several realistic examples. The figure demonstrates how
the combined use of cointegration, correlation, and
expression can lead to better prediction of candidate
maize genes likely to be associated with the maize
defense response. Specifically, each of the examples
shown in Figure 2(B-D) illustrates the case when the
gene under consideration does not meet one of the coin-
tegration, correlation, expression criteria (while meeting
the other two remaining criteria), therefore determined
not to be a good candidate gene.

Identification of maize subnetwork modules

In order to identify potential maize subnetwork modules
associated with maize defense response, we adopted a
similar approach that we have recently proposed in [13].
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Figure 2 Four practical examples in comparing the expression patterns between maize genes and FSR1, one of the selected
pathogenicity genes of F. verticillioides. Y-axis corresponds to the normalized expression level and X-axis corresponds to the replicate ID
(replicates 1-6: 3 dpi, replicates 7-12: 6 dpi, replicates 13-18: 9 dpi). Four different cases are illustrated: A) FSRT vs. GRMZM2G082899 TO1
(cointegration: good, correlation: good, expression: good) - GRMZM2G082899 TO1 was considered as a good corresponding maize gene to FSRT ;
B) FSR1 vs. GRMZM2G027166 TO3 (cointegration: good, correlation: bad, expression: good) - the association between the two genes turned out
to be weak based on correlation; C) FSRT vs. GRMZM2G152029 TO1 (cointegration: bad, correlation: good, expression: good) - the time-course
expression trends were dissimilar for the two genes, reflected in low cointegration; D) FSRT vs. GRMZM2G405655 TO1 (cointegration: good,
correlation: good, expression: bad): GRMZM2G405655 TO1 gene was not considered to be a good candidate, since it was hardly expressed.
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The method was used to predict pathogenic network
modules in the co-expression network of F. verticillioides,
constructed from RNA-seq data, and the method was
shown to be capable of detecting potential modules that
are biologically plausible. This step is illustrated in Figure
1C. Here, to identify genetic subnetwork modules possi-
bly associated with maize defense response, we started by
constructing co-expression networks of maize based on
the candidate maize genes that were specifically selected
against the F. verticillioides virulence genes through the
cointegration-correlation-expression analysis. These
co-expression networks were predicted based on partial
correlation computed from the preprocessed gene
expression matrix of the candidate maize genes. While

constructing the co-expression networks, we excluded
relatively weak interactions between the maize candi-
dates. We constructed four different co-expression net-
works at four different threshold levels as shown in
Table 2. As discussed in [13], the use of multiple co-
expression networks predicted at different threshold
levels can mitigate potential issues that may arise when
relying on a specific threshold level. Given the four
maize co-expression networks, we searched for “seed
genes” in the networks that were significantly differen-
tially expressed in the two conditions. More specifi-
cally, maize genes with top 20% ¢-test score for
discriminating between the two conditions were
selected as seed genes. Finally, we expanded the maize
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Table 2. Properties of the co-expression networks around the candidate maize genes (for maize inoculated with wild
type F.verticillioides and maize inoculated with fsr1 mutant strain)

Threshold
(cut-off partial correlation)

Wild type

Mutant

number of genes

09 97 269
0.8 106 546
0.7 m 868
0.6 114 1257

number of interactions

number of genes number of interactions

93 243
101 518
107 845
111 1211

subnetwork modules in the co-expression networks
starting from the selected seed genes, in order to iden-
tify potential genetic modules that are likely to be
associated with the maize defense response. We first
examined all the connected genes to each seed gene,
and evaluated whether expanding the subnetwork
module by adding one of the connected genes would
enhance the discriminative power of the subnetwork
module, if we were to probabilistically infer the mod-
ule activity [23] and used it to differentiate between
the two conditions. Subsequently, we continued to
expand the subnetwork module by recruiting one of
the neighboring genes into the module at a time, using
a computationally efficient branch-out technique [13].
A neighboring gene was added if adding the gene
improves the discriminative power of the subnetwork
module (measured in terms of the #-test statistics score
of the probabilistically inferred module activity) by at
least 5%. Furthermore, at each extension step, the
branch-out technique considered up to three subnet-
work modules whose discriminative power were within
2% from the top. This process was repeated until there
was no subnetwork module, whose discriminative
power could be improved at least by 5% through
extension. The overall process was repeated for all
seed genes using all four co-expression networks.
Finally, for the maize subnetwork modules identified
by our network-based comparative analysis, we investi-
gated whether the subnetwork modules were asso-
ciated with significant GO terms. In this GO analysis,
we selected those modules, at least 30% of whose
member genes were annotated by significant GO
terms. Significance of a GO term was assessed based
on the p-value of the Benjamini-Hochberg false discov-
ery rate (FDR) method [24] computed by g:Profiler
(http://biit.cs.ut.ee/gprofiler/) [25]. The GO term was
considered to be significant if the p-value was less
than 0.05. Consequently, our final prediction of the
potential maize defense subnetwork modules were
made based on the strength of association between the
module activity level and the two conditions under
comparison (inoculated with wild type vs. fsr1 mutant)
as well as their association with significant GO terms.

Probabilistic subnetwork activity inference

As described in the previous subsection, to identify
potential subnetwork modules, we used a seed-and-
extend approach with a branch-out scheme, where the
goodness of a given subnetwork module was evaluated
by inferring the module activity and assessing its effec-
tiveness in discriminating between the two different
conditions. For this purpose, we adopted a probabilistic
pathway activity inference scheme, which was originally
proposed in [23] and was previously applied to the pre-
diction of pathogenic gene modules in F. verticillioides
[13]. In the following, we present a brief summary of
the method. Suppose we have a set of genes G = {g;,
o, g, that belong to a given subnetwork module and
the expression levels of these genes are x = {x', x%...,
x"}. The activity level of the given subnetwork module
can be measured by

n(x) = éak(xk), W

where o(x") is the log likelihood ratio (LLR) between
the two conditions (i.e., maize inoculated with two dif-
ferent strains - wild type vs. the mutant - of F. verticil-
lioides) defined as follows

y’f(xk)} |
ys(+*)

In equation (2), y¥(x) is the conditional probability
density function (PDF) of the expression level of gene g

ok (k) = log |: 2

in one condition. Similarly, y%(x) is the conditional PDF

of the expression level of gene g in the other condition.
We can estimate the activity level of 1(x) of the subnet-
work module as defined in (1) and also assess its discri-
minative power for differentiating between the two
different conditions using the ¢-test statistics score:

M1 — U2
R e .
s S
a2
mn ny

where y; and s? are the mean and the variance of the
subnetwork activity level in one condition, and g,
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and s3 are the mean and the variance of the subnetwork
activity level in the other condition. #; and #n, are the
number of replicates (or independent measurements) in
the respective conditions. For further details, readers are
referred to [23], where the method was originally pro-
posed in the context of cancer classification.

Results

Characteristics of the candidate maize genes

Before predicting potential maize subnetwork modules
involved in the maize defense response, we investigated
whether our candidate maize genes obtained through
the cointegration-correlation-expression analysis using
the selected F. verticillioides virulence genes were possi-
bly associated with maize defense. In order to examine
whether the candidate maize genes were defense-asso-
ciated, we compared them with the maize genes that
corresponded to the F. veticillioides housekeeping genes,
which are constitutively expressed and are mainly
involved in the maintenance of fundamental cellular
functions. For this comparison, four F. verticillioides
housekeeping genes commonly used in molecular
genetic studies were selected: the two beta-tubulin genes
(FVEG 04081 and FVEG 05512), the pyruvate dehydro-
genase E1 component subunit alpha gene (FVEG
07074), and the glyceraldehyde 3-phosphate dehydro-
genase gene (FVEG 04927). For each F. verticillioides
housekeeping gene, we searched for the corresponding
maize genes through the cointegration-correlation-
expression approach, and compared them against the
candidate maize genes that were predicted to correspond
to the four F. verticillioides virulence genes selected in
our study. Both groups of F. verticillioides genes (house-
keeping and virulence genes) were all relatively signifi-
cantly expressed in all replicates, so one could presume
that their expression patterns might be similar. However,
the maize genes that were predicted to correspond to the
F. verticillioides housekeeping genes and the candidate
maize genes that corresponded to the F. verticillioides
virulence genes overlapped only about 20% on average.
Therefore, we concluded that the candidate maize genes
that were identified by comparing maize genes against
the selected F. verticillioides virulence genes using our
proposed cointegration-correlation-expression approach
were indeed very likely to be associated with the maize
defense mechanism.

Identification of potential maize defense subnetwork
modules

Through the proposed network-based comparative RNA-
seq data analysis pipeline, we identified four potential
maize subnetwork modules associated with the maize
defense response against F. verticillioides. The four iden-
tified potential maize defense subnetwork modules are
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illustrated in Figures 3 and 4. To search for potential
maize defense subnetwork modules, we selected four
representative F. verticillioides virulence genes and com-
pared their expression patterns with those of maize genes
in order to find significant maize gene candidates in such
modules. Specifically, the cointegration-correlation-
expression approach was applied to find the candidate
maize genes whose expression trends are comparable
with those of the selected F. verticillioides genes. Based
on the candidate maize genes, we predicted co-expres-
sion networks around them, and further chose the top
20% significantly differentially expressed genes as seed
genes. Starting from each of these seed genes, we itera-
tively extended the subnetwork module by recruiting
additional neighboring genes whose inclusion enhanced
the discriminative power of the module (measured by the
t-test statistics score) by at least by 5%. Amongst the
extended subnetworks (with one additional neighboring
gene), we selected the subnetwork with the highest ¢-test
score, and also followed up with two additional subopti-
mal subnetworks, if their discriminative power was
within 2% of the optimal extended subnetwork that has
the largest ¢-test score. We iteratively repeated the exten-
sion process until the discriminative power of the subnet-
works could not be improved by at least 5% through such
extension. The entire process of identifying the defense-
related subnetwork modules was reiterated for all the
seed genes and for all four co-expression networks.
Finally, we selected four potential genetic subnetwork
modules that are likely to be associated with maize
defense response based on their discriminative power for
differentiating between the two conditions (i.e., inocula-
tion by wild type vs. mutant), as well as by investigating
the presence of significant GO terms associated with
maize defense system, either directly or partially. In
Figures 3 and 4, genes relatively highly expressed in the
wild type-infected samples are shown in red, whereas
genes relatively highly expressed in the mutant-infected
samples are shown in blue. Table 3 shows basic proper-
ties of the four identified maize subnetwork modules. As
shown in Table 3 the number of genes ranged between 6
and 8 and the number of significant interactions ranged
between 5 and 8. Also, the ¢-test statistics scores ranged
from 5.1 to 7.2, which were higher than most of the
other candidate subnetworks.

Potential maize subnetwork modules directly associated
with maize defense response

Two potential maize subnetwork modules identified by
the proposed network-based comparative analysis pipeline
contained maize genes whose annotated GO terms were
representative terms typically associated with responses to
fungi. Figure 3 module-A contained three known maize
genes, GRMZM?2G001696 T01, GR-MZM2G374971 TO01,
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Figure 3 Two potential maize subnetwork modules directly associated with maize defense response to fungi. [Additional file 1: Table S2] i)
Module-A comprised seven maize genes, where three of them - GRMZM2G001696 T01, GRMZM2G374971 T01, and GRMZM5G870932 TO1 -were
known maize genes annotated with a significant GO term GO:0009817 “defense response to fungus (incompatible interaction)” with a p-value of
1.25e-06. ii) Module-B was composed of eight maize genes, where three of them - GRMZM2G001696 TO1, GRMZM5G870932 TO1, and
GRMZM5G878558 TO1 - were known maize genes annotated with a significant GO term GO:0009620 “response to fungus” with a p-value of 569e-07.
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Figure 4 Two additional potential maize subnetwork modules identified through the proposed network-based comparative analysis
pipeline. [Additional file 1: Table S3] i) Module-A comprised eight maize genes, where four of them - GRMZM2G003930 T06, GRMZM2G056920 T03,
GRMZM2G095025 T01, and GRMZM5G878558 TOT - were known maize genes annotated with the GO term GO:0046914 “transition metal ion binding”
with a p-value of 4.56e-02. ii) Module-B was composed of six maize genes, where two of them - GRMZM2G001696 TO1 and GRMZM2G085019 TO1 -
were known maize genes annotated with the GO term GO:0046686 “response to cadmium ion” with a p-value of 3.00e-02.

Table 3 Properties of the potential maize defense subnetwork modules identified by the proposed network-based
analysis pipeline

Potential maize subnetworks number of genes number of interactions t-test score
Figure 3 module-A 7 6 54
Figure 3 module-B 8 8 56
Figure 4 module-A 8 8 72
Figure 4 module-B 6 5 5.1

and GRMZM5G870932 T01, associated with a significant  that prevents the occurrence or spread of disease”. Benja-
GO term GO:0009817. For this GO:0009817, whose GO  mini-Hochberg FDR p-value of the most significant GO
term is “defense response to fungus (incompatible interac-  term, GO:0009817, for the Figure 3 module-A was 1.25e-

”

tion)”, is defined as “a response of an organism to a fungus  06. Figure 3 module-B included three known maize genes,
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GRMZM2G001696 T01, GRMZM5G870932 TO01, and
GRMZM5G878558 T01, associated with a significant GO
term, GO:0009620. This GO term is “response to fungus”
and the definition is “any process that results in a change
in state or activity of a cell or an organism (in terms of
movement, secretion, enzyme production, gene expres-
sion, etc.) as a result of a stimulus from a fungus"; the
p-value of Benjamini-Hochberg FDR for this term was
5.69e-07. Note that both GO terms are directly related to
the defense mechanism against fungal pathogens. It is also
possible to view these two subnetwork modules as one
whole module since the two modules shared two signifi-
cant genes such as GRMZM2G001696 TO01 and
GRMZM5G870932 T01, however it is important to note
that they were obtained from different seed genes and on
different co-expression networks. This can be viewed as a
demonstration of the reliability of the proposed network-
based comparative analysis pipeline and its effectiveness in
identifying potential maize subnetwork modules associated
with maize defense mechanism against fungi.

Potential maize subnetwork modules indirectly involved
in maize defense response

The other two potential maize subnetwork modules iden-
tified by our proposed pipeline were not directly asso-
ciated with typical GO terms involved in defense
response against fungal pathogens, but they also exhib-
ited potential relevance to the maize defensive mechan-
ism. Figure 4 module-A contained four known maize
genes, GRMZM2G003930 T06, GRMZM2G056920 T03,
GRMZM2G095025 T01, and GRMZM5G878558 T01,
associated with GO term GO:0046914. This term
GO0:0046914 is for “transition metal ion binding” and had
a p-value (for Benjamini-Hochberg FDR) of 4.56e-02.
The GO term is described as “interacting selectively and
non-covalently with a transition metal ions that is an ele-
ment whose atom has an incompleted-subshell of extra-
nuclear electrons, or which gives rise to a cation or
cations with an incompleted-subshell”. For module-B in
Figure 4, two known maize genes, GRMZM2G001696
T01 and GRMZM2G085019 TO01, were associated with
GO0:0046686. This GO term is for “response to cadmium
ion” and is defined as “any process that results in a
change in state or activity of a cell or an organism (in
terms of movement, secretion, enzyme production, gene
expression, etc.) as a result of a cadmium (Cd) ion stimu-
lus”. The p-value of Benjamini-Hochberg FDR for this
GO term, GO:0046686, was 3.00e-02. For the two GO
terms (GO:0046914 and GO:0046686), it is known that
transition metals including cadmium (Cd) have a positive
effect on plant defense system against the pathogenicity;
hyperaccumulation of transition metals tends to reduce
the growth of pathogens [26]. Since both GO terms, i.e.
G0:0046914 and GO:0046686, were all significantly
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related to transition metals, we can expect the two pre-
dicted maize subnetwork modules in Figure 4 to be
potentially involved in maize defense system. For the four
identified subnetwork modules in Figures 3 and 4, note
that GO terms of the other genes other than the above-
mentioned genes were either insignificant or not
specified.

Finally, we investigated orthologous genes of those
genes included in the two identified maize subnetwork
modules in Figure 4. We looked for orthologous genes in
Sorghum bicolor as well as Arabidopsis thaliana provided
by RGAP (Rice Genome Annotation Project) website
(http://rice.plantbiology.msu.edu). During this cross-
check, we found orthologous genes of Figure 4 module-A
member genes (i) involved in transition metal ion bind-
ing, such as AT2G01275, AT2G20030, AT4G28890,
AT1G37130, and AT1G77760 for Arabidopsis thaliana
and as SB03G007810, SB09G030900, SB04G024300,
SB04G034470, and SB07G022750 for Sorghum bi-color
and (ii) also associated with GO:0009610, “response to
symbiotic fungus”, such as SB04G024300, SB04G034470,
and SB07G022750. Moreover, orthologs of the genes in
Figure 4 module-B, such as AT1G59500, AT2G23170,
and AT4G37390 for Arabidopsis thaliana as well as
SB01G032020, SB02G038170, and SB03G035500 for Sor-
ghum bicolor, were annotated with GO:0010279 “indole-
3-acetic (IAA) acid amido synthetase activity”. The “IAA
amido synthetase” is known to be an important controller
for plant defense system [27]. This analysis based on the
orthologous genes of the identified maize subnetwork
modules in Figure 4 demonstrated that these two maize
subnetwork modules may play potentially important
roles in maize to defend itself from fungal pathogens.

Conclusion

In this paper, we proposed a network-based compara-
tive RNA-seq data analysis pipeline specifically focusing
on host-pathogen (F. verticillioides vs. maize) interac-
tions. F. verticillioides is not only detrimental to the
host plant maize but also to animals and humans, due
to toxic secondary metabolites produced on infested
commodities. To investigate their interactions, RNA-seq
data from maize inbred B73 inoculated with two differ-
ent F. verticillioides strains (wild type vs. fsrI mutant)
was prepared. In order to gain insight into the underly-
ing biological functions and network interactions in
maize defense response, we first filtered maize genes,
using a cointegration-correlation-expression approach,
to identify candidate genes whose activities corre-
sponded to those of selected F. verticillioides virulence
genes. Subsequently, we predicted the co-expression
networks containing these maize candidate genes and
searched for potential subnetwork modules likely to be
associated with the maize defense mechanism. Based on
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our pipeline, we identified four potential maize subnet-
work modules associated with the defense response
against the F. verticillioides virulence. The member
genes of the identified subnetwork modules showed
relevance to defense-associated GO terms, well coordi-
nated expression patterns with each other, and differen-
tial expression under the two different conditions (i.e.,
inoculation with wild type vs. fsrl mutant). As shown in
Figure 3, two of the identified maize subnetwork mod-
ules were directly associated with maize defense
response against the F. verticillioides pathogenicity. The
other two identified modules, shown in Figure 4, are
also likely to be involved in the maize defense system,
as they were predicted to be linked to accumulation of
transition metals and defense response, and further-
more, as their member genes have orthologous genes in
Sorghum bicolor and Arabidopsis thaliana that are asso-
ciated with plant defense. Our results demonstrate that
the proposed network-based analysis pipeline can
improve our understanding of the biological mechan-
isms that underlie host-pathogen interactions, and that
it has the potential to unveil novel genetic subnetwork
modules specifically associated with plant defense
response.

Additional material

Additional File 1: Table S1: Pearson’s correlation coefficients between
the candidate maize genes and the four selected F. verticillioides
pathogenicity genes. This table shows how the maize candidates and
the representative pathogenicity genes are correlated. Based on the
respective coefficients, corresponding maize genes whose Pearsons
correlation coefficients were higher than 0.65 (p-values less than 0.0035)
to each selected F. verticillioides pathogenicity gene were considered as
candidates. Table S2: Gene IDs and the most significant GO terms of the
predicted subnetwork modules shown in Figure 3. This table helps to
see the information such as gene IDs and their significant GO terms for
the two subnetwork modules in Figure 3. Table S3: Gene IDs and the
most significant GO terms of the predicted subnetwork modules shown
in Figure 4. This table helps to see the information such as gene IDs and
their significant GO terms for the two subnetwork modules in Figure 4.
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