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A B S T R A C T   

Introduction: The Coronavirus 2019 (COVID-19) epidemic stunned the health systems with severe scarcities in 
hospital resources. In this critical situation, decreasing COVID-19 readmissions could potentially sustain hospital 
capacity. This study aimed to select the most affecting features of COVID-19 readmission and compare the 
capability of Machine Learning (ML) algorithms to predict COVID-19 readmission based on the selected features. 
Material and methods: The data of 5791 hospitalized patients with COVID-19 were retrospectively recruited from 
a hospital registry system. The LASSO feature selection algorithm was used to select the most important features 
related to COVID-19 readmission. HistGradientBoosting classifier (HGB), Bagging classifier, Multi-Layered Per-
ceptron (MLP), Support Vector Machine ((SVM) kernel = linear), SVM (kernel = RBF), and Extreme Gradient 
Boosting (XGBoost) classifiers were used for prediction. We evaluated the performance of ML algorithms with a 
10-fold cross-validation method using six performance evaluation metrics. 
Results: Out of the 42 features, 14 were identified as the most relevant predictors. The XGBoost classifier out-
performed the other six ML models with an average accuracy of 91.7%, specificity of 91.3%, the sensitivity of 
91.6%, F-measure of 91.8%, and AUC of 0.91%. 
Conclusion: The experimental results prove that ML models can satisfactorily predict COVID-19 readmission. 
Besides considering the risk factors prioritized in this work, categorizing cases with a high risk of reinfection can 
make the patient triaging procedure and hospital resource utilization more effective.   

1. Introduction 

Hospital readmission is a well-accepted metric of hospital care 
quality [1]. It is defined as the new hospitalization in the same hospital 
within a specified time between 30 and 60 days after initial hospital 
discharge [2–4]. The high readmission rates are most probably related to 
the quality of care delivered by hospitals and other health centers during 
or after the former admission [5,6]. Because of the high costs that 

readmission imposes on hospitals and patients, it has gained substantial 
attention as one of the most important criteria for evaluating the quality 
of care and discharge procedures. Estimates show that 60% of patient 
readmission can be prevented [7,8]. 

As the prevalence of the COVID-19, the health care systems of many 
countries were collapsed and could not meet the growing needs of pa-
tients to diagnose, treatment, and care services [9,10]. Many patients in 
such conditions were discharged after admission with partial recovery 
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[11]. Meanwhile, due to the unknown and aggressive nature of the 
disease, the readmission rate of patients increased [12]. Readmission 
imposes additional costs on care organizations and patients. In addition, 
it will reduce the quality indicators of service delivery; increase the rate 
of serious complications and deaths during the pandemic [13]. Ac-
cording to the formal reports, about 5% of COVID-19 confirmed patients 
necessitate hospitalization care services, and the tolls of readmission 
from this disease report vary from 2 to 10% [14,15]. 

In this situation, enhancing the capability of the healthcare system 
against the pandemic requires attention to technological and intelligent- 
based solutions such as Clinical Decision Support Systems (CDSSs) [16, 
17]. CDSSs attracted increasing interest because of the growing avail-
ability of a large amount of patient-level data [18,19]. CDSSs using 
available patient data at the time of admission may provide caregivers 
with valuable information regarding the likelihood risk of COVID-19 
readmission [20,21]. Machine learning (ML) algorithms are complex 
and flexible classification modeling that leverage big datasets to reveal 
new and practical patterns [18,22]. ML algorithms will reduce un-
certainties and ambiguities related to new diseases such as COVID-19 by 
providing diagnostic and predictive models based on valid and scientific 
evidence to assess risks, screening, forecasting, and health planning [23, 
24]. Recently, published works have shown that several ML methods are 
more accurate than conventional statistics models for predicting clinical 
outcomes in COVID-19 hospitalized patients. They are such as predict-
ing the Length of Stay (LOS), hospital bed occupancy and turnover, 
Intensive Care Unit (ICU) admission, and respiratory intubation 
[25–27]. 

Due to the high prevalence of the disease in our country and the 
existence of some limitations and lack of healthcare resources [28], 
therefore, the purpose of this study is to develop an effective and effi-
cient diagnostic model based on comparing the performance of ML al-
gorithms for COVID-19 readmission prediction. Therefore, the present 
study seeks to answer two questions. What are the most important 

predictor variables affecting readmission and worsening of patients after 
receiving first hospitalization services? And which ML model is more 
effective for predicting readmission? 

2. Material and methods 

2.1. Study roadmap and experiment environment 

The present study was conducted in the form of a retrospective and 
single-center study in 2022 to predict readmission in patients with 
confirmed COVID-19 based on one of the most popular ML methods 
called the Cross-Industry Standard Process (CRISP). It was carried out 
through five main steps including, 1- Data understanding, 2- Data pre-
processing, 3- Feature selection, 4- Classifier, and 5-Evaluation. Fig. 1 
shows the proposed models of study steps and sub-steps based on CRISP. 
This study used Python programming language to run all experiments on 
the data mining algorithms to predict readmission in patients with 
confirmed COVID-19 (see Fig. 2). 

2.2. Data set description 

The included cases are defined based on 42 variables in three main 
classes, including patient’s demographics (three variables), hospitali-
zation (eight variables), and clinical (31 variables) (see Table 1). After 
reviewing the demographical, clinical and hospitalization information 
of the patients with confirmed COVID-19, statically analysis was per-
formed to describe the differences in the patients with confirmed 
COVID-19 data, were readmitted or not. For this purpose, the differences 
in demographical and hospitalization information of patient were 
described based on whether the patients were readmitted or not, and the 
relationship of each feature with readmission was checked by the Chi- 
square test. 

Of 5791 COVID-19 hospitalized patients, 3071 (53.04%) were male, 

Fig. 1. The roadmap of the proposed system for prediction of readmission based on the CRISP method.  
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2720 (46.96%) were women, and the median age of participants was 
57.25 (interquartile 00–100). 528 (13.87%) were hospitalized in ICU, 
and 2075 (86.13%) were hospitalized in general wards. Out of 5791 
included patients, 870 (15.02%) patients were readmitted within 30 
days after initial discharge. 

2.3. Ethical consideration 

The ethical committee board approved the study of Ilam University 
of Medical Sciences (Ethics code: IR.MEDILAM.REC.1399.294). To 
protect the privacy and confidentiality of patients, we concealed the 
unique identification information of all patients in the process of data 
collection and presentation. 

2.4. Preprocessing step 

Preprocessing on the dataset was applied before the training of the 
proposed model. Several preprocessing steps were examined on the 
dataset, including removing missing values (rows with missing values 
greater than 70% were removed.), Standard scalar, Min-Max Scalar, 
Data validation under sampling for correct use of data in the machine 
learning algorithms. The noisy and abnormal values, duplicates, and 
meaningless data impacted ML models’ results and were examined and 
removed by two authors: (M: A and M: SH). 

2.5. Patient selection criteria 

After applying the exclusion criteria, out of 9180 confirmed COVID- 
19 patients, 6411 hospitalized cases were included in the study. In the 
preprocessing steps, 818 patient record values were removed, and after 
deleting these values, the number of patient records was reduced to 
5791 cases. Among them, 870 (15.02%) cases were readmitted after a 
30-day of the first hospitalization. 

2.6. Feature selection 

Feature selection or variable selection is needed before feeding data 
into the ML algorithms since outside dimensions affect the classification 
performance and precision and decrease run time [29]. To select the 
most important feature to predict readmission, we used Least Absolute 
Shrinkage and Selection Operator Features Selection Algorithm (LASSO) 
in this study. The LASSO selects the most important and relevant fea-
tures for predicting readmission in COVID-19 patients according to 
updating the absolute value of the variables’ coefficient. If the co-
efficients value of variables is equal to zero, these zero Values for fea-
tures eliminated that from features subset, and if any variables obtained 
high values for coefficients. Hence, the feature included in selected 
variables subsets. 

2.6.1. Machine learning methods 
In this study, to predict the readmission in the patient with confirmed 

COVID-19, we used seven ML classification algorithms, including Hist 
Gradient Boosting (HGB) classifier, Bagging classifier, Multi-Layered 
Perceptron (MLP) classifier, Support Vector Machine ((SVM) kernel =
linear), SVM (kernel = RBF), and Extreme Gradient Boosting (XGBoost) 
classifier. 

2.7. Performance metrics 

To evaluate the performance of applied algorithms and verify the 
quality of the algorithms in this study, we used the k-fold cross- 
validation method. Cross-validation is a resampling method used to 
assess ML models in an unseen data sample. This method has one 
parameter named k that refers to the number of parts that the dataset 
should be split. In this study, we use 10 -fold cross validation method. In 
10-fold cross-validation methods, the algorithms are trained and tested 
10-time times, and then the mean evaluation metrics. Accuracy, speci-
ficity, sensitivity, KAPA statistic, Area under the curve (AUC) are 
measured at the end of the process curve (Equations (1)–(6)). 

Fig. 2. Flow chart describing patient selection.  
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Table 1 
Patient characteristics variable data.  

Patient Characteristics Variables Total Readmission Non-Readmission P-value 

N N 

Demographical Sex Female 2720 412 2308 <0.002** 
Male 3071 332 2739 

Marital status single, 1219 631 588 <0.004** 
married 4572 239 4333 

Age 0–30 1363 152 1211 <0.001** 
30–60 1836 146 1690 
60–90 2952 572 2380 

Hospitalization Number of admissions 1 4921 0 4921  
2–4 780 780 0 <0.002** 
>4 90 90 0 

Type of admission Inpatient care 2075 524 1551 <0.001** 
Outpatient care 3716 346 3370 

ICU admission Yes 528 462 66 <0.002** 
No 5263 408 4855 

Oxygen therapy Yes 720 543 177 <0.161 
No 5071 327 4744 

CRP on admission Yes 380 329 51 <0.039** 
No 5411 541 4870 

Duration of hospitalization <24 h 3917 43 3874 <0.497** 
1–7 days 1465 519 946 
>7days 409 308 101 

Patient status on discharge Partial recovery- 1430 774 656 <0.041** 
Complete recovery 3970 62 3908 
dead 391 34 357 

Time to readmission <30 days 1300 257 1043 <0.052 
>30days 4491 613 3878 

COVID status Critical 520 14 506 <0.001** 
Severe 1034 142 892 
Moderate 2300 540 1760 
Mild 1540 98 1442 
Recovered 397 14 383 

Severe kidney disease Yes 240 49 191 <0.630 
No 5551 821 4730 

Solid organ transplantation Yes 182 94 88 <0.951 
No 5609 776 4833 

Lymphocytes on discharge Yes 746 297 449 <0.832 
No 5045 573 4472 

Coronary artery disease Yes 570 381 189 <0.267 
No 5221 489 4732 

Cancer Yes 168 119 49 <0.574 
No 5623 751 4872 

History of CT result Normal 3321 540 2781 <0.059 
Unmoral 2470 330 2140 

Pregnancy Yes 94 23 71 <0.720 
No 5697 847 4850 

Congestive heart failure Yes 350 180 170 <0.968 
No 5441 690 4751 

Cerebrovascular disease Yes 49 8 41 <0.602 
No 5742 862 4880 

C reactive protein on admission Yes 5308 710 4598 <0.057 
No 753 160 593 

Congestive heart failure Yes 135 94 41 <0.619 
No 5656 776 4880 

Asthma Yes 74 41 33 <0.570 
No 5717 829 4888 

Metastatic solid tumor Yes 14 3 11 <0.924 
No 5776 867 4909 

Diabetes mellitus Yes 364 79 285 <0.738 
No 5427 791 4636 

D-dimer Yes 4680 361 4319 <0.042** 
No 1111 509 602 

Dyspnea Yes 1640 490 1150 <0.069 
No 4151 380 3771 

Underlying diseases Yes 839 538 301 <0.073 
No 4952 468 4484 

Headache Yes 4981 681 4300 <0.075 
No 810 189 621 

Weakness and lethargy Yes 5134 526 4608 <0.052 
No 657 344 313 

Body pain Yes 4391 617 3774 <0.061 
No 1400 253 1147 

Pain or pressure in the chest Yes 2670 594 2076 <0.068 
No 3121 276 2845 

(continued on next page) 
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classification  accuracy=
TP + TN

TP + TN + FP + FN
(1)  

classification  sensitivity=
Tp

TP + FN
(2)  

c  lassification  specificity  = TN
TN + FP

(3)  

classification  error =
FP + FN

TP + TN + FP + FN
(4)  

f − measure = 2
precision*sensitivity

precision + sensitivity
(5)  

3. Results 

3.1. Patient characteristics 

The mean age of patients who were readmitted to the hospital was 59 
± 9 years old. The mean age of patients who were not readmitted to the 
hospital was 51 ± 6 years old (p < 0.002). Table 1 indicated that there 
was a significant association between some features of patients who 
readmitted or not: features with p-value < 0.005 that showed in Table 1 
with (** symbol) have a significant difference in patients who read-
mitted d or not class. For example, the results showed that there was a 
significant relationship between ICU admission and COVID status with 
readmission (p-value < 0.002) and (p-value-<0.001), respectively. 

3.2. Feature selection 

The LASSO feature selection method selects the most important and 
relevant features for predicting readmission according to updating the 
absolute value of the variables’ coefficient. The LASSO feature selection 
ranks the relevant variables. After feature selection, out of 42, 28 vari-
ables have not been selected to predict readmission and have been 
deleted from the dataset. The top 14 selected important variables by the 
LASSO feature selection method and their scores are represented in 
Table 2. 

Based on Table 2, COVID-19 status, ICU admission, and oxygen 
therapy obtain the highest score for the prediction of readmission in a 
patient with COVID-19. Moreover, age and solid metastatic tumor have 
a low score in relevant variables scores, so it means that age and solid 
metastatic tumor have a low impact on the prediction of readmission in 
confirmed COVID-19 patients. 

3.3. Results of hyper-parameters tuning 

The performance of ML algorithms is highly dependent on the se-
lection of their hyper-parameters. Hyper-parameters are applied to ML 
algorithms to produce the best model on a given dataset. After the 
preprocessing step, several ML modeling was performed by adjusting 
and optimizing hyper-parameters. The best hyper-parameters needed to 
build models with the highest F-criteria score were identified during this 
step. In the present study, to select the most precise and powerful 
models, the Randomized Search CV method was used for parameter 
adjustment and optimization algorithms, including HGB classifier, 
Bagging classifier, MLP classifier, SVM (kernel = linear), SVM (kernel =
RBF), and XGBoost classifier. Table 3 represents the best Hyper- 
parameters for ML algorithm modeling for predicting readmission. 

3.4. K-fold cross-validation 

Selected features by the LASSO feature selection method were tested 
on seven ML algorithms with a 10-fold cross-validation method. 10-fold 
cross-validation splits our selected data set into ten subsets and performs 
the holdout method ten times. 90% of data was used for training ML 
algorithms for each run, and 10% was fed into the algorithms to test 
models. To measure the performance of ML algorithms with a 95% 
confidence interval, we measured the mean of evaluation metrics. 
Table 4 shows the results of seven prediction models on the selected 
feature by the LASSO method with a 10-fold cross-validation method to 
predict the readmission in COVID-19 patients. 

Table 4 shows the results of the ML models on the adopted features 

Table 1 (continued ) 

Patient Characteristics Variables Total Readmission Non-Readmission P-value 

N N 

High fever Yes 4621 713 3908 <0.072 
No 1170 157 1013 

Nausea & Vomiting Yes 3910 672 3238 
<0.067 No 1881 198 1683 

Cough Yes 4627 593 4034 <0.0512 
No 1164 277 887 

Gastrointestinal symptoms Yes 234 56 178 <0.102 
No 5557 814 4743 

Chronic pulmonary Yes 261 73 188 <0.284 
No 5530 797 4733 

Hypertension Yes 840 142 698 <0.043** 
No 4951 728 4223 

Consolidation Yes 461 59 402 <0.0497** 
No 5330 811 4519 

Pleural fluid Yes 571 137 434 <0.0581 
No 5220 733 4487 

Hypersensitive troponin Yes 892 261 568 <0.042* 
No 4899 609 4290  

Table 2 
Important variables selected by the LASSO algorithm.  

Order Feature name Score P-Value 

1 COVID status 3.78 0/015 
2 ICU admission 3.50 0/035 
3 Oxygen therapy 3.31 0/012 
4 CRP on admission 3.19 0/047 
5 Duration of hospitalization 3.08 0/032 
6 Solid organ transplantation 2.94 <0/001 
7 Lymphocytes on discharge 2.71 0/001 
8 Coronary artery disease 2.64 0/023 
9 Cerebrovascular disease 2.47 0/027 
10 C reactive protein on admission 2.39 0/012 
11 Congestive heart failure 2.15 0/017 
12 Asthma 2.09 0/021 
13 Metastatic solid tumor 2.03 0/006 
14 Age 1.74 0/045  
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by the LASSO feature selection method in ten independent runs. The 
results show that the HGB classifier gave a mean accuracy of 88.6%, a 
mean sensitivity of 88.4%, a mean specificity of 88.9.55%, mean F- 
measure of 88.1%, a mean for Kappa statistic of 88.6%, and AUC of 
88.2% when selected risk factors were used. Bagging classifier obtained 
a mean accuracy of 84.7%, a mean sensitivity of 84.7%, a mean speci-
ficity of 84.1%, a mean F-measure of 84.5%, a mean for Kappa statistic 
of 84.36.6%, and AUC of 84.3% when the LASSO feature selection 
method was included in the classifier. Based on Table 3, the MLP clas-
sifier shows good performance that has a mean accuracy of 88.6%, 
88.9% for a mean of specificity, 88.4% for a mean sensitivity of 88.1%, a 
Mean F-measure, 88.6% a mean of Kappa Statistic, and 88.2% for a 
mean of AUC metrics. The performance of the XGBoost classifier was 
excellent, as shown in Table 3. The XGBoost classifier achieved 91.7% 
for a mean accuracy, 91.3% specificity, 91.6% mean of sensitivity, 
91.8% mean F-measure, 91.37% a mean of Kappa Statistic 91.4% for a 
mean of AUC per ten independent runs. 

The SVM (kernel = linear) was the second-best classifier that has a 
mean of accuracy 88.9%, 87.3% for a mean of specificity, 91.2% for a 
mean of sensitivity, 89.2% mean F- measure, 88.7% a mean of Kappa 

Statistic and 89.2% obtained as a mean of AUC. The SVM (kernel = RBF) 
has a mean accuracy of 85.7%, a mean sensitivity of 86.1%, a mean 
specificity of 85.0%, Mean F-measure of 85.9%, a mean for Kappa rate of 
86.7%, and AUC of 86.3% when LASSO feature selection method was 
included in the classifier. The KNN classifier with mean classification 
accuracy 88.3%, specificity 87.8%, sensitivity 89.2%, F- measure 
89.37%, Kappa statistic 88.3%, and AUC 88.6% achieved nearly 
acceptable performance. 

As shown in Fig. 3, the performance of the XGBoost classifier out-
performed the other six ML models with 91.7% mean accuracy, 91.3% 
mean specificity, 91.6% mean sensitivity, 91.8% mean F-measure, and 
0.9145 AUC. The second important model was SVM with the linear 
kernel (ACU = 0.892), and the worst performance was observed for the 
HGB classifier out of six other ML algorithms (AUC = 0.8233). The 
classification report and ROC curve of the XGBoost classifier as the best 
classification algorithm in the present study in terms of the highest 
evaluation metrics are displayed in Fig. 4. 

4. Discussion 

Given the unknown nature of COVID-19 with a wide range of 
symptoms and complications, it is important to implement intelligent- 
based models for estimating the possibility of its reinfection and recur-
rence [30,31]. Readmission and disease recurrence prediction is com-
plex and challenging, especially in new and ambiguous diseases such as 
COVID-19 [32,33]. Based on our knowledge, this work is one of the few 
studies that applied ML algorithms for predicting the readmission risk of 
patients with COVID-19. 

So far, most previous ML-based studies have focused on predicting 
readmission of chronic conditions such as cardiovascular [1,34–39], 
stroke [40–44], and COPD [5,6,45–47]. Till now, few studies have been 
conducted about COVID-19 readmission. In Rodriguez’s study (2021), a 
predictive model for readmission in COVID-19 patients was presented 
based on an ML classifier. They concluded that ML and data 
mining-based approaches have seemed fruitful for readmission predic-
tion [20]. Koteswari (2020) proposed an intelligent model to predict the 
readmission probability of various COVID-19 cases using ML techniques. 
The experimental results demonstrate ML-based predictive models can 
reduce COVID-19 readmission [30]. Raftarai (2021) compared the 
performance of four ML algorithms for predicting readmission in pa-
tients with COVID-19. The AdaBoost ensemble classifier yielded the best 
performance (accuracy 91.61%) [33]. Similarly, Jia (2021) assessed the 
performance of some ML algorithms to predict future deterioration 

Table 3 
Best hyper-parameters for ML algorithm modeling in prediction of readmission.  

Num Algorithms Hyper-parameters f- 
score 

1 HistGradientBoostingClassifier ‘verbose’ = 2, ‘random_state’ =
999, ‘max_leaf_nodes’ = 62, 
‘max_iter’ = 150, ‘max_depht’ 
= 7, ‘learning rate’ = 0.1 

93.7 

2 BaggingClassifier ‘verbose’ = 2, ‘random_state’ =
999, ‘n_estimation’ = 12, ‘max- 
samples’ = 0.5, ‘bootstrap’ =
‘true’ 

91.28 

3 MLP Classifier ‘Learning rate’ = ‘constant’, 
hidden_layer_size’ =
(100,100,100), ‘alpha’ = 0.05, 
‘activation’ = ‘rulo’ 

91.07 

4 SVM (kernel = linear) C = 100,G = 0.0001 90.09 
5 SVM (kernel = RBF) C = 10, G = 0.001 89.24 
6 XG Boost Classifier ‘min_chid_weigh’ =

1′max_depht’ =
12,‘learning_rate’ = 0.1, 
‘gamma’ = 0.4, 
‘colsample_bytree’ = 0.3 

89.01 

7 K Nearest Neighbor Classifier K = 3, ‘n_jobs’ = − 1, 
‘algorithm’ = ‘auto’ 

87.00  

Table 4 
10-fold CV Classification performance of different classifiers on selected features.  

Classifier Mean Accuracy Mean Specificity (%) Mean Sensitivity Mean F- measure Kappa Statistic (KS) AUC 

HGB Classifier Mean 0.8176 0.814 0.8296 0.8201 82.4% 0.8233 
95% CI (0.81, 0.83) (0.8, 0.82) (0.81, 0.85) (0.81, 0.83) (0.82, 0.86) (0.81, 0.83) 
STD 0.0154 0.0127 0.0296 0.0148 0.0257 0.0157 

Bagging Classifier Mean 0.847 0.841 0.847 0.845 84.36% 0.843 
95% CI (0.84, 0.85) (0.84, 0.85) (0.84, 0.85) (0.85, 0.85) (0.84, 0.85) (0.84, 0.85) 
STD 0.0172 0.0116 0.00128 0.0194 0.0127 0.0182 

MLP Classifier Mean 0.886 0.889 0.884 0.881 88.6% 0.882 
95% CI (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) 
STD 0.0027 0.0112 0.0134 0.00140 0.010 0.0129 

XGBoost Classifier Mean 0.917 0.913 0.916 0.918 91.37% 0.9145 
95% CI (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) 
STD 0.0146 0.0138 0.0147 0.0175 0.01924 0.0126 

SVM (kernel = linear) Mean 0.8896 0.8733 0.912 0.892 88.7% 0.892 
95% CI (0.87, 0.90) (0.66, 0.88) (0.90, 0.93) (0.88, 0.90) (0.88, 0.89) (0.88, 0.90) 
STD 0.0174 0.0167 0.0129 0.0182 0.0140 0.01864 

SVM (kernel = RBF) Mean 0.857 0.850 0.861 0.859 86.7% 0.863 
95% CI (0.85, 0.86) (0.84, 0.86) (0.85, 0.87) (0.85, 0.87) (0.86, 0.87) (0.86, 0.87) 
STD 0.0127 0.01734 0.0129 0.0134 0.0118 0.01727 

K Nearest Neighbor Classifier Mean 0.8835 0.8785 0.892 0.8937 88.3% 0.886 
95% CI (0.88, 0.89) (0.87, 0.89) (0.89, 0.90) (0.89, 0.90) (0.88, 0.89) (0.88, 0.89) 
STD 0.0014 0.0174 0.018 0.0162 0.0183 0.0163  
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among discharged patients with COVID-19. Finally, the best perfor-
mance was yielded by XGBoost with a mean accuracy of 91.7%, mean 
specificity of 91.3%, mean sensitivity of 91.6%, mean F-measure of 
91.8%, and AUC of 91.45%. Ryu (2021) [48] showed Gradient Boosting 
Machine (GBM) and Lo (2021) [49] concluded Categorical boosting 
(Catboost) had the highest AUC performance (= %75.1 and %75.15 
respectively) in prediction readmission. Besides in recent studies (per-
formed in 2021) by Zhao [50], Darabi [51], Chen [52], Shah [53], the 
results showed Boosting algorithms gained better performance in pre-
dicting patient readmission. 

Boosting like Adaptive Boosting (Ada Boost), XGBoost, HGB, Cat-
boost and GBM is a set of powerful and most widely used ML algorithms. 
Boosting classifiers improve the classification accuracy by combining of 
the outputs from a sequence of weak learner and developing a robust 
predictive model [54,55]. The results of previous studies showed that 
the performance of these algorithms was optimum in predicting hospital 
readmission risk in patients with COVID-19. In the present study, due to 
the optimization of prediction variables through performing feature 
selection and data preprocessing before using them as inputs for 
modeling, the performance of the implemented models has been 
improved. Similarly in the current work the XGBoost model out-
performed the other six techniques (0.91% AUC, 0.91–0.92 CI and 
0.0146 STD). 

Since the COVID-19 pandemic began, several studies selected 

clinically important predictors for post-discharge COVID-19. For 
example, Rodriguez’s study (2021) indicated underline chronic disease, 
hypoxia (oxygen saturation ≤94%), increased LDH, CRP, and ESR as the 
most effective factors on hospital readmission [20]. In another study 
performed by Mendito (2021), several clinical features such as age, 
neutrophilia count, sequential organ failure assessment (SOFA), LDH, 
CRP, and D-dimer are recognized as highly contributing factors to the 
readmission of COVID-19 patients [31]. But, Duarte’s research (2021) 
detected polypharmacy, living in residential care or nursing homes, 
general illness, chest pain, psychological symptoms, syncope, and su-
perinfection as the most relevant factors on COVID-19 hospital read-
mission [56]. Accordingly, in Nematshahi et al.’s (2021) study, the 
period between discharge to readmission, age, gender, underline dis-
ease, creatinine level, and pulmonary involvement were renowned as 
influencing factors in predicting COVID-19 readmission [57]. 

Similarly, in Jeon’s (2020) research, age and sex variables and the 
presence of underlying disease are effective in increasing the risk of 
readmission of COVID-19 patients [58]. The presence of comorbidities, 
high BMI, adult age, laboratory indicators such as CRP, creatinine, and 
ALT/ASP rate was introduced as one of the most important underlying 
factors for readmission in COVID-19 patients in the Verna study [59]. In 
a systematic review study conducted by Akbari et al. (2021), they 
concluded that male sex, white ethnicity, comorbid diseases, and old age 
are affecting variables on COVID-19 readmission [60]. Fukushima’s 

Fig. 3. Comparison of classification models performance on selected features.  

Fig. 4. Classification report and AUC curve of the XGBoost classifier.  

M.R. Afrash et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 30 (2022) 100908

8

study (2021) also showed that certain comorbidities such as diabetes, 
hypertension, and cardiovascular diseases have a higher capability in 
predicting the readmission risk among COVID-19 patients [61]. Age 
over 60 years, underlying diseases, especially diabetes, high creatinine 
level, and lung involvement were the essential predictors of readmission 
in the patients with COVID-19 (et al. [32]). The most important vari-
ables in the Green (2021) study for readmission prediction were age, 
LOS, ICU admission, oxygen saturation, D-dimer, and cardiovascular 
diseases [62]. 

Similarly, we identified 14 highly correlated variables with the 
output class. Major risk factors for readmission in the current study 
include COVID-19 status, ICU admission, Oxygen therapy, CRP on 
admission, duration of hospitalization, Solid-organ transplantation, 
Lymphocytes on discharge, Coronary artery disease, Cerebrovascular 
disease, CRP on admission, congestive heart failure, asthma, metastatic 
solid tumor, and age most of which are non-modifiable. 

It should be noted that the identified variables in the present study 
are consistent with the previous researches. In the reviewed studies, 
baseline variables (e.g. age and sex), laboratory indicators, underlying 
diseases (comorbidities) and resource utilization variables such as LOS, 
ICU admission, and oxygen therapy play a pivotal role in predicting the 
readmission of patients with COVID-19. However in these studies, the 
importance of radiological data for readmission risk prediction among 
COVID-19 patients, has been neglected. Similarity, in the present study, 
after doing feature selection, the selected data set lacks radiological 
variables. Therefore, more studies are needed in this regard. 

In addition, several models for predicting the risk of readmission 
among COVID-19 patients have been developed, one of which gained 
reasonable performance in the evaluation phase. Interestingly, the 
selected ML algorithm (XGBoost) can predict the 30-day readmission 
risk of patients with high accuracy. The proposed model of the present 
study can help healthcare providers timely detect patient deterioration 
and reduce the severe complications and the resulting mortalities. This 
study is a retrospective-single-center study including a relatively small 
number of patient data. Therefore, the findings may not be generalizable 
to the wider population. In addition, the existence of some noisy data 
fields such as inconsistency, meaningless, missing, error-prone, and 
abnormal fields might impact the data mining accuracy. 

Moreover, we used only eight ML algorithms for prediction analyses 
based on some clinical features. Our data set furthermore lacked clini-
cally essential variables such as imaging indicators. Therefore, at first, to 
remove noisy data, the normal range of each variable is defined using 
the opinion of two infectious diseases specialists. Then, we specified all 
the values outside the defined range and completed them by referring 
them to the responsible doctor. In addition, the records with more than 
70% of empty fields (=439 as shown in Fig. 1) were removed. The 
missing fields in the records with less than 70% missing are imputed by 
mean and mode values substitution for continuous and discrete vari-
ables, respectively. Additional external validation methods should be 
used to prove the results of the present study and further verify the 
generalizability of our results. Finally, the selected dataset lacks some 
clinical variables such as radiological indicators. As practical solutions, 
the accuracy and generalizability of our models will be enhanced if we 
test more ML techniques at the larger, multicenter, and prospective 
datasets. 

5. Conclusion 

We implement and validate several predictive models stratifying 
readmission risk for COVID-19 patients. In particular, it has been 
observed that the XGBoost model performed best on classification ac-
curacy better than the other ML algorithms. This method can provide 
caregivers and hospital administrators with an effective instrument to 
allocate limited hospital resources best. These models also may be an 
advantage in better and customized care delivery, lessen clinician 
workload, and diminish severe complication and death in the COVID-19 

patients. In future work, the proposed method is expected to be applied 
to other hospital resource utilization domains such as ICU bed turnover, 
LOS, and respiratory ventilator. 
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