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Abstract: Obesity is an important public health problem nowadays. Long-term obesity can trigger a
series of chronic diseases and impair the learning and memory function of the brain. Current studies
show that scientific exercise can effectively improve learning and memory capacity, which also can
provide benefits for obese people. However, the underlying mechanisms for the improvement of
cognitive capacity under the status of obesity still need to be further explored. In the present study, the
obesity-induced cognition-declined model was established using 4-week-old mice continuously fed
with a high-fat diet (HFD) for 12 weeks, and then the model mice were subjected to an 8-week swim-
ming intervention and corresponding evaluation of relevant indicators, including cognitive capacity,
inflammation, insulin signal pathway, brain-derived neurotrophic factor (BNDF), and apoptosis, for
exploring potential regulatory mechanisms. Compared with the mice fed with regular diets, the obese
mice revealed the impairment of cognitive capacity; in contrast, swimming intervention ameliorated
the decline in cognitive capacity of obese mice by reducing inflammatory factors, inhibiting the
JNK/IRS-1/PI3K/Akt signal pathway, and activating the PGC-1α/BDNF signal pathway, thereby
suppressing the apoptosis of neurons. Therefore, swimming may be an important interventional
strategy to compensate for obesity-induced cognitive impairment.

Keywords: obesity; swimming; cognitive capacity; inflammation; insulin resistance; BDNF

1. Introduction

Obesity, as a sub-health stage with the excessive accumulation of body fat, is mainly
affected by genetics and lifestyles. Due to the long-term chronic inflammatory state and
abnormal metabolism as the hotbed for metabolic, endocrine, cardiovascular, and nervous
system diseases, obesity has become a public health problem that is a current research focus
all over the world. Currently, nearly one-third of the world’s population is overweight or
obese [1]. According to the Epidemiological Survey in China from 2015–2019, the obesity
rate in China reveals a significant increase, and children and adolescents have also become
the hardest-hit areas for obesity [2]. Unhealthy diets such as high-fat and high-sugar diets
may cause damage of brain tissues, thus resulting in the decline in cognitive and learning
capacity [3]. Therefore, reducing high-fat diet (HFD)-induced obesity and alleviating the
impaired brain function have become an urgent problem to be solved.

There are many ways to intervene obesity, including exercise, diets, drugs, and surgery.
Previous studies have demonstrated that obesity-induced impairment of cognitive and
memory function can be suppressed and rescued after exercise [4], ketogenic diet [5], and
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surgical interventions due to body weight loss [6]. Therefore, the gain of body weight
may be the culprit. However, adolescents are in the rapid growth and development stage,
and surgical, drug, and dietary interventions may adversely affect the body. Exercise is
an economical and green intervention strategy for health promotion, physical fitness, and
obesity management. Considering the impact of different exercise methods on obesity,
swimming intervention that is more suitable for obesity was selected in this study. In
addition, previous studies on molecular mechanisms have shown that the decline in
cognitive function may be correlated with insulin resistance, neurotrophic factor deficiency,
apoptosis, and reduced synaptic plasticity in obesity models, as well as the long-term
chronic inflammation at the status of obesity [7]. Insulin resistance in the hippocampus
is an important factor that leads to the decline of cognitive function. Insulin resistance
may also indirectly result in the adverse impact on synaptic plasticity by reducing the
brain-derived neurotrophic factor (BDNF), eventually leading to the decline of cognitive
and memory function [8]. Many studies using HFD-induced obesity mouse models have
also documented the increased inflammation, insulin resistance, and reduced BDNF level
in the hippocampus [9–12]. Therefore, reduced inflammation, increased insulin sensitivity,
up-regulated BDNF, and suppressed apoptosis of neurons may be the critical molecular
mechanisms for ameliorating obesity-induced cognitive decline during the process of body
weight loss.

It is well known that scientific and reasonable exercise can significantly promote
the health of the body and reduce the occurrence of sports injuries. Relevant studies
have shown that swimming can effectively improve learning and memory functions and
increase hippocampal BDNF level [13]. Therefore, in this study, the relevant indicators
associated with inflammation, insulin resistance, BDNF level, and apoptosis in hippocampal
tissues were detected to uncover the molecular mechanisms for alleviating obesity-induced
cognitive impairment upon a swimming intervention in HFD-induced obese mice.

2. Materials and Methods
2.1. Animals, Experimental Design, and Ethics

Thirty 4-week-old specific pathogen-free (SPF) grade C57BL/6 male mice (body
weight: 19.9 ± 1.4 g) were purchased from the Experimental Animal Center of Hubei
Provincial Center for Disease Control and Prevention (Certificate No. 42010200005338).
The mice were randomly divided into the regular diet group (10 mice) as the normal
control (NC) group and the HFD group (20 mice) to establish the obesity model. The obese
mice were then divided into two subgroups, which were the obesity-control (OC) group
without swimming and the obesity-exercise (OE) group with loading-free swimming for
8 weeks (Figure 1A). The mice involved in this study were kept under the conditions with
a standard light and dark cycle (12:00–12:00) and temperature (22 ± 2 ◦C). The regular diet
had the energy ratio of 63.4% from carbohydrates, 22.8% from protein, and 13.8% from
fat, and the high-fat diet had the energy ratio of 60% from fat, 20% from protein, and 20%
from carbohydrates.

2.2. Swimming Training Protocol

The obese mice were subjected to non-intermittent swimming training in a swimming
tank (30 ± 1 ◦C) without weight bearing for 8 weeks, five times a week and 60 min
each time. In order to relieve the stress from swimming, the mice were provided with
incremental exercise time for adaptation from 15, 20, 30, 45, and 60 min in the first week. The
swimming time was set up in the early morning in accordance with the mouse biological
clock (18:00–20:00). During the exercise intervention in this study, all mice were abstained
from other additional physical stimulations.
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Figure 1. The diagram for describing animal grouping with corresponding feeding and exercise
intervention, as well as new object recognition test. (A) Flow chart of mouse grouping with corre-
sponding feeding and exercise intervention; (B) A 10-min test environment adaptation; (C) learning
and memory capacity test.

2.3. New Object Recognition Test

After the swimming intervention for 8 weeks, all mice were subjected to a new object
recognition test for evaluating the learning and memory function. The mice to be tested
were placed in the test environment for 24 h in advance for environmental adaptation, and
the training began to place two identical objects on the same side. The mouse was placed
in the field with its back facing the two same objects, and the heads of the mice were at
the same distance from the two objects. After the mice were put into the test environment
for 10 min to adapt to the test environment, the mice were immediately put back into the
rearing box, and after 1 h of rest, one of the objects was replaced with another object with a
different color and shape to conduct new object recognition tests within 5 min, as shown in
the general process (Figure 1B,C).

2.4. Histological Examination of Hippocampal Tissues

After the novel object recognition test, 3 mice in each group were sequentially perfused
with 0.9% saline and 4% paraformaldehyde (pH 7.4) under anesthesia. After perfusion,
the mice were sacrificed by the dislocation of cervical vertebrae, and the brain was re-
moved and placed in 4% paraformaldehyde at 4 ◦C overnight for paraffin embedding and
staining. The paraffin block of mouse brain tissue in each group was cut coronally into
sections with the thickness of 5 µm using a microtome, and the brain tissue sections were
then subjected to de-paraffinization and rehydration, Nissl staining, dehydration sealing,
and microscopic examination. HE staining and antigen retrieval were performed after
de-paraffinization and rehydration, endogenous peroxidase blocking, primary antibody
incubation at 4 ◦C overnight, secondary antibody incubation at room temperature, color
development, hematoxylin staining, dehydration, clearing, mounting, and microscopic
evaluation. In immunofluorescence, the primary antibody and corresponding secondary an-
tibody, CY3-TSA, were added for the probing. Nuclei were counterstained with DAPI. The
images were acquired by an imaging system (Eclipse-E100, Nikon, Japan) and fluorescence
was analyzed using ImageJ software (NIH, Bethesda, MD, USA).
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2.5. Western Blot

The hippocampal tissues of the mice were collected on a low-temperature plate and
placed in liquid nitrogen immediately and then transferred to a −80 ◦C refrigerator for
storage and future use. Hippocampal tissue samples were subjected to pre-cooled cell
lysis in the presence of protease inhibitors and to homogenization in ice for 30 min. The
supernatant was harvested by centrifuging at 10,000× g for 5 min at 4 ◦C. After protein
concentration of the supernatant was detected by the BCA method, the aliquots of the
supernatant were mixed with 2× loading buffer and then subjected to a metal-plate bath at
95 ◦C for 5 min to denature proteins. Approximately 25 µg of total protein in the prepared
samples were separated using 10% or 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred to a polyvinylidene fluoride (PVDF)
membrane. The target protein in the membrane was probed by a specific primary antibody
against IL-6, TNF-α and BDNF (GeneTex, Irvine, CA, USA), p-IRS-1ser307, IRS-1, p-Aktser473,
Akt, p-PI3K, PI3K, JNK, p-JNK, PSD95, and β-actin (Cell Signaling Technology, Danvers,
MA, USA), as well as the corresponding secondary antibody (Cell Signaling Technology,
Danvers, MA, USA). Protein bands were visualized by using an enhanced chemilumines-
cence (ECL) reagent and imaged using an ultra-sensitive fluorescence/chemiluminescence
imaging system ChemiScope6300 (CLiNX Science Instruments, Shanghai, China).

2.6. Statistical Analysis

All data were expressed as mean ± standard deviation (M ± SD). Statistical analysis
was conducted by GraphPad Prism software (La Jolla, CA, USA). A one-way analysis
of variance (ANOVA) was used to analyze statistically significant differences between
multiple groups for parametric data. Otherwise, a nonparametric Kruskal-Wallis analysis
was performed. The significant difference was considered at p < 0.05.

3. Results
3.1. Swimming Reduced Lee’s Index and Body Weight of HFD-Induced Obese Mice

In order to examine the effect of HFD on physical development and body weight, we
regularly measured the body weights and the trunk length from the nose to the anus of the
mice in each group once every two weeks to calculate Lee’s index (Figure 2A). Compared
with the normal control (NC) group, the mice from the HFD group revealed extremely
significant differences in Lee’s index (p < 0.001) from 6 to 12 weeks and extremely significant
differences in body weight from 4 to 20 weeks (p < 0.001), indicating that HFD can rapidly
promote the body development of the mice. After obesity modeling for 12 weeks, the obese
mice were divided into the obesity-exercise (OE) group and the obesity-control (OC) group.
Compared with the OC group, the body weights of the mice from the OE group showed
a significant decrease after a swimming intervention for 8 weeks (p < 0.05) (Figure 2B).
Therefore, 12 weeks of HFD administration significantly induced the development of
obesity in young mice, while the 8-week swimming intervention reduced the body weights
of the obese mice.

3.2. Swimming Intervention Enhanced Learning and Memory Capacity of Obese Mice

Usually, learning and memory functions reveal the rapid development during the
adolescent period, and the long-term consumption of high-fat diets has adverse effects
on the brain and nervous system [14]. Therefore, we used a novel object recognition test
to evaluate the changes in learning and memory capacity of obese mice (Figure 2A,B).
Compared with the NC group, the recognition capability to novel objects of the mice from
the OC and OE groups was significantly lower, indicating that a high-fat diet could suppress
the learning and memory capacity of the mice (p < 0.05). In contrast, after a swimming
intervention for 8 weeks, the learning and memory capacity of the mice from the OE group
was significantly higher than that in the OC group (p < 0.05) (Figure 2C). These results
suggest that the long-term consumption of a high-fat diet during the adolescent period
can lead to the impaired learning and memory capacity of the mice, while a swimming
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intervention can be beneficial to the improvement or rescuing of the declined learning and
memory capacity of the obese mice.

Nutrients 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 2. Effect of a swimming intervention on body weights of the mice after 12 weeks of normal 

chow and high-fat feeding for 8 weeks, as well as the assessment of the learning and memory ca-

pacity for the mice through a novel object recognition test. All data were presented as mean ± 

standard deviation (M ± SD) (n = 7 mice per group). (A) statistical analysis for the changes in Lee’s 

index of the mice within the 12-week feeding for establishment of the obesity model; (B) statistical 

analysis of the changes in body weights of the mice in NC, OC, and OE groups upon swimming 

intervention; (C) statistical analysis of recognition coefficients of the mice from the NC, OC, and OE 

groups, and the recognition coefficient is equal to the times of recognizing new objects to the total 

times of recognizing old and new objects. Compared with the NC group, * p < 0.05, *** p < 0.001; 

compared with the OE group, # p < 0.05, ### p < 0.001. 

3.2. Swimming Intervention Enhanced Learning and Memory Capacity of Obese Mice 

Usually, learning and memory functions reveal the rapid development during the 

adolescent period, and the long-term consumption of high-fat diets has adverse effects on 

the brain and nervous system [14]. Therefore, we used a novel object recognition test to 

evaluate the changes in learning and memory capacity of obese mice (Figure 2A,B). 

Compared with the NC group, the recognition capability to novel objects of the mice 

from the OC and OE groups was significantly lower, indicating that a high-fat diet could 

suppress the learning and memory capacity of the mice (p < 0.05). In contrast, after a 

swimming intervention for 8 weeks, the learning and memory capacity of the mice from 

the OE group was significantly higher than that in the OC group (p < 0.05) (Figure 2C). 

These results suggest that the long-term consumption of a high-fat diet during the ado-

lescent period can lead to the impaired learning and memory capacity of the mice, while 

a swimming intervention can be beneficial to the improvement or rescuing of the de-

clined learning and memory capacity of the obese mice. 

3.3. Swimming Suppressed Hippocampal Neuronal Degeneration of Obese Mice 

Long-term consumption of a high-fat diet may lead to the damage and functional 

decline of hippocampal neurons [15]. In order to further understand the effect of obesity 

on hippocampal neurons, we conducted HE, Nissl, and NeuN staining to evaluate the 

morphological and pathological changes of the hippocampal neurons of the obese mice 

upon the swimming intervention (Figure 3A–C). Compared with the NC group, the 

neuronal damage, disordered and sparse neuron arrangement, and decreased number of 

mature neurons in the mice from the OC group were observed. In contrast, the swim-

ming intervention rescued these obesity-induced impairments or abnormal changes of 

hippocampal neurons, or it suppressed the hippocampal neuronal degeneration of the 

Figure 2. Effect of a swimming intervention on body weights of the mice after 12 weeks of normal
chow and high-fat feeding for 8 weeks, as well as the assessment of the learning and memory capacity
for the mice through a novel object recognition test. All data were presented as mean ± standard
deviation (M ± SD) (n = 7 mice per group). (A) statistical analysis for the changes in Lee’s index of
the mice within the 12-week feeding for establishment of the obesity model; (B) statistical analysis of
the changes in body weights of the mice in NC, OC, and OE groups upon swimming intervention;
(C) statistical analysis of recognition coefficients of the mice from the NC, OC, and OE groups, and the
recognition coefficient is equal to the times of recognizing new objects to the total times of recognizing
old and new objects. Compared with the NC group, * p < 0.05, *** p < 0.001; compared with the OE
group, # p < 0.05, ### p < 0.001.

3.3. Swimming Suppressed Hippocampal Neuronal Degeneration of Obese Mice

Long-term consumption of a high-fat diet may lead to the damage and functional
decline of hippocampal neurons [15]. In order to further understand the effect of obesity
on hippocampal neurons, we conducted HE, Nissl, and NeuN staining to evaluate the mor-
phological and pathological changes of the hippocampal neurons of the obese mice upon
the swimming intervention (Figure 3A–C). Compared with the NC group, the neuronal
damage, disordered and sparse neuron arrangement, and decreased number of mature
neurons in the mice from the OC group were observed. In contrast, the swimming inter-
vention rescued these obesity-induced impairments or abnormal changes of hippocampal
neurons, or it suppressed the hippocampal neuronal degeneration of the obese mice, as
shown in the deep and compact neuronal borders and nuclei with Nissl staining (Figure 3B)
and more mature neurons under the same background intensity (Figure 3D). These results
suggest that obesity can impair the maturation process and the corresponding functions of
neurons, while a swimming intervention can ameliorate hippocampal neuronal damage
and stimulate the maturation of neurons.
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data were presented as mean ± standard deviation (M ± SD) (n = 3 mice per group). (A) HE staining
of the CA1, CA3, and DG hippocampal regions of the mice from the NC, OC, and OE groups; (B) Nissl
staining of the CA1, CA3, and DG hippocampal regions of the mice from the NC, OC, and OE groups;
(C) NeuN staining of the DG hippocampal region of the mice from the NC, OC, and OE groups. All
images were acquired under a 400× optical microscope. (D) Statistical analysis of mature neurons in
the DG regions of hippocampal tissues from the NC, OC, and OE groups. Compared with the NC
group, ** p < 0.01; compared with the OE group, # p < 0.05.

3.4. Swimming Suppressed Hippocampal Neuroinflammation of Obese Mice

Obesity can trigger chronic inflammation, and same changes can be observed in the
nervous system [16]. In order to determine the level of inflammation in hippocampal tissue
under the status of obesity, we evaluated inflammation-related proteins by Western blot
(Figure 4A). Compared with the NC group, the expression of IL-6 and TNF-α in hippocam-
pal tissues of the mice from the OC group showed a significant increase (p < 0.05); on
the contrary, swimming intervention reversed the obesity-induced increase of IL-6 and
TNF-α (p < 0.05; p < 0.01) (Figure 4B,C). The immunofluorescence results showed that the
obviously higher expression of NF-κB p65 in the hippocampal tissues of mice from the OC
and OE groups was observed when compared with the NC group; in contrast, swimming
intervention down-regulated the expression of NF-κB p65 in hippocampal tissues in com-
parison with the OC group (Figure 4D), indicating that the swimming intervention has an
obviously inhibitory effect on neuroinflammation, thereby executing the suppression of the
neuroinflammation-induced reduction of learning and memory capacity.

3.5. Swimming Activated Hippocampal Insulin Signaling in Obese Mice

Long-term obesity may lead to inflammation in the body, thus inducing insulin resis-
tance and impairing learning and memory functions [17]. To further explore the changes in
inflammation and insulin-related signaling in hippocampal tissues of obese mice, Western
blotting was used to evaluate the expression of the proteins associated with inflammation
and the insulin signal pathway (Figure 5A). Compared with the NC group, p-JNK/JNK and
p-IRS-1ser307/IRS-1 ratios in hippocampal tissues of the mice from the OC group revealed a
significant increase (p < 0.05); in contrast, p-PI3K/PI3K and p-Aktser473/Akt ratios exhibited
an obvious decrease (p < 0.05), suggesting that a high-fat diet contributes to inflammation-
induced insulin resistance. On the other hand, the swimming intervention suppressed
the increase of p-JNK/JNK and p-IRS-1ser307/IRS-1 ratios (p < 0.05) and the reduction of
p-PI3K/PI3K and p-Aktser473/Akt ratios (p < 0.05, p < 0.01) (Figure 5B–D), thereby stim-
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ulating the activation of the insulin signal pathway. These results suggest that elevated
levels of inflammation induced by long-term obesity can lead to insulin resistance in the
hippocampal tissue, while a swimming intervention can attenuate inflammation-induced
insulin resistance.
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3.6. Swimming Up-Regulated The Proteins Associated with Neurotrophic Factors and Synaptic
Plasticity in the Hippocampal Tissue of Obese Mice

The reduction of neurotrophic factors and synaptic plasticity in hippocampal tissues of
the mice with obesity may be the inducers for poor learning and memory capacity [18]. To
understand the effects of neurotrophic factors on the regeneration of hippocampal neurons
in an obese state, we conducted the evaluation of the corresponding protein expression
associated with neurotrophic factors and synaptic plasticity in the hippocampal tissue
of the mice through Western blot. The expression of PGC-1α, BDNF, and PSD95 in the
hippocampal tissues of the mice from the OC group revealed a significant decrease when
compared with the NC group (Figure 6A–D) (p < 0.05, p < 0.01), while a swimming inter-
vention could rescue the down-regulation of these proteins (p < 0.05, p < 0.01). Therefore,
a swimming intervention is beneficial to the rescuing of down-regulated PGC-1α, BDNF,
and PSD95 in hippocampal tissues of the mice caused by the long-term consumption of a
high-fat diet, thereby enhancing neurotrophic factors and synaptic plasticity.
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the OE group, # p < 0.05, ## p < 0.01.
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Figure 6. The Western blot of proteins associated with neurotrophic factors and synaptic plasticity
(A) and corresponding statistical analysis of PGC-1α (B), BDNF (C), and PSD95 (D) expression levels
in hippocampal tissues of the mice. All data were presented as mean ± standard deviation (M ± SD)
(n = 3 mice per group). Compared with the NC group, * p < 0.05, ** p < 0.01; compared with the OE
group, # p < 0.05, ## p < 0.01.
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3.7. Swimming Inhibited Hippocampal Neuronal Apoptosis in Obese Mice

A high-fat diet can induce the oxidative stress for stimulating apoptosis of the hip-
pocampal neurons in mice, thereby triggering a reduced learning and memory capacity [19].
To further explore the effect of a long-term high-fat diet on apoptosis of the hippocam-
pal neurons in obese mice, we examined the expression of anti-apoptotic and apoptotic
proteins. Compared with the NC group, a significant decrease in Bcl-2 and an increase in
Bax in hippocampal tissues of the mice from the OC group were observed (p < 0.05); on
the contrary, a swimming intervention could up-regulate Bcl-2 and down-regulate Bax to
execute the suppression of hippocampal neuronal apoptosis (Figure 7A–C). Although Bax
did not appear to be significantly different between the OC and OE groups, the expression
of Bax in the OE group showed a downward trend when compared to the OC group, and it
could significantly reverse the Bcl-2/Bax ratio to suppress apoptosis of the hippocampal
neurons in obese mice (Figure 7D) (p < 0.05). These results suggest that the long-term
consumption of a high-fat diet may trigger apoptosis of the hippocampal neurons, and
swimming can rescue this phenomenon to some extent.
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analysis of Bcl-2 (B) and Bax (C) expression levels, as well as Bcl-2/Bax (D) in hippocampal tissues of
the mice. All data were presented as mean ± standard deviation (M ± SD) (n = 3 mice per group).
Compared with the NC group, * p < 0.05; compared with the OE group, # p < 0.05.

4. Discussion

Obesity can lead to the impairment of learning and memory capacity, which is con-
firmed by increasing studies. However, the molecular mechanisms for the impairment
of learning and memory capacity caused by obesity are unclear. The 1–6-months-old
C5BL/6 mice are equivalent to 12–30-year-old humans during the rapid development
period to adult period [20]. Therefore, this study highly mimicked the development of the
adolescent population with obesity using 4-week-old young male mouse models fed with
a high-fat diet to obesity for 3 months, which can avoid the uncertain factors such as the
physiological cycle of female mice as soon as possible. Exercise is an important external
means to promote the development of brain function accompanied by the suppression of
obesity [21]. However, considering the risk of exercise injury caused by larger body weight,
this study adopted a swimming intervention for 2 months. The experimental results were
consistent with the expectation. Swimming intervention significantly reduced body weight,
alleviated neuroinflammation and insulin resistance, and up-regulated neurotrophic factors
to achieve the reversal of learning and memory function in obese mice.

The occurrence of obesity may lead to a significant decline in memory, but some
studies have found that the decline in cognitive function caused by a high-fat diet may
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precede the occurrence of obesity [22]. Relevant studies have shown that short-term [23]
and long-term exposure [15] to high-fat diets can result in the obesity-induced impairment
of learning and memory capacity. Only 4 days of high-fat and high-sugar diets in humans
can impair hippocampal-dependent learning and memory function to some extents [24].
The 7–9-year-old adolescents with the long-term intake of saturated fatty acids present a
negative correlation with learning and memory function [25], as confirmed by the same per-
formance in Zebrafish [26], which stimulates the interest in exploring the beneficial effect of
regular exercise intervention on the mitigation of the HFD-induced impairment of learning
and memory function and precision mechanisms through the mouse model, thereby provid-
ing a reference or guidance for health promotion. However, in 12-month-term HFD feeding,
rats showed better learning and memory capacity and larger hippocampal volume [27], and
the consumption of HFD for 6 months showed no spatial memory impairment [28]. This
phenomenon, that a long-term high-fat diet does not trigger the changes in learning and
memory capacity, may be related to stress, self-resistance, and the adaptation of neurons
to high-fat diets, but the specific mechanisms need to be further explored. Similarly, the
level of inflammation from high-fat diets can be altered with a change in the duration of
diet interventions [29]. Although there is disagreement about the relationship between
the duration of high-fat diet intervention and the impairment of learning and memory
capacity, it has been widely reported and recognized that obesity can impair learning and
memory capacity.

From the point of view of molecular mechanisms, the impaired learning and memory
capacity may be related to the increased level of hippocampal inflammation caused by high-
fat diets [8]. It has been widely proven that obesity can increase inflammation in the body,
with a similar effect on brain tissue [30]. A cross-sectional study with 10,000 persons in the
USA has demonstrated that the level of inflammation is negatively correlated with memory,
and it also has the reference value in complex environments [31]. The exposure of juvenile
rats to HFD-induced inflammation and reduced learning and cognitive function [32,33].
In a clinical trial with a large volume of samples involving more than 8000 adolescents
and children, the results showed that the level of inflammation in obese adolescents is
usually accompanied by poor learning and memory capacity [34]. The mice subjected to
the consumption of short-term high-fat diets can result in the elevation of pro-inflammatory
cytokines such as IL-6 and TNF-α in hippocampal tissues [35]. Once JNK is activated, it can
act on NF-κB to enter the nucleus to promote the transcription of inflammatory genes, thus
resulting in the release of more inflammatory factors, eventually forming a vicious circle and
aggravating the degree of inflammation and impaired learning and cognitive capacity [36].
After reducing inflammation, the dietary intervention can fully or partially rescue the
impaired cognition of obese mice. Therefore, reducing inflammation may be a solid inducer
to delay or suppress the reduction of learning and memory function [37]. In the present
study, the impaired learning and memory capacity of the obese mice was highly modulated
by the expression levels of IL-6, TNF-α, NF-κB p65, and JNK in hippocampal tissues,
and a regular swimming intervention can significantly down-regulate these inflammatory
proteins. This is consistent with the significant reduction of inflammation levels in the
hippocampal tissues of animal models subjected to treadmill running, swimming, or
voluntary wheeling running interventions [38–40].

Inflammation caused by obesity may be an important factor associated with insulin
resistance [41]. Previous studies have also documented that adolescent mice fed with
high-fat diets present an increased level of inflammation in hippocampal tissues, and
insulin signaling is also significantly blocked [42,43]. As a bridge between inflammation
and insulin, inflammatory factors promote the phosphorylation of IRS-1 at the Ser307 site
by activating JNK phosphorylation, thereby hindering insulin signaling and exacerbating
insulin resistance. Long-term chronic inflammation can activate JNK and eventually
lead to the occurrence of insulin resistance [44]. Insulin resistance in the hippocampal
tissue is considered one of the important triggers for the decline in learning and memory
function; therefore, activating the insulin signaling pathway can rescue impaired learning
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and memory capacity [45]. In our study, the similar results with increased expression
levels of the proteins associated with the signal pathways of insulin resistance such as
JNK/IRS-1/PI3K/Akt in the hippocampal tissues of the obese mice were observed, and
the swimming intervention rescued the abnormal expression of these proteins (Figure 5),
further suggesting impaired learning and memory capacity due to the insulin resistance
from high-fat diets, and alleviated the obesity state and recovered insulin resistance for
enhancing learning and memory capacity upon regular exercise intervention.

In addition, neurotrophic factors and synaptic plasticity are closely related to im-
proving learning and memory functions. In the present study, the expression levels of
PGC-1α, BDNF, and PSD95 showed a downward trend in the hippocampal tissues of
obese mice, as consistency with the literature reports describing the alleviation of learning
and memory impairment caused by soybean oil-induced BDNF reduction [39]. As an
important neurotrophic factor, BDNF can play a critical role in the release and reception
of neurotransmitters in presynaptic and postsynaptic membranes, thus promoting the
connection between synapses and even the regeneration of nerves, thereby improving
learning and memory functions. As an intracellular protein, PSD95 plays a vital role in
neuronal synaptic plasticity and learning and memory functions [46]. A previous study
has also found that exercise can inhibit the reduction of BNDF in the hippocampal tissue
of an obesity model [47]. The feeding of high-fat diets for 3-month-old mice can trigger
the reduction of the PSD95 level [48], and both aerobic exercise and resistance exercise
training can up-regulate hippocampal PSD95 expression [49,50]. Therefore, a swimming
intervention for enhancing the learning and memory capacity of obese adolescents may
partly depend on the activation of the PGC-1α/BDNF signal pathway.

The long-term consumption of high-fat diets may be detrimental to the survival of
hippocampal neurons, and corresponding studies have shown that exercise interventions
can promote the improvement of hippocampal function by suppressing the apoptosis of
hippocampal neurons, thereby enhancing learning and memory capacity [19]. Exercise can
inhibit the apoptosis of hippocampal neurons in obese offspring [51], which is similar to our
experimental results with the up-regulated anti-apoptotic protein Bcl-2, down-regulated
pro-apoptotic protein Bax, and increased Bcl-2/Bax ratio (Figure 6), as well as the reduced
expression of the proteins in hippocampal tissues associated with inflammation and insulin
resistance upon the swimming intervention (Figures 4 and 5). However, endoplasmic retic-
ulum stress, mitochondrial dysfunction, elevated ROS level caused by high-fat diets, gut
microbiome change, and combinatorial stress responses under different dietary conditions
may also be important triggers for neuronal apoptosis [33,51–55]. Consistently, aerobic
exercise plays a positive role in reducing hippocampal neuronal apoptosis.

As is well known, dietary modification is another important way to mitigate obesity
and enhance learning and cognitive capacity. In order to better understand the effect of
exercise intervention on regulating the progression of obesity, in our study, the benefits of
exercise intervention were significantly highlighted. Swimming intervention can alleviate
inflammatory responses, promote insulin sensitivity, up-regulate neurotrophic factors,
increase synaptic plasticity, and suppress apoptosis (Figures 4B,C and 5A), as well as rescue
insulin resistance signaling (Figure 5B–D), suggesting that better nutritional supplemen-
tation combined with regular exercise training during the rapid development stage of
the body may have more benefits, including the rescuing of the high-fat diets-induced
impairment of learning and memory capacity.

5. Conclusions

Adolescents require more nutrients and energy, but the consumption of long-term
high-fat diets can also lead to body weight gain and impaired learning and memory
capacity, which is highly correlated with neuroinflammation, insulin resistance, reduced
neurotrophic factors, and increased neuronal apoptosis. Swimming intervention can
reverse these abnormal changes to rescue the impaired learning and memory capacity in
obese mice by reducing obesity, alleviating hippocampal neuroinflammation, activating
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insulin signaling, promoting the generation and secretion of neurotrophic factors, and
suppressing hippocampal neuronal apoptosis in adolescent mice, with the involvement of
the JNK/IRS-1/PI3K/Akt and PGC-1α/BDNF signal pathways (Figure 8).
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