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α-synuclein (α-syn) is one of the genes that when mutated or overexpressed causes
Parkinson’s Disease (PD). Initially, it was described as a synaptic terminal protein and
later was found to be localized at mitochondria. Mitochondria-associated membranes
(MAM) have emerged as a central endoplasmic reticulum (ER) subcellular compartments
where key functions of the cell occur. These domains, enriched in cholesterol and anionic
phospholipids, are where calcium homeostasis, lipid transfer, and cholesterol metabolism
are regulated. Some proteins, related to mitochondrial dynamics and function, are also
localized to this area. Several neurodegenerative diseases have shown alterations in MAM
functions and resident proteins, including Charcot Marie-Tooth and Alzheimer’s disease
(AD). We have recently reported that MAM function is downregulated in cell and mouse
models of PD expressing pathogenic mutations of α-syn. This review focuses on the
possible role of α-syn in these cellular domains and the early pathogenic features of PD
that could be explained by α-syn-MAM disturbances.
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PARKINSON DISEASE BACKGROUND
Parkinson disease (PD) is the second most prevalent neurodegen-
erative disease after Alzheimer disease (AD). Its main symptoms
are resting tremors, rigidity, slowness of voluntary movements,
freezing, and postural instability. Histopathologically, this disease
is characterized by (a) a significant loss of dopaminergic
neurons in the substantia nigra pars compacta (SNpc; Braak
et al., 2003) and (b) the accumulation of intracytoplasmic
aggregates called Lewy bodies, composed mainly of alpha-
synuclein protein (α-syn; Spillantini et al., 1997, 1998). This
aggregation occurs at the SNpc and other cerebral areas
such as locus ceruleus, nucleus basalis, hypothalamus, cerebral
cortex, and autonomic nervous system (Maroteaux et al., 1988;
Parkinson, 2002).

The majority of the PD cases are sporadic with only less than
10% of the cases related to mutations in genes such as PARK2,
PARK7, PINK1, LRRK2 or SNCA (Polymeropoulos et al., 1997;
Krüger et al., 1998; Zarranz et al., 2004). Among these, mutations
or duplication in SNCA, which codifies for α-syn, have been
shown to cause autosomal dominant forms of familial PD (Krüger
et al., 1998; Singleton et al., 2003; Zarranz et al., 2004; Schon and
Przedborski, 2011).

SUBCELLULAR LOCALIZATION α-SYNUCLEIN
α-syn is a 140 aa protein, highly expressed in nervous tissues, that
was identified as the precursor protein for the non–beta amyloid
component of AD plaques (Uéda et al., 1993). Despite numerous
research efforts, its main function remains unknown.

The majority of α-syn is soluble and resides in the cytoplasm.
However, many researchers have demonstrated that α-syn, upon
a yet unknown stimulus, is capable of binding to membranes
and changes its N-terminal domain conformation upon this
interaction (Eliezer et al., 2001; Jao et al., 2004, 2008).
In vitro, α-syn binds preferentially to anionic phospholipids
and liposomes of high curvature (Davidson et al., 1998;
Fortin et al., 2004; Auluck et al., 2010). In the cell, these
membrane regions are called lipid raft domains, which are
detergent resistant membranes (DRM) with unique molecular
characteristics (Simons and Toomre, 2000). Initially, lipid
rafts were believed to form only at the plasma membrane;
however, many authors have shown that these domains
can also be localized intracellularly (Hayashi and Fujimoto,
2010).

In an effort to understand the function of this protein, many
groups have reported several subcellular localizations for α-syn. In
the last decades, multiple research data have shown α-syn located
at pre-synaptic terminals (Kahle et al., 2000), participating in the
regulation of the synaptic pool size and neurotransmitter release
(Iwai et al., 1995; Masliah et al., 1996; Abeliovich et al., 2000;
Murphy et al., 2000; Cabin et al., 2002; Gitler et al., 2008).

More recently, α-syn has been reported to bind to
mitochondria (Li et al., 2007; Cole et al., 2008; Devi et al.,
2008; Parihar et al., 2008; Zhang et al., 2008). This binding is
especially significant in the striatum, substantia nigra (SNpc), and
cortex of PD brains (Devi et al., 2008). Supporting these results,
a recent study describes the existence of an N-terminal sequence
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FIGURE 1 | Confocal microscopy image representative of the ER mitochondrial connections in M17 dopaminergic cell line. ER is labeled with
GFP-Sec61-β (green) and mitochondria labeled with pDsRed2-mito (red). Merge image indicates the colocalization of both organelles.

in α-syn that could work as a mitochondrial targeting sequence
(Devi et al., 2008). Moreover, α-syn binding to membranes is
favored by the presence of cardiolipin (Zigoneanu et al., 2012), a
lipid specific of the mitochondria membrane.

MITOCHONDRIA AND α-SYNUCLEIN IN THE PATHOGENESIS
OF PD
Supporting α-syn localization to the mitochondria, PD patients,
and cellular models containing pathogenic mutations of this
protein show a deficit in mitochondrial functionality (Hsu
et al., 2000; Schon and Przedborski, 2011), and, in particular, a
significant decrease in complex I activity (Devi et al., 2008). In
fact, the decrease in complex I activity is also present in PD brains
and cellular models containing mutations in other genes related
to the disease.

Moreover, exposure to a contaminant called 1-methyl-4-
phenyl-1,2,3,4-tetrahydropyridine (MPTP), which is an inhibitor
of the mitochondrial complex I, provokes parkinsonism
symptoms and loss of dopaminergic neurons (Langston et al.,
1983; Dauer and Przedborski, 2003). Additionally, injection
of another complex I inhibitor, rotenone, caused a similar
phenotype (Betarbet et al., 2000). All these data supports a role
for mitochondrial dysfunction in the pathogenesis of PD.

In addition to complex I dysfunction, pathogenic mutations
of α-syn have also been shown to interact with and reduce the
activity of complex IV (Elkon et al., 2002). Also, there is data
that relates the age-related accumulation of non-aggregated α-
syn to mitochondria with a reduced dopamine phenotype in the
SNpc (Chu and Kordower, 2007). Studies in one of the transgenic
models of PD bearing the α-syn A53T mutation, show not only
complex I inhibition, but also damaged mitochondrial DNA and
aberrant mitochondrial dynamics (Martin et al., 2006; Chinta
et al., 2010; Choubey et al., 2011).

It is widely known that mitochondria are dynamic organelles
that undergo fusion and fission continuously (Chan, 2006).
Mitochondrial movement is especially dramatic in neurons,

where mitochondria travel along the axons to provide the
terminals with ATP and other metabolites. Perturbations
of this flux of mitochondria throughout the cell body
cause defects in cell viability. Curiously, alterations in
mitochondrial dynamics have been extensively reported in
numerous neurodegenerative diseases, i.e., AD (Wang et al.,
2008, 2009), PD (Yu et al., 2011; Cooper et al., 2012) and
Charcot Marie-Tooth (Baloh et al., 2007; Chen and Chan,
2009). For instance, in the case of PD, the mitochondrial
protein PINK1, whose mutation causes PD, is known to
interact with the proteins Miro and Milton, both microtubule-
associated proteins (Weihofen et al., 2009). Moreover, research
data showed that aggregates of wild-type α-syn disrupt the
mitochondrial trafficking of cargoes (Galvin et al., 1999; Lee
et al., 2006).

An alternative consequence of the deregulation of
mitochondrial trafficking is the alteration of the mitochondrial
quality control. Spare or damaged mitochondria are degraded
by mitophagy, a process in which the cell has to be able to
differentiate healthy from damaged mitochondria. An indication
of healthy mitochondria is a high membrane potential and
low reactive oxygen species (Twig and Shirihai, 2011). The
primary mechanism for degrading or minimizing damaged
mitochondria is fusion and fission (Schon and Przedborski,
2011). During these processes, the cell “neutralize” unhealthy
mitochondrial content, mixing it with other healthy organelles.
In the case of neurodegenerative diseases, such as PD, where
the fusion/fission machinery is altered, the accumulation of
“bad” mitochondria can lead to the disease. More specifically,
some authors link those dysfunctional mitochondria that cannot
reach axonal extremes in PD with an increased expression
of α-syn and aggregation (Lee et al., 2002). This could be
the cause of the accumulation of mitochondrial mutations
observed in the SNpc of PD patients that leads to a loss of
dopaminergic neurons (Bender et al., 2006; Kraytsberg et al.,
2006).
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α-SYNUCLEIN IS LOCALIZED AT
MITOCHONDRIA-ASSOCIATED MEMBRANES
Trying to answer this question, we revisited the exact cellular
localization of α-syn. We have recently described a more accurate
localization of α-syn (Guardia-Laguarta et al., 2014). Our data
shows the existence of a subpopulation of α-syn that resides
at the mitochondria-associated membranes or MAM. This
region interconnects the endoplasmic reticulum (ER) and the
mitochondria and is responsible for specific cellular functions.
These membranes are composed of intracellular lipid rafts. This
result is compelling, as previous works show that α-syn has an
affinity for lipid rafts (Fortin et al., 2004) and negatively-charged
membranes (Davidson et al., 1998) and could possibly explain
the studies describing α-syn as a mitochondrial protein (Li et al.,
2007; Cole et al., 2008; Devi et al., 2008; Parihar et al., 2008;
Shavali et al., 2008). The lack of appropriate markers for MAM
and the technical difficulty in fractionating this kind of membrane
because of its association with the ER could explain previous
results (Area-Gomez et al., 2012).

MAM is a subcompartment of the ER that is connected
to the mitochondria (Figure 1; Rusiñol et al., 1994; Csordás
et al., 2006; Hayashi et al., 2009). It is involved in a number
of core cellular functions; i.e., calcium homeostasis (Csordás
et al., 2010), cholesterol metabolism (Rusiñol et al., 1994),
and phospholipid transfer from the ER to the mitochondria
(Vance, 1990). Specifically, MAM has been described as the
residence of several proteins related to phospholipid regulation
(phosphatidylserine synthase 2: PTDSS2), cholesterol metabolism
(acyl-CoA:cholesterol acyltransferase) (Rusiñol et al., 1994), and
calcium transport from the ER to the mitochondria (the type
3 inositol 1,4,5-triphosphate receptor, IP3R3) (Hayashi and
Fujimoto, 2010). Notably, mitochondrial distribution and
dynamics are influenced by the physical connections formed
by MAM (Rizzuto et al., 1998; Levine and Rabouille, 2005;
Csordás et al., 2006; Hayashi et al., 2009; Friedman et al., 2011;
Rowland and Voeltz, 2012). During mitochondrial fission, ER
tubules appear to “embrace” mitochondria and mark sites of
mitochondrial division (Friedman et al., 2011). In addition,
isolated MAM from different tissues have been shown to be
enriched in proteins related to the control of mitochondrial
dynamics (e.g., FIS1, MFN2, and DRP1). Finally, MAM also
contain some proteins involved in apoptosis (e.g., VDAC1
[voltage-dependent anion channel 1], BAX and BID (Garofalo
et al., 2005; Ciarlo et al., 2010)). Indeed, calcium release at ER-
mitochondrial contacts, which is important for ATP production,
could be responsible for sensitizing mitochondria to apoptosis
(Iwasawa et al., 2011; Tabas and Ron, 2011). The alteration of
mitochondrial-ER contacts can cause deregulation of the calcium
signal which results in inappropriate protein folding, metabolic
alterations, and apoptosis (Csordás and Hajnóczky, 2009; Bui
et al., 2010).

COULD THE PATHOGENESIS OF PD BE EXPLAINED BY EARLY
ALTERATION IN MAM FUNCTION?
Scorrano’s group made the first correlation between MAM
disturbance and disease when they described Mfn2 as a MAM
resident protein that participates as a scaffold between ER and

mitochondria. Mutations of Mfn2 cause Charcot Marie Tooth
type 2a (de Brito and Scorrano, 2008). More recently it has been
shown that presenilin-1, presenilin-2, and γ-secretase activity—
all key factors associated with the pathogenicity of AD—are highly
enriched in the MAM (Area-Gomez et al., 2009). Moreover,
mutation or ablation of these γ-secretase components provokes
a significant upregulation of several activities located at the MAM
(Area-Gomez et al., 2012). Similarly, we have also shown that
mutations in α-syn cause an alteration in the regulation of
MAM function (Guardia-Laguarta et al., 2014). Supporting this
observation, several groups have reported alterations in the lipidic
composition of membranes from PD brains (Fabelo et al., 2011).
These data suggest that these molecular alterations would change
thermodynamic properties, organization, and signal transduction
in the PD brain.

MAM regulates the homeostasis of cholesterol through the
acyl-coA cholesterol acyltransferase (ACAT) activity. ACAT is
the enzyme responsible of the conversion of free cholesterol to
cholesteryl esters that eventually will be stored as lipid droplets.
Therefore, ACAT activity regulates the amount of free cholesterol
in cellular membranes. Cholesterol regulation alterations in
PD have been extensively reported in the literature (de Lau
et al., 2006; Huang et al., 2007; Hu et al., 2008). Interestingly,
α-syn contains two cholesterol binding domains that play a role
in the regulation of its binding to membranes and perhaps
aggregation (Fantini and Yahi, 2013). In fact, α-syn transgenic
mice treated with statins (cholesterol-lowering drug) showed
a significant reduction in α-syn aggregation (Bar-On et al.,
2008). Finally, numerous reports have described the interaction
of α-syn and lipid droplets (Cole et al., 2002; De Franceschi
et al., 2009). Taking all of this into account, it may well be
that the cholesterol alterations in PD are a consequence of
a MAM dysfunction caused by mutations in α-syn, a MAM
protein.

The transfer of calcium between ER and mitochondria via
MAM is a highly regulated process that controls the whole
calcium homeostasis in the cell (Rizzuto et al., 2009; Csordás et al.,
2010). As in many other neurodegenerative diseases, calcium
homeostasis is altered in PD patients and animal models. In
neurons, these alterations result in excitotoxic events that may
eventually cause cell death (Rizzuto et al., 2009). Brini’s group was
the first to show that α-syn is involved in the regulation of calcium
homeostasis by altering the ER-mitochondria communication
(Calì et al., 2012). Hodge and Colombini (1997) show that VDAC,
a voltage-dependent calcium channel that controls mitochondrial
calcium levels and mitochondrial function (and is localized in
MAM), is decreased in nigral neurons positive for α-syn. Finally,
recent evidence shows that increased Parkin expression improves
calcium transfer through MAM; implying that Parkin mutations
that cause PD could be detrimental for maintaining healthy levels
of calcium (Calì et al., 2013).

Oxidative stress has been considered one of the main
factors in the pathogenesis of PD (Kidd, 2000; Jenner, 2003).
Increased levels of lipid hydroperoxydes have been found in
SNpc and midbrain from PD patients (Yoritaka et al., 1996).
Indeed, oxidative damage, lipoxidation of proteins like α-syn
and oxidative DNA damage have been found in early-stages of
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PD (Dalfó et al., 2005), indicating a role for oxidative stress in
the disease. As a response to this insult, it has been suggested
that the SNpc suffers an increase in the turnover of membrane
phospholipid synthesis that may be behind the specificity of
neuronal death in the SNpc in PD (Ross et al., 2001). Again, the
results point to an early imbalance in a very basic function of
the cell, as it is the phospholipid transfer, controlled by MAM
membranes that, over time, cause a disabling neurodegenerative
process.

It is also well known that ER-mitochondria connections
regulate mitochondrial dynamic processes (Csordás et al., 2006;
Hayashi et al., 2009; Friedman et al., 2011; Rowland and Voeltz,
2012). It has been previously described that mutations in α-
syn increase mitochondrial fragmentation (Kamp et al., 2010;
Nakamura et al., 2011). Correlating this to MAM dysfunction, we
have confirmed this fragmented phenotype in our mutant cells
(Guardia-Laguarta et al., 2014). Nevertheless, it is possible that
the fragmentation observed when α-syn is mutated is not due to
defects on the fusion/fission mitochondrial machinery but rather
to MAM alteration (Guardia-Laguarta et al., 2014).

Next, autophagy, a strictly regulated mechanism, is altered in
PD (Chinta et al., 2010). Actually, PINK1 and Parkin, are known
to be part of the mitochondrial autophagy cascade, or mitophagy.
There is also evidence of the relation of α-syn with mitophagy:
first it was described that transgenic animals expressing A53T
α-syn present alterations in mitophagy (Chinta et al., 2010).
The same result was found in yeast expressing wild-type α-
syn (Sampaio-Marques et al., 2012). Interestingly, it has been
reported that the autophagosomes, a key step during autophagy
pathway, are formed at the MAM boundaries (Hamasaki et al.,
2013).

Finally, consistent with other authors (Calì et al., 2012), our
results suggest that pathogenic mutations result in a lower binding
of α-syn to MAM. Therefore, it is possible that a certain amount
of wild-type α-syn is necessary to maintain normal function, and
so, mutation in α-syn does not cause a toxic gain-of-function, but
rather a loss of “relevant” function in mitochondrial morphology
maintenance and in some of the main MAM functions.

FUTURE QUESTIONS
While we believe that our data help create a new way of thinking
about PD pathogenesis, many questions need further research to
properly address this new “MAM hypothesis”.

First, α-syn was initially described as a protein with a
perinuclear and pre-synaptic dual localization, hence the name.
The perinuclear localization is in agreement with our data because
MAM, as part of the ER, is known to be enriched around the
nucleus (de Brito and Scorrano, 2010). However, in order to
satisfy both the pre-synaptic and this new MAM localization,
the ER-mitochondria domains should also be present at these
synaptic terminals. Notably, some authors have shown that ER-
mitochondrial connections (McNulty, 1980) and known MAM
markers (Mavlyutov et al., 2012) can be found closely juxtaposed
to synaptic membranes. Moreover, similar connections between
ER and mitochondria were also observed in ganglion cell
membranes close to nerve endings (Watanabe and Burnstock,
1976; Taxi and Eugène, 1995).

Second, our data does not address the question of whether
the toxic effect of α-syn is due to its aggregation tendency or to
its soluble state, or caused by the overexpression of the protein
(Narhi et al., 1999; Goldberg and Lansbury, 2000; Ostrerova-Golts
et al., 2000). Furthermore, none of the experiments carried out
reveal any aggregation of α-syn in dopaminergic cells lines or
tissues. It may well be that only monomeric α-syn in MAM initiate
the cascade of events that ultimately leads to mitochondrial
dysfunction and dopaminergic cell loss. Equally possible is that
α-syn binding to MAM triggers the aggregation of this protein
into oligomers.

Finally, our work focuses only on the relationship between α-
syn and MAM. Whether MAM dysfunction is an event also related
to mutations in other PD genes requires additional investigation.
Nonetheless, cellular symptoms caused by pathogenic mutations
in these other genes are practically identical to those provoked by
mutations in α-syn.

CONCLUSIONS
Our data suggest that MAM alteration may play an important
role during the progression of PD pathology as an early
event that may cause an imbalance in basic functions of
the cell. Our “MAM hypothesis” helps reconcile many
of the cellular symptoms seen in PD over time, such the
accumulation of unhealthy mitochondria, altered autophagy,
dysfunctional calcium levels, increased lipid droplets, and
altered phospholipid species that lead to neurodegeneration.
In addition, the localization of α-syn in MAM may help
reconcile questions regarding the role of both the ER and
mitochondria in the pathogenesis of PD, and may explain
some of the features of DA neuron degeneration, i.e.: the
deregulation of calcium homeostasis and mitochondrial
dysfunction.

We hypothesize that a more detailed study of other functions
that are located in MAM will reveal other alterations related to
PD progression and that MAM alteration could be a good pre-
symptomatic predictor of future PD pathology.
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