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ERV~ cells display a number of unusual properties 
which are generally viewed as adaptations to their 
extreme length and regional specialization. The 

dense and highly organized neurofilament (NF) ~ and micro- 
tubule (MT) arrays which serve to support nerve axons pro- 
vide one example; another is the phenomenon of axonal 
transport, by which macromolecules synthesized in the cell 
body move outward along the axon in several relatively dis- 
crete components with widely different velocities (3, 22, 32, 
95; Fig. 1). During the 1970s, a crucial connection was made 
between these two properties of nerve cells by the demon- 
stration that the slowest moving component of axonal trans- 
port (called slow component a [SCa]) conveys primarily 
tubulin and the three proteins comprising NFs (18, 23, 27, 33, 
41, 52, 78, 96). This was achieved by a synthesis of the bio- 
chemical and ultrastructural data available at that time; since 
then, intensive study of neuronal cytoskeletal proteins has 
generated a succession of models of their transport, assem- 
bly, and turnover (39, 43, 58, 83, 93, 94). Recently, a number 
of studies have indicated that the components and interac- 
tions of the neuronal cytoskeleton may be more complex than 
previously thought. This review will attempt to evaluate 
whether current models are sufficient to accommodate the 
results of radiolabeling studies of axonal transport, ultra- 
structural studies, and recent work on the dynamics of the 
MT and NF systems. The principal questions to be addressed 
are (a) in what state are cytoskeletal proteins transported in 
axons; (b) how are their assembly and interactions regulated; 
and (c) in what region or regions of the axon does assembly 
of the cytoskeleton occur? 

The State of Moving Cytoskeletal Proteins 
Studies by Lasek and co-workers (7, 27, 78, 86) concerning 
the protein composition and transport behavior of SCa 
provided the first hypothesis about the state in which cyto- 
skeletal proteins are transported in axons. They identified 
NF protein and tubulin as the principal components of SCa, 
and determined that their transport velocities were similar 
(27, 41). This apparent coordinated transport of cytoskeletal 
proteins, their restriction to relatively coherent waves, and 
electron microscopic evidence suggesting that axonal MTs 
and NFs were highly cross-linked (26, 54, 79, 92, 98) led 
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them to propose that cytoskeletal proteins in the SCa wave 
traveled down the axon as a cross-linked matrix of assembled 
MT and NF polymers (7, 11, 40, 43, 86). A number of subse- 
quent studies have compelled modification of this "moving 
matrix" model by demonstrating that the axonal cytoskeleton 
is neither continuous nor stably cross-linked. The presence 
of major discontinuities and asymmetries in the axonal cyto- 
skeleton, such as breaks at nodes of Ranvier (85), and proxi- 
modistal gradients in the number of MTs and NFs (61, 99), 
makes it unlikely that the continuous elaboration of an as- 
sembled matrix can account for axonal ultrastructure. Fur- 
thermore, two types of data indicate that connections be- 
tween MTs and NFs revealed by electron microscopy are 
actually weak or transient. First, it is now clear that tubulin 
and NF protein are transported neither coordinately nor in 
nonspreading waves in most neurons. Rather, the relative ve- 
locities and distributions of these proteins during axonal 
transport seem to be highly variable between different types 
of neurons (16, 19, 53, 55, 61, 65, 68, 84); in particular, in 
the axons of most peripheral nerves, tubulin is transported 
at two different velocities, only one of which corresponds to 
SCa. A second line of evidence comes from observations of 
the rapid axonal transport of membrane-bounded organelles 
which indicate that they can pass with little hindrance through 
axoplasm (1, 13, 42), despite its impenetrable appearance 
when viewed by electron microscopy (26, 79). These con- 
siderations have led to the suggestion that cytoskeletal pro- 
teins travel in the form of individual, sliding MT and NF 
polymers, assembled but not stably cross-linked (39, 94). 
This model is attractive not only because it can account for 
a large body of radiolabeling studies on SCa and for the rela- 
tive insolubility of its components (discussed below), but 
also because filament sliding, albeit more rapid, is a familiar 
phenomenon from ciliary and muscle motility. 

Both of the above models presume that most, if not all, of 
the cytoskeletal protein in axons is moving. However, recent 
studies of slow axonal transport in the optic tract suggest 
that, at least in some neurons, the majority of NF protein 
may be in an effectively stationary form. Nixon and Log- 
vinenko (61) have followed the procession of radiolabeled NF 
protein down the optic tract, with particular attention to the 
distribution and half-life of the labeled protein left behind as 
the SCa wave exits this region. (This trailing component is 
apparent in many studies of SCa, but insufficient experimen- 
tal precision and resolution have prevented its analysis until 
recently.) They find that one third of the NF protein entering 
the tract is deposited in a pool which disappears from axons 
much more slowly than the SCa wave. Because of its longer 
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Figure 1. A schematic description of how the different velocity com- 
ponents of axonal transport can be resolved into relatively discrete 
waves of anterogradely moving radioactivity. After application of 
labeled amino acids to the region of the neuronal cell bodies (a) and 
a short delay for protein synthesis to occur, the components of fast 
transport, vesicles (200-400 mm/d) and mitochondria ("~50 
mm/d), move down the axon (b). Days to weeks later, moving at 
a velocity which is approximately two orders of magnitude slower, 
two additional components become apparent (c): slow component 
b (SCb, 2-8 mm/d), the faster of the two, has a complex protein 
composition which includes actin and, in some axons, tubulin; SCa 
(SCa, 0.2-1 mm/d), the slower, contains mainly tubulin and NF 
protein. The polypeptide composition of the different components 
can be determined by excising the appropriate segment of the nerve 
at an appropriate interval after labeling, and performing electropho- 
resis and fluorography. This technique for analyzing axonal trans- 
port is described in detail in reference 12. 

residence time, this pool should actually represent the ma- 
jority of NF protein in these axons at steady state. In addi- 
tion, the stationary pool of NF protein is distributed non- 
uniformly along axons, its density increasing distally in a 
pattern that closely parallels the gradient of filament density 
seen in ultrastructural analysis of optic tract axons. These 
data have given rise to a model of the NF cytoskeleton in 
which a nonuniform and essentially stationary network is 
maintained by NF protein conveyed by SCa (58, 61). Three 
aspects of this model are significant: first, it accounts for 
both the structural stability and plasticity of form of the ax- 
onal cytoskeleton, a stationary infrastructure providing the 
former and SCa the latter; second, it suggests a potential 
regulatory role for the complex posttranslational modifica- 
tions of NF protein (discussed below); and third, it places 
no constraints upon the form of the moving component of NF 
protein; i.e., it need not be polymer, since the polymer visi- 
ble by electron microscopy can be accounted for by the sta- 
tionary component. 

Recent work by Weisenberg and colleagues suggests that 
a nonpolymeric, motile form of cytoskeletal protein may ex- 
ist in neurons (89-91). They have isolated particulate struc- 

tures from brain MT preparations which, like SCa, are com- 
posed primarily of insoluble tubulin and NF protein. These 
particles, designated SCAPs, have an associated microtu- 
bule-stimulated ATPase activity (20) and show ATP-depen- 
dent movement along MTs in vitro at velocities comparable 
to those of SCa in vivo. Isolated SCAPs are irregular globu- 
lar structures 20 nm in diameter; although there is no direct 
evidence that SCAPs exist in vivo, similar particles have 
been seen in association with MTs in ultrastructural studies 
of squid axoplasm (38). Weisenberg et al. (90, 91) propose 
that the movement of SCAPs along axonal MTs in vivo could 
account, fully or in part, for the SCa wave of transport. In 
their view, SCAP particles could convey cytoskeletal pro- 
teins along axons in a closely associated but nonpolymeric 
form; the proteins could then be released and incorporated 
into the cytoskeleton in distal regions of the axon, perhaps 
by covalent modification. 

Post translat ional  Modi f ica t ion  o f  
Cytoske le ta l  Prote ins  

Both tubulin and NF protein undergo posttranslational mod- 
ifications which undoubtedly play a role in regulating the dy- 
namics of the axonal cytoskeleton. The major modification of 
NF proteins is phosphorylation (17, 28, 29, 71, 80), involving 
several protein kinases (31, 46, 70, 76, 77, 81) and occurring 
on the tail regions of NF subunits which extend from the wall 
of the filament (30). Immunocytochemical and biochemical 
studies have shown that NF phosphorylation has a pronounced 
regional heterogeneity: unphosphorylated NF proteins are 
mainly confined to the region of the cell body, while phos- 
phorylated forms are largely restricted to axons (5, 72, 82). 
Although substantial phosphorylation of NF proteins occurs 
in the vicinity of the cell body soon after synthesis (10, 63), 
it is clear that there is additional phosphate added during 
subsequent axonal transport (5, 21, 59, 60, 62, 64). In con- 
cert with dephosphorylation in the axon, this results in a net 
gain of phosphate by the high and middle molecular weight 
NF subunits, and extensive turnover of phosphate groups on 
the middle and low molecular weight subunits during their 
transport (49, 59). A possible role for axonal phosphoryla- 
tion has been suggested by recent studies of the transport of 
the high molecular weight NF subunit in optic tract axons 
(49). Here four differentially phosphorylated forms of this 
subunit can be resolved, and they show different transport 
behavior; the least phosphorylated form predominates in the 
moving SCa wave, while the highly phosphorylated forms 
are left behind in the trailing, stationary NF component. This 
suggests that phosphorylation may regulate the transition of 
NF protein from a moving to a stationary phase, and that the 
turnover of NF-bound phosphate in axons may reflect an 
equilibrium between these two components. 

Tubulin is subject to two forms of posttranslational mod- 
ification of the c~-subunit which are thought to be important 
for MT dynamics: acetylation (45, 50, 51, 73) and removal 
of the carboxy-terminal tyrosine (2, 37, 75). Although nei- 
ther modification is coupled to MT assembly, much evidence 
suggests that MTs containing tubulin which is acetylated or 
detyrosinated (or both) are more stable, and that modified 
tubulin is likely to be part of a stable or long-lived polymer 
(15, 25, 36, 44, 50, 74, 87, 88). In neurons, acetylation oc- 
curs throughout the cell bodies and neurites and specific anti- 
bodies reveal a uniform distribution of acetylated tubulin 
along neurites (6), despite some evidence that modification 
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occurs progressively during transport (14). However, immu- 
nocytochemical studies of actively elongating neurons in cul- 
ture have shown that the growth cone region contains pre- 
dominantly unmodified a-tubulin; i.e., neither acetylated 
nor detyrosinated (76). It is unclear whether this tubulin has 
been transported to the distal region of neurites in unmod- 
ified (and presumably nonpolymeric) form, or whether it has 
arrived there in modified form and been locally deacetylated 
and retyrosinated. The resolution of this question, and of the 
role which posttranslational modification plays in axonal 
transport of tubulin, requires determination of the sites of as- 
sembly of the cytoskeleton in neurons. 

Sites o f  Assembly  

Our picture of the neuronal cytoskeleton depends critically 
upon where assembly of subunits into polymer occurs: as- 
sembly in the vicinity of the cell body would be consistent 
with transport of polymers, while assembly elsewhere in the 
axon implies that subunits could be conveyed to distal sites 
in nonpolymeric form. A body of indirect evidence favors as- 
sembly of both MTs and NFs near the cell body. Most of the 
tubulin ('~75%) and NF protein (>90%) in axons is insolu- 
ble in buffers which stabilize polymer (9, 10, 56, 57), and 
kinetic studies using pulse-labeled neurons in culture have 
shown that the majority of tubulin and NF proteins enter an 
insoluble form soon after synthesis (10), probably before 
they have traveled a significant distance along the axon (8). 
However, studies of developing neurons have suggested that 
substantial MT assembly occurs distally, far from the cell 
body (4, 35, 47), and involves a component of tubulin which 
may never have been polymerized (76). Both kinds of data 
could be explained by a combination of MT transport and 
MT lability, in which free tubulin would arise in distal re- 
gions of the axon by local depolymerization of MTs, perhaps 
accompanied or regulated by retyrosination and deacetyla- 
tion. An alternative explanation would be the presence of an 
insoluble but nonpolymeric form of motile cytoskeletal pro- 
tein; as discussed above, such a form exists (90, 91). 

The recent development of techniques for directly observ- 
ing the movement of cytoskeletal proteins in axons may re- 
solve this question. By microinjecting tubulin monomer con- 
jugated with fluorescent dye into cultured neurons, it has 
proven possible to observe the axonal transport of tubulin at 
velocities very similar to those predicted by radiolabeling 
studies of mature nerve (34). In a high resolution variant of 
this technique, Okabe and Hirokawa (69) have introduced la- 
beled tubulin and then located it by light and electron micros- 
copy at various stages in its transport. They resolve two 
waves of moving tubulin, the faster of which is soluble in 
polymer-stabilizing buffer. Labeled tubulin belonging to the 
slower moving, insoluble component is seen at the ultra- 
structural level only at the distal, "plus" ends of MTs in the 
region containing the wave, This would not be expected if as- 
sembly of the exogenous tubulin occurred near the cell body; 
in that case, MTs would contain labeled tubulin proximally 
or over their entire length. Thus, these results argue that 
tubulin has moved down the axon in a nonpolymeric form, 
and has been added to the distal ends of existing, moving 
MTs. Additional studies using direct visualization tech- 
niques of this type should help to determine the exact rela- 
tionship between the assembly and transport of tubulin, and 
possibly NF protein as well. 

Figure 2. The evidence reviewed in the text gives rise to the follow- 
ing interpretation of the transport and dynamics of cytoskeletal pro- 
teins in axons. (A) Soon after synthesis, NF protein attains an in- 
soluble polymeric or oligomeric form and moves down the axon in 
equilibrium with a much slower moving or stationary pool of poly- 
mer. The transition between the moving and stationary pool may 
be governed by the phosphorylation state of NF protein; phosphate 
turnover on NF protein suggests that the process may be reversible. 
(B) Tubulin travels in two velocity components: a faster moving, 
soluble, dimeric or oligomeric component; and a slower moving, 
polymeric component. The equilibrium between these components 
involves the addition of subunits to the distal, "plus" ends of moving 
MTs. Soon after polymerization, many axonal MTs become hyper- 
stable (denoted by shading) due to postttranslational modification 
of subunits and/or the acquisition of MT-associated proteins. 

Perspective 

After years of analysis of the axonal transport of cytoskeletal 
proteins by many workers, there can be little doubt of the 
strength of the hypothesis that proteins travel in coherent 
waves because they comprise specific subeellular structures 
(7, 27, 40, 43, 48). But which, if any, of the structures that 
are seen in the electron microscope represents the moving 
form of cytoskeletal protein? Although static images reveal 
a cross-linked MT-NF lattice, and a moving lattice once 
seemed a likely model, we now know that this is almost cer- 
tainly not the form in which cytoskeletal proteins travel along 
the axon. It is now attractive, and consistent with much in- 
direct evidence, to conclude that individual polymers are the 
moving forms of tubulin and NF protein. The recent studies 
discussed above suggest that this is probably correct but in- 
complete: not all that's polymer need move, and not all that 
moves need be polymer (see Fig. 2). It seems increasingly 
likely that the transport of the neuronal cytoskeleton involves 
more than one motility phenomenon, and several forms of 
regulation. In addition, the synthesis, transport, and ar- 
rangement of tubulin and NF protein differ widely between 
different neurons (53, 65, 68); between different processes of 
the same neuron (24, 66, 67); and between the same pro- 
cesses in development, regeneration, or maturity (24, 67, 
94, 97). In view of this, it is no surprise that workers study- 
ing different systems observe and emphasize different phe- 
nomena. In neurons as elsewhere, ultrastructure is generated 
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by a combination of intracellular motility and self-assembly; 
it is probable that diverse structures result in part from differ- 
ently organized and regulated forms of transport. 
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