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Background: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths 
globally. Current treatments often do not fully meet efficacy and quality of life expectations. Traditional 
Chinese medicine (TCM), particularly the Yiqi Sanjie formula, shows promise but lacks clear mechanistic 
understanding. This study addresses this gap by investigating the therapeutic effects and underlying 
mechanisms of Yiqi Sanjie formula in NSCLC.
Methods: We utilized network pharmacology to identify potential NSCLC drug targets of the Yiqi Sanjie 
formula via the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Compounds 
with favorable oral bioavailability and drug-likeness scores were selected. Molecular docking was conducted 
using AutoDock Vina with structural data from the Protein Data Bank and PubChem. Molecular dynamics 
(MD) simulations were performed with Desmond Molecular Dynamics System, analyzing interactions up to 
500 nanoseconds using the OPLS4 force field. ADMET predictions were executed using SwissADME and 
ADMETlab 2.0, assessing pharmacokinetic properties.
Results: Using network pharmacology tools, we performed Search Tool for the Retrieval of Interaction 
Genes/Proteins (STRING) analysis for protein-protein interaction, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) for pathway enrichment, and gene ontology (GO) for functional enrichment, identifying 
crucial signaling pathways and biological processes influenced by the hit compounds bifendate, xambioona, 
and hederagenin. STRING analysis indicated substantial connectivity among the targets, suggesting 
significant interactions within the cell cycle regulation and growth factor signaling pathways as outlined 
in our KEGG results. The GO analysis highlighted their involvement in critical biological processes such 
as cell cycle control, apoptosis, and drug response. Molecular docking simulations quantified the binding 
efficiencies of the identified compounds with their targets—CCND1, CDK4, and EGFR—selected based 
on high docking scores that suggest strong potential interactions crucial for NSCLC inhibition. Subsequent 
MD simulations validated the stability of these complexes, supporting their potential as therapeutic 
interventions. Additionally, the novel identification of ADH1B as a target underscores its prospective 
significance in NSCLC therapy, further expanded by our comprehensive bioinformatics approach.
Conclusions: Our research demonstrates the potential of integrating network pharmacology and 
computational biology to elucidate the mechanisms of the Yiqi Sanjie formula in NSCLC treatment. The 
identified compounds could lead to novel targeted therapies, especially for patients with overexpressed 
targets. The discovery of ADH1B as a therapeutic target adds a new dimension to NSCLC treatment 
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Introduction

In recent years, primary lung cancer has become a 
leading cause of cancer-related deaths worldwide (1), with 
high incidence and mortality rates. Statistics show that 
approximately 350 people die from lung cancer each day, 
which is nearly 2.5 times the number of deaths from the 
second leading cause of cancer-related deaths (colorectal 

cancer) (2). Lung cancer can be classified into two main 
types based on histopathology: small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC 
is the most common type of lung cancer in clinical practice, 
accounting for approximately 82% of all lung cancer  
cases (3). Patients with NSCLC have a poor prognosis, with 
a 5-year survival rate of only 26% (4). Although Western 
medicine has shown promising results in the treatment 
of lung cancer, it also incurs problems that undermine 
the benefits of treatment. These problems include drug 
toxicities and side effects, drug resistance, and tumor 
recurrence (5), which not only significantly weaken the 
effectiveness of anti-tumor therapies but also lead to a 
drastic decrease in patients’ quality of life. Therefore, 
the combination of modern and traditional medicine has 
become the best choice and an inevitable trend for the 
future.

Yiqi Sanjie formula is widely used in the clinical practice 
including the treatment of lung neoplasm (6). This 
formulation is regularly used in the Traditional Chinese 
Medicine (TCM) department of Shanxi Provincial Cancer 
Hospital. Its combined use with Changchun Ruibin and 
platinum has been widely recognized for its therapeutic 
effect (7). However, the molecular mechanisms of its action 
against NSCLC are not yet fully understood.

TCM network pharmacology (8) evaluates therapeutic 
potential of Chinese herbal compounds by screening for the 
potentially affected disease-related genes, predicting their 
targets and potential pharmacological effects and revealing 
the potential association between drug-gene-disease. 
Previous study has shown that TCM has the characteristics 
of “multiple components, multiple targets, and multiple 
pathways” (9). Computational methods are often used 
to propose the interplay between TCM compounds and 
human disease genes by prediction their mechanism 
of action (10-12). In this study, we utilized network 
pharmacology to identify potential targets of the active 
compounds in Yiqi Sanjie formula. Furthermore, in silico 

strategies. Further studies, both in vitro and in vivo, are needed to confirm these computational findings and 
advance these compounds towards clinical trials.
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Highlight box

Key findings
•	 The study successfully identified three stable drug-target 

combinations (CCND1-bifendate, CDK4-xambioona, and EGFR-
hederagenin) through molecular docking, dynamic simulation, 
and absorption, distribution, metabolism, excretion, and toxicity 
analysis, highlighting potential anti-non-small cell lung cancer 
(NSCLC) effects of the Yiqi Sanjie formula.

•	 Molecular dynamic simulation with site-directed mutagenesis 
further explored the structure-activity relationship between 
Bifendate and key residue sites, providing new insights into 
NSCLC targeted therapy.

What is known and what is new?
•	 The therapeutic efficacy of traditional Chinese medicine (TCM), 

specifically Yiqi Sanjie formula, in alleviating NSCLC symptoms is 
recognized, yet its molecular mechanisms of action were not fully 
understood.

•	 This manuscript adds comprehensive computational insights 
into the potential mechanisms of Yiqi Sanjie formula in NSCLC 
treatment, identifying specific drug-target interactions and 
proposing new avenues for targeted therapy development.

What is the implication, and what should change now?
•	 The findings suggest a significant step forward in integrating TCM 

with modern computational biology approaches to unveil novel 
therapeutic targets and strategies for NSCLC treatment.

•	 These insights advocate for a shift towards more personalized 
and mechanistic-based approaches in the development of TCM 
therapies for cancer, emphasizing the need for further experimental 
validation and clinical trials to confirm these computational 
predictions and their therapeutic potential.
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methods such as molecular docking, molecular dynamics 
(MD) simulations, absorption, distribution, metabolism, 
excretion, toxicity (ADMET) and chemical frequent hitter 
(ChemFH) predictive tools were employed to identify key 
compounds with the therapeutic potential. We present 
this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-972/rc).

Methods

Compounds retrieval and genes collection

The list of active ingredients present in the Yiqi Sanjie 
formula was systematically identified using the Traditional 
Chinese Medicine Systems Pharmacology (TCMSP) 
database (13). This database employs a hybrid approach, 
combining quantitative computational predictions with 
qualitative historical data on herbal components, to screen 
for compounds with significant pharmacological potential. 
For this study, compounds, listed in Supplementary l, 
were filtered based on a quantitative threshold for oral 
bioavailability (OB) ≥30% and drug-likeness (DL) ≥0.18, 
ensuring that only bioactive constituents with substantial 
potential for effective drug development were considered (14).

The GeneCards (https://www.genecards.org/) (15) and 
Online Mendelian Inheritance in Man (OMIM; https://
omim.org/) (16) databases were searched with a relevance 
score of at least 20 to identify potential targets for NSCLC. 
The genes of targets associated with Yiqi Sanjie formula 
found in TCSMP and genes related to NSCLC as indicated 
in GeneCards were analyzed to identify overlapping targets 
between bioactive constituents and diseases, which allowed 
the prediction of the pharmacological effects of Yiqi Sanjie 
formula on NSCLC. Venn diagrams of the intersection 
were created using the network analysis software Venny 
2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/), and the 
number of overlapping genes was computed automatically. 
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Protein-protein interaction (PPI) network analysis

Potential target genes were imported into the Search Tool 
for the Retrieval of Interaction Genes/Proteins (STRING) 
database (https://cn.string-db.org/) (17) to construct a PPI 
network, which was analyzed using Cytoscape 3.7.2 (18) to 
calculate the degree values of the nodes. The node size and 

color were set according to their degree values, whereas the 
edge thickness and color were set based on the combined 
score. The CytoNCA plugin (19) was used to calculate 
betweenness centrality (BC) and adjust the network layout 
according to its value.

Gene ontology (GO) enrichment analysis

To establish a logical framework for gene functions and 
annotations (20), GO enrichment analysis was employed 
in this study. The Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) database (https://david.
ncifcrf.gov/) (21) was utilized with the “Homo sapiens” 
setting for the organism and a significance threshold of 
P<0.05 (22). Changes in genetic functions were observed in 
terms of molecular function (MF) and biological processes 
(BP), which respectively refer to genes that regulate 
molecular activity and biological procedures achieved 
through genetic programs (23). Additionally, the potential 
of Yiqi Sanjie formula for affecting the genetic function 
related to treating NSCLC was demonstrated by calculating 
the number of genes involved in each GO function.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis

The KEGG analysis could provide information on pathways 
of NSCLC and the pharmacological effects of Yiqi Sanjie 
formula. DAVID database (https://david.ncifcrf.gov/) was 
also used for KEGG enrichment (24) analysis and to merge 
KEGG pathways to construct a functional and efficient 
pathway network (25). The enrichment was performed in 
the organism setting to “Homo sapiens”, with a threshold 
value of P<0.05. 

Molecular docking

Key protein targets critical to NSCLC pathogenesis, such 
as CCND1, CDK4, and EGFR, were selected for molecular 
docking based on their roles in cell cycle regulation and 
growth factor signaling. These targets were identified 
through integrated network pharmacology analyses, 
utilizing STRING for PPIs, KEGG for pathway insights, 
and GO for functional importance. The three-dimensional 
structures of proteins and corresponding natural compounds 
were sourced from UniProt (https://www.uniprot.org/) (26) 
and Pubchem (https://pubchem.ncbi.nlm.nih.gov/) (27), 
respectively. AutoDock Tools 1.5.2 (28). facilitated structure 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-972/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-972/rc
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https://david.ncifcrf.gov/
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processing, which included the removal of natural ligands 
from the protein structures to prepare them for docking 
with the identified compounds from the Yiqi Sanjie formula. 
The GetBox Plugin.py (https://github.com/MengwuXiao/
GetBox-PyMOLPlugin/blob/master/GetBox%20Plugin.
py) calculated docking box parameters, ensuring targeted 
and efficient docking simulations. Docking was executed 
with AutoDock Vina 1.2.3 (29) using default settings (30), 
and the results were quantitatively evaluated and visually 
represented in a heat map. The most promising docking 
poses were visualized using PyMol 2.5.5 (https://pymol.
org/2/) (31) and PLIP (32). Detailed information about 
key targets, PDB IDs, and docking box parameters can 
be found in Supplementary 2, providing a comprehensive 
resource for further verification and replication of the 
docking simulations. This systematic approach underscores 
a focused exploration of potential therapeutic interventions 
targeting crucial molecular interactions in NSCLC.

MD simulations

MD simulations were conducted using Desmond 2022-4 
(https://www.deshawresearch.com, academic license) (33) to 
investigate protein-ligand interactions. Protein preparation 
wizard tool was used to prepare proteins for simulation by 
adding hydrogen atoms and setting protonation states of 
ionizable groups. The molecular systems for simulations 
were constructed using the System Builder module by 
assigning OPLS4 force field (34) parameters to the protein 
and ligand. The protein-ligand complexes was solvated 
into a cubic box with the size 10 Å larger that the protein-
ligand complexes in all directions. The appropriate number 
of water molecules as well as Na+ and Cl− ions were added 
to neutralize the charges of systems. The water molecules 
were represented using TIP3P model. The simulation 
protocol included energy minimization, NVT simulation 
(constant temperature, constant volume) followed by NPT 
(constant temperature, constant pressure) simulation to 
equilibrate system, each for 50,000 time steps of 1 ps. A 
500 ns production run MD simulation was then performed 
for each complex at 300 K and 1.0 atm, with energy and 
coordinate saving every 50 ps. The resulting trajectories 
were analysed using Maestro software (Schrödinger Release 
2024-2: Maestro, Schrödinger, LLC, New York, NY, 2024). 

ADME property assessment and lead filtering

Pharmacokinetic properties of compounds were evaluated 

using SwissADME (35) and ADMETlab 2.0 (36), which 
assessed absorption, distribution, metabolism, and excretion 
(ADME). The synthetic accessibility of compounds was 
determined using a graph attention-based assessment 
(GASA) tool (37). To filter out aggregators from potential 
lead molecules, ChemAGG (38) was utilized. In addition, 
ChemFluo (39) was used to filter out compounds that are 
known to interfere assays, including blue/green fluorescent 
compounds, aggregates, Fluc inhibitors, chaotic compounds, 
chemoreactive compounds, and other detection interference 
compounds.

Results

Identification of potential Yiqi Sanjie formula targets in 
NSCLC

The identification and analysis of potential therapeutic 
targets is a crucial step in drug discovery (40). In this study, 
the detailed analyses revealed 225 potential targets of the 
Yiqi Sanjie formula 225 and 495 NSCLC-related targets 
with 25 common targets (Figure 1A), such as CCND1 (PDB 
ID: 2w96), CDK4 (PDB ID: 7sj3), EGFR (PDB ID: 1m14) 
and MET (PDB ID: 1r0p) (Figure 1B). 

Interestingly, in the PPI network of 25 target genes, 
ADH1B was found isolated without edges that could indicate 
possible PPI with other targets in the set (Figure 1B).  
ADH1B encodes a protein belonging to the alcohol 
dehydrogenase family, which plays a crucial role in 
metabolizing various substrates including ethanol, retinol, 
and other alcohols, crucial for detoxifying lipid peroxides 
and aldehydes. This protein is composed of multiple 
isozymes formed by homologous α, β, and γ subunits, 
highly active in ethanol oxidation (41). Given the link 
between ethanol metabolism and increased risk of cancer 
development, ADH1B’s activity in ethanol catabolism may 
influence carcinogenic processes, potentially impacting 
NSCLC development (42). Recent findings underscore the 
utility of ADH1B expression levels as prognostic biomarkers 
in NSCLC, suggesting that higher expression correlates 
with more favorable outcomes. This correlation invites 
hypotheses that ADH1B’s metabolic roles might affect 
tumor microenvironment or influence tumor progression 
pathways in NSCLC (43). Further research is necessary to 
elucidate the specific mechanisms by which ADH1B impacts 
NSCLC pathology and to explore the potential of targeting 
ADH1B as a therapeutic approach. Such study could reveal 
novel strategies for improving NSCLC prognosis and 

https://github.com/MengwuXiao/GetBox-PyMOLPlugin/blob/master/GetBox%20Plugin.py
https://github.com/MengwuXiao/GetBox-PyMOLPlugin/blob/master/GetBox%20Plugin.py
https://github.com/MengwuXiao/GetBox-PyMOLPlugin/blob/master/GetBox%20Plugin.py
https://pymol.org/2/
https://pymol.org/2/
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Figure 1 Network pharmacological analysis. (A) Venn diagram identifies intersection targets of drug and disease. (B) Protein interaction 
network diagram. (C) Biological processes enrichment analysis bubble chart of the top ten in GO. (D) Molecular functional enrichment 
analysis bubble chart of the top ten in GO. (E) Top 20 enriched KEGG terms bubble chart. NSCLC, non-small cell lung cancer; GO, gene 
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. ATP, adenosine triphosphate; UV-A, ultraviolet A; BP, biological processes; 
MF, molecular function; MAPK, mitogen-activated protein kinase; AGE, advanced glycation end-products; EGFR, epidermal growth factor 
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treatment, affirming the importance of ADH1B not only in 
metabolic processes but also in cancer biology (44).

GO analysis of potential therapeutic targets in NSCLC

To gain insight into the potential biological functions of 
NSCLC-related targets, GO enrichment analysis and 
KEGG pathway analysis were performed. Results from the 
top ten items of BP and MF of GO analysis showed that 
the 25 overlapping targets were mainly involved in signal 
transduction, transcriptional regulation, and apoptosis, as 
shown in Figure 1C,1D. 

Signal transduction, transcriptional regulation, and 
apoptosis play important roles in the development and 
progression of NSCLC (45). Aberrant signaling pathways 
can lead to abnormal proliferation, invasion, and metastasis 
of tumor cells (46), whereas alterations in transcription 
factors and their regulatory networks can result in aberrant 
gene expression (47). Apoptosis is a crucial self-protective 
mechanism that can eliminate abnormal cells (48).  
Unfortunately, the exact relationship between these 
three MFs and NSCLC is not fully established and 
requires further investigation. However, previous study 
has shown that PPIs and molecular structural changes 
significantly impact tumor cell proliferation, metastasis, and  
apoptosis (49). Further research could reveal the specific 
mechanisms by which these MFs contribute to NSCLC 
development, providing a new theoretical basis for the 
development of novel targeted therapies.

In KEGG analysis, as shown in Figure 1E, the top 20 
pathways were ranked based on the P value, and the results 
revealed that the targets were mainly involved in the PI3K-
Akt signaling pathway, PAPK signaling pathway, AGE-
RAGE signaling pathway in diabetic complications, EGFR 
tyrosine kinase inhibitor resistance, and HIF-1 signaling 
pathway. These pathways are involved in critical cellular 
processes such as cell growth, survival, apoptosis, and 
metabolism, and their dysregulation can promote NSCLC 
pathogenesis. Targeting these pathways has been proposed 
as a promising strategy for the treatment of NSCLC. 
For example, inhibitors of the PI3K-Akt pathway have 
shown potential for use as anticancer agents in NSCLC  
treatment (50), whereas HIF-1 inhibitors have been shown 
to enhance the efficacy of chemotherapy and radiotherapy 
in NSCLC (51). Therefore, understanding the complex 
interplay between these pathways and NSCLC may provide 
new insights into the development of targeted therapies for 
this disease.

Molecular docking Yiqi Sanjie formula compounds against 
selected NSCLC target 

Molecular docking plays a crucial role in the discovery 
process of potential drug candidates that have an affinity 
to drug targets. In this study, molecular docking was used 
to predict the potential binding affinities between Yiqi 
Sanjie formula’s active ingredients and 20 selected targets. 
To reduce computational costs while still enabling the 
convenient plotting of heatmaps, 20 targets were chosen 
instead of 25. This number strikes a balance between 
computational feasibility and sufficient coverage of relevant 
biological pathways. After excluding targets with single-
segment α-helix structures, 18 potential targets were 
identified for further analysis. The top five targets for which 
ligands had the highest affinity were ADH1B, CCND1, 
CDK4, EGFR, and PTGS2, as shown in Figure 2A. 

To better understand the interactions between the 
active ingredients and targets, the five complexes were 
visualized, as shown in Figure 2B and Table S1. It was found 
that hederagenin mainly interacted with EGFR through 
hydrophobic interactions, whereas xambioona interacted 
with CDK4 only through hydrogen bonds, forming a 
relatively simple set of intermolecular interactions. The 
remaining three complexes showed a more balanced 
interaction between the number of hydrogen bonds and 
hydrophobic interactions. Notably, a salt bridge was 
identified in the CCND1-bifendate complex, indicating 
potentially stronger binding stability.

MD simulation of top-scoring ligand-target complexes 

Furthermore, MD simulations with the production run of 
500 ns were performed for the most favorable complexes 
identified from the previous docking simulations, to assess 
the binding stability and duration. Stable and long-lasting 
binding would indicate the stability of the complexes and 
indirectly suggest the inhibitory potential of the small 
molecules (52). Root-mean-square deviation (RMSD) 
analysis, a critical tool for evaluating the stability of drug-
target complex MD simulations, was performed on all five 
complexes. As shown in Figure 3, the ligand fit on protein 
RMSD of EGFR-hederagenin remained stable throughout 
the simulation, indicating a relatively stable binding 
between the two. However, ADH1B-Salvigenin, CCND1-
bifendate, CDK4-xambioona, and PTGS2-xambioona 
showed varying degrees of fluctuations in their ligand fit on 
protein RMSD.

https://cdn.amegroups.cn/static/public/TCR-24-972-Supplementary.pdf
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Figure 3 Dynamics of RMSD of ligand and fit on protein during 500 ns of simulation. (A) ADH1B-salvigenin. (B) CCND1-bifendate. (C) 
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The RMSD analysis revealed that ADH1B-Salvigenin 
and PTGS2-xambioona displayed fluctuations beyond 
an acceptable range, indicating mobility of the ligand 
within the binding site and thus poor stability of these 
drug-target complexes. Moreover, as the KEGG analysis 
revealed ADH1B and PTGS2 were not involved in the 
relevant pathways studied, these two proteins were not 
further analyzed. However, CCND1-bifendate and CDK4-
xambioona exhibited relatively stable protein-ligand 
complexes throughout the latter half of the simulation, 
as evidenced by smaller fluctuations in their RMSD and 
reaching stable plateaus. 

As a new plateau was observed in the last 100 ns of the 
CCND1-bifendate simulation, the simulation was extended 
to 600 ns and there were no further significant changes 
in the RMSD (Figure S1). Additionally, stable hydrogen 
bonds were maintained between bifendate and CCND1 
Ala-16 and Tyr-17 throughout the simulation, indicating 
that the conformational changes did not greatly affect the 
binding between them. The main difference between the 
200–400 ns and 400–600 ns timeframes was the presence 
or absence of interactions with Lys-35 and Asp-158. As the 
simulation time was extended, the proportion of bifendate’s 
interactions with Lys-35 and Asp-158 gradually decreased 
to below 30% at the 400 ns time point. Thus, to improve 
the binding stability of bifendate derivatives to CCND1, 
future efforts could focus on enhancing interactions with 
these two residues. Further targeted mutations are detailed 

in Figure S2, and the results show that all four loci mutated 
to Gly have different degrees of effect on bifendate binding, 
with D158G and A16G having the most significant effect.

Overall, three Yiqi Sanjie components (bifendate, 
xambioona and hederagenin) in complex with their 
respective targets (CCND1, CDK4 and EGFR) were 
considered for further analysis.

Subsequently, MD simulations were performed on 
the three selected targets without ligands. Figure 4 
shows the RMSD changes of the targets before and after 
ligand binding. The results indicated that the protein 
conformations were more stable after ligand binding than 
in the unbound state, as evidenced by the convergence of 
the RMSD changes to varying degrees. Therefore, it can be 
inferred that the three selected compounds enhanced the 
stability of the bound proteins to some extent.

Residue mobility pre- and post-ligand delivery analysis

Assessing the dynamic behavior of ligand-target complexes 
was crucial to understanding how compounds interacted 
with their targets and enhanced stability. Therefore, we 
evaluated the root-mean-square fluctuation (RMSF) 
changes of the targets before and after ligand binding 
during MD simulations. Our findings, as shown in Figure 5,  
revealed that the compounds interacted differently with 
their respective targets and dynamically adjusted the RMSF 
of specific peptide segments.

https://cdn.amegroups.cn/static/public/TCR-24-972-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-972-Supplementary.pdf
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Bifendate binding to CCND1 upregulated the RMSF of 
the peptide segment 167–203, downregulated the RMSF 
of the peptide segments 98–123, and dynamically adjusted 
the RMSF of the peptide segments 9–65 and 215–238. 
Xambioona binding to CDK4 upregulated the RMSF of 
the peptide segments 78–85 and 278–281, downregulated 
the RMSF of the peptide segments 9–22 and 105–113, and 
dynamically adjusted the RMSF of the peptide segments 
35–48 and 253–267 (partially upregulated, partially 
downregulated, and partially unmodified). Hederagenin 
binding to EGFR upregulated the RMSF of the regions 
684–712, 728–738, and 756–764, and downregulated the 
RMSF of the region 848–862.

Based on the analysis presented earlier, it can be inferred 
that bifendate primarily targets the cyclin N-terminal 
of CCND1, although it remains unclear if it affects the 
key binding sites. Additional information, such as mutual 
interaction statistics, would be required for a more 
comprehensive analysis. Xambioona targets the protein 
kinase domain of CDK4, including binding sites 12–20 
and Lys-35. However, the RMSF analysis did not reveal 
any impact on the active site Asp-140 of CDK4, suggesting 
a limited effect on its activity. Hederagenin targets the 

688–704 region of EGFR, which is critical for dimerization, 
phosphorylation, and activation, as well as the protein 
kinase domain, including the active site Asp-837 and 
binding site Asp-855 (53).

Protein-ligands contact analysis of complexes

Estimation of protein interactions provides a measure 
of interaction power between the ligands and the target 
protein. These interactions can be categorized by type and 
summarized, as shown in the plot represented in Figure 6. 
In the case of CCND1-bifendate, as shown in Figure 6A,6B, 
the primary types of interactions were hydrogen bonds and 
water bridges, along with some hydrophobic interactions. 
Through the simulation trajectory, it was observed that 
bifendate maintained stable binding to the active pocket 
of CCND1 by forming hydrogen bonds with key residues, 
including Ala-16 and Tyr-17. These residues are known to 
be important constituents of the CCND1 pocket, which 
further confirms the specificity of bifendate in targeting 
CCND1. The 286–288 region (54-56) that produces 
activity or functional effects on CCND1 after mutation 
is located at the C-terminus, which is typically used for 
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screening allosteric modulators. However, conventional 
inhibitors should still be screened based on the conventional 
druggable pockets. Therefore, it cannot be ruled out 
that bifendate may exert its inhibitory effect on CCND1 
through a binding conformation in this pocket, given that 
multiple compound structures bound to the Ala-16 and Tyr-
17 pocket have been resolved.

In the  case  of  CDK4-xambioona,  as  shown in  
Figure 6C,6D, hydrophobic interactions and water bridges 
played a crucial role in maintaining a stable binding 
conformation between the compound and its target. 
Additionally, ionic interactions and hydrogen bonds also 
contributed to the interaction between the two. Water 
bridges were particularly essential for stabilizing the 
interaction between xambioona and specific residues 
throughout the simulation, indicating that xambioona may 
hinder the activity of CDK4 by blocking ATP binding to 
the protein.

For EGFR-hederagenin, as shown in Figure 6E,6F, 
hydrogen bonds and water bridges were the primary types 
of interactions, along with some hydrophobic and ionic 
interactions. Hederagenin interacted with specific residues 
through hydrogen bonds and water bridges, with nearly 
constant interaction with certain residues throughout 
the simulation. Similar to xambioona, hederagenin also 
impacted the adenosine triphosphate (ATP) binding site of 
EGFR, particularly Lys-721 (57), specifically by blocking 
the binding of ATP to the protein. This suggests that 
hederagenin may limit the activity of EGFR.

Evaluation of ADMET properties for bifendate as a drug 
candidate

Computational evaluation of ADMET properties is a crucial 
step in investigating the safety of drug candidates, as it 
helps to avoid drug adverse reactions and toxicity (52). This 
ADMET characterization is an essential part of the drug 
discovery process since it reduces costs and development 
times in clinical trials (58). The molecular properties of 
three compounds were calculated, such as molecular weight 
(MW) and volume. A radar chart was generated based on 
the theoretical range of drug-like compound properties, 
and compounds outside of this range were eliminated. The 
results, shown in Figure 7, indicate that only bifendate falls 
within the theoretical range of drug-like compounds. The 
log of the octanol/water partition coefficient (LogP) and log 
at physiological Ph 7.4 (LogD) of the other two compounds 
exceed the maximum theoretical value. Additionally, 
xambioona’s MaxRing, the number of atoms in the biggest 
ring, also exceeds the theoretical range, detailed in Table S2.  
Therefore, only bifendate, which conforms to drug-like 
compound properties, was selected for ADMET analysis.

In the realm of medicinal chemistry, bifendate displays a 
promising potential for drug-like properties, as indicated by 
a high QED score of 0.672 and adherence to Lipinski and 
Pfizer rules (59). Furthermore, it possesses a low SA score 
of 2.808, suggesting relative ease of synthesis. Notably, it 
has not been classified as a PAINS compound.

Regarding absorption, bifendate exhibits favorable 
permeability in the Caco-2 intestinal permeability 

CCND1-Bifendate CDK4-Xambioona EGFR-Hederagenin

Upper limit	 Lower limit	 Compound properties Upper limit	 Lower limit	 Compound properties Upper limit	 Lower limit	 Compound properties
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Figure 7 Physicochemical Property Radar chart. The white area is the area that exceeds the theoretical maximum value of each parameter, 
the yellow area is the area that conforms to the range of the theoretical value of each parameter, and the red area is the area that is lower 
than the theoretical minimum value of each parameter.

https://cdn.amegroups.cn/static/public/TCR-24-972-Supplementary.pdf
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model with a value of −4.606, indicating good intestinal 
absorption. Its MDCK permeability is relatively high at 
3.7e−05, implying passive permeability. The compound 
does not inhibit P-glycoprotein and can serve as a substrate 
for it, making it suitable for both Caco-2 and MDCK cell 
models.

Distribution analysis reveals that bifendate has a 
plasma protein binding (PPB) of 73.668%, which falls 
below the ideal range of 90%. This suggests a higher 
therapeutic index, as drugs with high protein binding may 
be immobilized and unable to reach their intended targets. 
Nonetheless, the compound has a blood-brain barrier (BBB) 
penetration value of less than 0.3, indicating a low potential 
for crossing the BBB and producing pharmacological effects 
in the central nervous system.

Excretion analysis shows that bifendate falls within the 
moderate range (5–15 mL/min/kg) for clearance rate (CL), 
with a value of 8.376 mL/min/kg. Its T1/2 value is 0.181, 
indicating that it likely has a half-life shorter than three 
hours. Metabolism analysis indicates that bifendate does 
not exhibit inhibitory effects on CYP2D6 and can undergo 
normal drug metabolism in vivo.

Toxicity analysis suggests that bifendate has a low 
probability of causing adverse effects, with a likelihood of 
less than 10% for toxic side effects such as Herg blockers, 
human hepatotoxicity (H-HT), AMES toxicity, and skin 
sensitization. Additionally, it satisfies the acute toxicity, 
genotoxic carcinogenicity, non-genotoxic carcinogenicity, 
skin sensitization, aquatic toxicity, non-biodegradable, 
SureChEMBL, and FAF-Drugs4 rules.

Discussion

NSCLC presents a formidable challenge in oncology (60), 
characterized by its heterogeneous nature and a complex 
molecular landscape. Despite the significant advancements 
in targeted therapies, the diverse genetic profiles of NSCLC 
tumors often result in variable responses to treatment and 
the development of resistance (61,62). In addressing these 
challenges, our study embarked on an integrative approach, 
combining bioinformatics, molecular docking, and dynamics 
simulations, to identify novel molecular targets and explore 
potential therapeutic strategies.

The initial phase of our study, centered on bioinformatics 
analysis, was pivotal in unraveling potential therapeutic 
targets (63). By meticulously analyzing the interactions 
between the components of Yiqi Sanjie formula and genes 
related to NSCLC, we identified several key proteins 

and pathways implicated in the disease. This analysis 
not only reinforced the known roles of proteins such as 
EGFR (64) and MET (65) in NSCLC but also brought to 
light the potential significance of ADH1B in the disease’s  
progression (66). These insights were instrumental in 
steering the direction of our subsequent drug discovery and 
target validation efforts.

Building on this foundation, the molecular docking 
analysis provided significant insights into the interactions 
between the identified targets and the active ingredients 
of Yiqi Sanjie formula (67). Notably, compounds such as 
hederagenin and xambioona exhibited high docking scores 
with critical NSCLC targets, namely EGFR and CDK4, 
suggesting strong binding affinities. These findings are 
particularly promising, hinting at the potential of these 
compounds to disrupt key signaling pathways involved in 
NSCLC tumor growth and progression.

Another crucial consideration in our study is the 
specificity of drug targeting on the identified proteins. 
Specificity is essential to minimize off-target effects and 
enhance the therapeutic efficacy of treatments (Latest 
Developed Strategies to Minimize the Off-Target Effects in 
CRISPR-Cas-Mediated Genome Editing). The molecular 
docking and dynamics simulations provided valuable insights 
into potential binding affinities, but further experimental 
validation is necessary to confirm the specificity of these 
interactions. Particularly for compounds like hederagenin, 
which shows potential for targeting EGFR, it is important 
to thoroughly investigate its specificity against other 
proteins to ensure precise targeting. Similarly, for 
xambioona and bifendate, further studies should explore 
their specificity to CDK4 and CCND1, respectively. 
This will help ascertain their therapeutic potential while 
minimizing unintended effects. Thus, specificity remains 
an essential factor in assessing the clinical viability of these 
compounds, and our future work will focus on validating 
these findings through comprehensive in vitro and in vivo 
studies.

The further dimension was added to our understanding 
through MD simulations, which offered a more nuanced 
view of the stability of drug-target interactions (68). The 
EGFR-hederagenin complex, for instance, maintained a 
stable binding throughout the simulation, indicative of a 
robust and potentially effective therapeutic interaction (69). 
In contrast, the variability observed in other drug–target 
interactions, such as that of ADH1B-Salvigenin, highlighted 
the necessity for more comprehensive investigations to fully 
ascertain their therapeutic viability.
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In our invest igat ion,  we focused on predicted 
interactions of natural products with three proteins 
involving key NSCLC targets: hederagenin with EGFR, 
xambioona with CDK4, and bifendate with CCND1. 
Notably, the inhibitory potential of hederagenin and its 
derivatives on EGFR is supported by existing literature (70),  
highlighting the validity of this pairing as a therapeutic 
strategy in NSCLC. This confirmation aligns well with 
our findings and underscores the potential of the EGFR-
hederagenin interaction in NSCLC treatment. Conversely, 
the interactions involving xambioona and CDK4, as well 
as bifendate and CCND1, although promising, have yet to 
be extensively validated in scientific literature. Xambioona’s 
targeting of CDK4, a key regulator of the cell cycle, 
suggests its potential to arrest tumor cell growth and induce 
apoptosis, directly addressing the dysregulation of the cell 
cycle observed in NSCLC (71). However, the optimization 
of xambioona’s pharmacological properties might be 
necessary to fully realize its therapeutic efficacy (72). 
Similarly, bifendate’s interaction with CCND1, coupled 
with its balanced ADMET profile, indicates its potential 
role in disrupting cell cycle progression in NSCLC, a 
critical aspect of the disease’s pathology (73).

Conclusions

These findings collectively highlight the significant 
potential application value of these interactions in 
NSCLC therapy. While the EGFR-hederagenin pairing 
is already supported by existing research, the other two 
combinations—xambioona with CDK4 and bifendate 
with CCND1—represent novel and promising areas 
for future investigation. Their exploration could lead to 
groundbreaking advancements in NSCLC treatment, 
particularly in targeting mechanisms that are currently 
underexplored in existing therapeutic strategies.
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