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ABSTRACT
Accurate identification of ligand-binding pockets in a protein is important for
structure-based drug design. In recent years, several deep learning models were
developed to learn important physical–chemical and spatial information to predict
ligand-binding pockets in a protein. However, ranking the native ligand binding
pockets from a pool of predicted pockets is still a hard task for computational
molecular biologists using a single web-based tool. Hence, we believe, by using closer
to real application data set as training and by providing ligand information, an
enhanced model to identify accurate pockets can be obtained. In this article, we
propose a new deep learning method called DeepBindPoc for identifying and ranking
ligand-binding pockets in proteins. The model is built by using information about the
binding pocket and associated ligand. We take advantage of the mol2vec tool to
represent both the given ligand and pocket as vectors to construct a densely fully
connected layer model. During the training, important features for pocket-ligand
binding are automatically extracted and high-level information is preserved
appropriately. DeepBindPoc demonstrated a strong complementary advantage for
the detection of native-like pockets when combined with traditional popular
methods, such as fpocket and P2Rank. The proposed method is extensively tested
and validated with standard procedures on multiple datasets, including a dataset with
G-protein Coupled receptors. The systematic testing and validation of our method
suggest that DeepBindPoc is a valuable tool to rank near-native pockets for
theoretically modeled protein with unknown experimental active site but have
known ligand. The DeepBindPoc model described in this article is available at
GitHub (https://github.com/haiping1010/DeepBindPoc) and the webserver is
available at (http://cbblab.siat.ac.cn/DeepBindPoc/index.php).

Subjects Bioinformatics, Computational Biology, Molecular Biology, Computational Science,
Data Mining and Machine Learning
Keywords Ligand pocket identification, Deep neural network, Mol2vec, Densely fully connected
neural network, Protein–ligand interactions

How to cite this article Zhang H, Saravanan KM, Lin J, Liao L, Ng JT-Y, Zhou J, Wei Y. 2020. DeepBindPoc: a deep learning method to
rank ligand binding pockets using molecular vector representation. PeerJ 8:e8864 DOI 10.7717/peerj.8864

Submitted 13 December 2019
Accepted 8 March 2020
Published 6 April 2020

Corresponding authors
Jiaxiu Zhou, shirleyzjx@163.com
Yanjie Wei, yj.wei@siat.ac.cn

Academic editor
Walter de Azevedo Jr

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.8864

Copyright
2020 Zhang et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/haiping1010/DeepBindPoc
http://cbblab.siat.ac.cn/DeepBindPoc/index.php
http://dx.doi.org/10.7717/peerj.8864
mailto:shirleyzjx@�163.�com
mailto:yj.�wei@�siat.�ac.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8864
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
A protein can interact specifically with binding partners such as small molecules, nucleic
acids or with other proteins in the cell to perform its different important biological
functions. Understanding how and where these molecules bind in the protein targets
provides valuable information for therapeutic design because it is essential to mimic or
enhance a function in the cell (Lionta et al., 2014). Predicting ligand binding pockets in
proteins is one of the key issues in the early stages of structure-based drug discovery and
still an unresolved problem in computer-aided drug design (Liang, Edelsbrunner &
Woodward, 1998;Miller & Dill, 2008). The accurate specification of ligand binding pockets
affects the efficiency of the whole computational drug discovery process (Glaser et al.,
2006). Several ligand binding pocket predictors have been developed in the past decades
using various approaches like physico-chemical based, geometric based and machine
learning based methods, respectively (Stank et al., 2016). A geometric based pocket
identification method is introduced by Kuntz et al. (1982) in the early 1980s. Following
this, a similar method “SURFNET” is proposed by another group (Laskowski, 1995).
LIGSITE and Pocket picker search for cavities from the atomic coordinates of proteins by
mapping the interface as grids and spheres (Hendlich, Rippmann & Barnickel, 1997;
Laurie & Jackson, 2005; Weisel, Proschak & Schneider, 2007). Also, many methods use
evolutionary information to predict pockets, because the protein sequences diverge
during the evolution (Schelling, Hopf & Rost, 2018). Fpocket, concavity, and CASTp are
hybrid methods which use similarity searches from existing databases and other geometric
indices to identify pockets (Capra et al., 2009; Le Guilloux, Schmidtke & Tuffery, 2009;
Tian et al., 2018).

A recently developed P2Rank, a machine learning based tool, demonstrates a strong
prediction ability for protein pocket (Krivák & Hoksza, 2018). There are several deep
learning-based methods to identify native pockets (Jiménez et al., 2017; Pu et al., 2019).
However, most current available methods (Saberi Fathi & Tuszynski, 2014; Jiménez et al.,
2017; Krivák & Hoksza, 2018; Pu et al., 2019) have not incorporated ligand information
in pocket identification, indicating these methods would have serious limitations in
pocket which induces changes in protein structure upon ligand binding. Some machine
learning models have an over fitting problem which only performs well when a test case is
close to the training data but fail to predict better on additional independent data
(Ursenbach et al., 2019). Also, most current models training based on data considers the
native conformations as positive conformations. Such training datasets are different
compared to the real application data, which are usually derived from prediction. Often,
such models have limitations for applications in real drug-discovery situations where the
potential pocket was generated by the software and only near-native pocket exist.

In principle, the comparison and classification issues can be effectively addressed by
using advanced deep learning methods. The Dense Fully Connected Neural Network
(DFCNN) is one such deep learning algorithm which is very suitable for comparison and
classification for protein ligand complexes (Ragoza et al., 2017). In our previous work, we
used DFCNN to perform the classification of ligand-binding residues and non-ligand
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binding residues accurately (Zhang et al., 2019a, 2019b). In the present work, we rescore
and rank ligand binding pockets accurately by deep learning of interface contact
information in the form of vectors. Our model also resolves the discrepancy between
training and real applications by treating the near-native pocket as training positive.
Additionally, ligand information is also added to enhance model accuracy and
generalization. Through this article, we strongly believe that the way we used molecular
vector representation of proteins and the ligand information in the model would help to
perform enhanced prediction to rank ligand-binding pockets than other existing
traditional methods.

MATERIALS AND METHODS
Data sets and decoys generation
The PDBbind v2017 forms the source of our present study and it contains aver 16,151
Protein–ligand complexes (Wang et al., 2005). Around 270 complexes that contain rarely
occurring atom types (such as) that could not be processed by RDKit was removed
(Wildman & Crippen, 1999) and after cleaning the data, we have 14,491 protein–ligand
complexes for further processing. The fpocket tool was used to generate the pockets for the
given protein with the default parameters (Le Guilloux, Schmidtke & Tuffery, 2009).
The pockets and their corresponding ligands were used to generate the input for our
model. The data preparation process is similar to our previous work (Zhang et al., 2019a).
The ligands were converted into SMILES format by open babel (O’Boyle et al., 2011)
and then converted into a 300-dimensional vector by mol2vec tool (Jaeger, Fulle & Turk,
2018). The basic idea of mol2vec is to consider the SMILES string as molecular sentence
which are composed of words (substructure), and like the natural language processing
method word2vec, an unsupervised machine learning method was used to construct the
mol2vec by learning vector of each word based on a large amount of available chemical
compounds dataset (corpus) (Krallinger et al., 2015). The residues in the pocket are
converted into a 300-dimensional vector by mol2vec tool and summed up into a
300-dimensional vector to represent the pocket. The protein–ligand binding is then
represented as a 600-dimension vector which concatenates the ligand vector and pocket
vector by an in-house python script. The three-dimensional structures shown in the article
are plotted by using Visual Molecular Dynamics (VMD) and Chimera (Humphrey,
Dalke & Schulten, 1996; Pettersen et al., 2004).

Positive and negative datasets
We constructed two positive datasets with different strategies. Strategy 1 is by defining
a collection of atoms that fall within 1 nm around the known ligand as the known pocket.
The potential pockets that are close to the known pockets (have C alpha center distance
with known pocket smaller than 0.3 nm) were taken as the positive dataset. Strategy 2
is that known pockets are chosen directly as the positive dataset. The negative dataset is
constructed from fpocket predictions on the potential pockets of the proteins in the
PDBbind database. The parameters are set to default to perform fpocket prediction.
We randomly choose three pockets that have C alpha center distance with a native pocket

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.8864 3/18

http://dx.doi.org/10.7717/peerj.8864
https://peerj.com/


larger than 1 nm. If the number of pockets that have larger than 1 nm distance to the native
pocket is less than three, we consider all the pockets. The selected predicted pockets
together with the ligands are taken as the negative dataset. If the decoy pocket is far away
from the known ligand binding pocket (center of distance between a known pocket
and decoy pocket are larger than 3 nm) and the pocket’s vector is not similar to that known
ligand binding pocket, we assume the pocket is not the near-native pocket of ligand.
We understand that this is a big approximation, we can’t guarantee the defined non-ligand
binding pocket is not a druggable site, but it is highly possible that defined non-ligand
binding pocket was not the given ligand’s binding site. The deep learning can tolerate noise
(very small portions of unreliable data) and such approximation still can be used in the
construction of our model.

To make sure each vector of decoy pocket is far away from their corresponding
known pocket; we have used the following formula to calculate their vector similarity.
Using the cutoff value of 0.995, we remove those pockets that are highly similar to the
native one.

Sij ¼ ðVi � VjÞ=ðjVij � jVjjÞ (1)

where the Sij is the measured similarity between pocket i and pocket j, the Vi is the
vector of pocket i, and the Vj is the vector of pocket j. The dataset was divided into two
groups as near natives as positive “A” and native pockets as positive “B”. The training,
validation, testing for two groups of datasets is shown in Fig. 1. The model generated with
training A is validated and tested with dataset B and vise versa.

Preparation of extra test sets
We have collected protein–ligand complexes that are deposited in the PDB database after
the year 2018 (Berman et al., 2000). We remove redundancy by only keeping one PDB
structure if the structures are from the same gene. These protein–ligand complexes are not
in the PDBbind 2018 dataset (Wang et al., 2005) and used as an extra testing set. The extra
testing set is further divided into three parts: 11 cases that fpocket have generated
near-native pockets (extra test set A); 6 cases that fpocket have not generated near-native
pockets (extra test set B); 2 cases have two pockets corresponding to different ligands (extra
test set C). The classification and grouping of data are presented in Fig. 1. The 6 cases
that fpocket can’t generate near-native decoys were used the native pocket as positive.
The proteins with PDB identifier 6QTN (A, F chain) and 5ZG2 contain two pockets with
different ligands bound. We attempted to check whether our method can successfully
identify correct pockets for each of the ligands. The known pocket and near-native pocket
are defined by the same method as above. The proteins in the extra test set A and B were
subjected to the prediction by the P2Rank with its default parameters for comparison
(Krivák & Hoksza, 2018; Jendele et al., 2019).

Preparation of G-protein coupled receptor independent test dataset
We retrieved 98 GPCR-ligand complexes from the GPCRDB database (https://www.
gpcrdb.org/) (Pándy-Szekeres et al., 2018). The near-native pocket was defined as the same
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as the previously mentioned procedure. We are interested to test whether our methods can
perform well on those challenging GPCR proteins, characteristic of a true structure-based
drug discovery application scenario.

Construction of deep learning model
The details of the model construction procedure are illustrated in Fig. 2. It contains data
processing, model training, validation and testing. We use the DFCNN inspired by
DenseNet as our model (Huang et al., 2017). The DFCNN model architecture is similar to
our previous work (Zhang et al., 2019a). The fully connected neural network is suitable
for vectors as inputs. Moreover, DenseNet can overcome the gradient vanishing problem
and allows many deep layers for learning more abstract features. This model has shown
good performance in identifying protein–ligand binding affinity in our previous work
(Zhang et al., 2019a). It has advantages in protein–ligand binding estimation over most

Figure 1 Classification of datasets into different groups. The ET_A, ET_B, ET_C stands for extra test A, extra test B and extra test C, respec-
tively. Full-size DOI: 10.7717/peerj.8864/fig-1
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other machine learning methods including Support Vector Machine (Suykens &
Vandewalle, 1999), RandomForest (Breiman, 2001), XGBoost (Chen & Guestrin, 2016),
Convolutional Neural Network (CNN) (Krizhevsky, Sutskever & Hinton, 2012). Densely
fully-connected neural network (DFCNN) and CNN were built using Keras (Chollet, 2015)
with Tensorflow back end (Abadi et al., 1983). The DFCNN has 16 densely connected
layers outputting 100 units simultaneously plus a normal fully-connected layer outputting
one unit as the final output. Specifically, densely connected layer refers to a layer taking all
outputs of its preceding layers as its input which can remarkably solve the problem of
gradient vanishing. Rates for dropout layers are all set to 0.25. The dense layers employed
ReLU activation function except for the output layers which employed sigmoid activation
function. Input for the network has been normalized to make its mean and standard
deviation to be 0 and 1 separately. The Adam optimizer was used to minimize the binary
cross-entropy of DFCNN.

Figure 2 The workflow of DeepBindPoc model. Full-size DOI: 10.7717/peerj.8864/fig-2
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Data normalization and performance evaluation
All the data have been normalized before the final input for the model. The normalization
is as follows:

t ¼ data set (2)

tnormalize ¼ t �meanð Þ=std (3)

where t is the data set value, the mean is the data mean value and the std is the data
standard deviation. We have tested two normalization strategies, one is based on fixed
mean and standard deviation values directly from the training dataset (mean = −0.5696
and std = 30.8744 for using near-native as positive and mean = −0.9610 and std = 63.6607
for using native as positive). The other strategy involves normalizing by dataset itself,
which is used for comparison in the present study. We find normalize by training dataset is
more reliable, so we used normalized by training dataset unless specifically stated. Several
metrics were used to evaluate the proposed models, including accuracy, Area Under the
receiver operating characteristic Curve (AUC) (Hanley & McNeil, 1982), Matthews
Correlation Coefficient (MCC), True Positive Rate (TPR), specificity and sensitivity.

Web server
The protein structures and its known ligands in PDB format are required as input to the
webserver http://cbblab.siat.ac.cn/DeepBindPoc/index.php. We first use the fpocket to
generate the pocket decoys and we use mol2vec to convert the pocket and ligand into the
vectors. After the protein and ligand vectors are concatenated, DeepBindPoc will score
decoys with native like possibility, and select the top three decoys as the potential pockets.
The predicted pocket name was shown on the page along with the fpocket score and
DeepBindPoc score. The results can also be downloaded as a file for the convenience of the
user. We also provide the batch mode to the user and provide a zip file of proteins with
their corresponding ligands. For both the single model and the batch model, we have
provided an example input for the convenience of the user.

RESULTS
DeepBindPoc performance on the training, validation and testing
datasets
To determine the hyperparameter of epoch number, we check the convergences by
monitoring the change of accuracy and loss value in both the training and validation
process with the increasing epoch number. The results are shown in Fig. S1.
The performance of the validation set has converged at epoch 1,500. The AUC, accuracy,
precision and MCC were used as evaluation metrics. DeepBindPoc model is generated
based on training A of strategy 1 (described in method section). DeepBindPoc’s
performance on the training A, validation A, test A, training B, validation B and test B set is
shown in Table 1. The results are normalized by training data. The results reveal that
training A has AUC value of 0.9972, the accuracy of 0.98 and an MCC value of 0.95. In the
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case of validation A, the DeepBindPoc achieves AUC value of 0.98, the accuracy of 0.93
and 0.86 MCC. Although our test A has an unbalanced positive–negative proportion
(677 positives to 5,822 negative), our model still achieves AUC value of 0.98, the accuracy
of 0.95, and an MCC of 0.77. Other performance indicators (TPR, precision) also
support the good performance of our model among training, validation and test dataset.
The training data have TPR value of 0.97 and a precision of 0.98. The validation and
test have a TPR value of 0.9 and 0.89 and a precision of 0.96 and 0.71, respectively.

When using the native as positive data for testing (Training B, Validation B and Test B in
Table 1), DeepBindPoc has comparable or better performance. This indicates that our
model is reliable under different situations and our model’s performance can be
further improved by generating high quality near-native decoys. To demonstrate the
advantage of near-native as training positive, we generated a DeepBindPoc_native
model based on training B of strategy 2 for comparison (Table S1). The model trained
by near-native pocket as positive data (DeepBindPoc, the result shown in Table 1)
demonstrated better performance than the model trained by native pocket as positive data
(DeepBindPoc_native, the result shown in Table S1). The DeepBindPoc can perform
well for both native and near-native as positive. The DeepBindPoc_native performs well
only for native as the positive, while its performance on Training A, Validation A and Test A
(which have the near-native as positive) have decreased significantly. The possible reason is
that when training directly by the native pocket as positive, it is difficult for the model
to generalize the near-native as positive data due to feature distribution inconsistency
between training and usage. It should be noted that in the real application scenarios, the
native (conformation) is often unavailable. Usually, only near-native mixed with nonnative
(conformation) can be generated by computational tools such as fpocket. The DeepBindPoc
trained by positive data strategy 1 in the method section is more reliable (Table 1).
The DeepBindPoc_native performance on the training A, validation A and test A are not as
good as in Table 1, indicating its limitations in real application scenarios.

The DeepBindPoc performance on nonredundant 2019 new dataset
The performance of the extra testing set was very close to the real application because
all the pockets are generated from fpocket prediction and near-native pocket is selected

Table 1 The DeepBindPoc performance on Training A, Validation A, Test A, Training B, Validation
B and Test B. The normalization strategy is based on the Training dataset. The DeepBindPoc is trained
by Training A. The details of each data set were described in Materials and methods section. Pos_size and
Neg_size in the table denotes size of the positive and negative dataset.

Data set AUC Accuracy TPR Precision MCC Pos_size Neg_size

Training A 1.00 0.98 0.97 0.98 0.95 6,000 × 3 18,000

Validation A 0.98 0.93 0.90 0.96 0.86 1,000 1,000

Test A 0.98 0.95 0.89 0.71 0.77 677 5,822

Training B 1.00 0.98 0.98 0.98 0.96 6,000 × 3 18,000

Validation B 0.99 0.97 0.99 0.96 0.94 1,000 1,000

Test B 1.00 0.97 0.98 0.97 0.94 7,491 5,822
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from the decoys. The performance of extra test A is shown in Table 2. It is observed that
the normalized strategy based on training set has relatively better performance over the
normalized strategy based on data itself for most of the performance indicators except
TPR. The model has achieved AUC value of 0.93, the accuracy of 0.88 and MCC of
0.38 respectively. Furthermore, the TPR (0.75) and precision (0.24) are also high. This
indicates the model has high potential to identify the near-native pockets correctly
from a bunch of decoys generated by fpocket. The comparison of the performance of
DeepBindPoc and fpocket based on whether they can successfully identify near-native
pocket within top 5, 3 and 1, respectively is presented in Table 3. Our method is strongly
complementary to those traditional methods where prediction is only based on
physico-chemical property of pocket. Because we currently haven’t developed a method to
generate pocket decoys, we depend on fpocket or other methods such as p2rank to first
generate the pocket decoys, then we can do the rescoring. However, it is still possible in the
future to develop a method that can iteratively generate almost all possible pocket decoys,

Table 2 The DeepBindPoc performance on the extra test set A and the independent GPCR dataset,
which is close to the real application. Pos_size and Neg_size in the table denotes size of the positive and
negative dataset.

Data set Normalized strategy AUC Accuracy TPR Precision MCC Pos_size Neg_size

Extra test A 1# 0.90 0.80 0.83 0.18 0.32 12 238

Extra test A 2# 0.93 0.88 0.75 0.24 0.38 12 238

GPCR set 1# 0.96 0.85 0.95 0.16 0.36 98 3,050

GPCR set 2# 0.97 0.91 0.93 0.26 0.46 98 3,050

Note:
#1, based on data itself; #2, based on training set.

Table 3 The comparison of the performance of DeepBindPoc and fpocket based on whether they can
successful identify near-native pocket with in top 5, 3 and 1, respectively.

PDB ID DeepBindpoc Fpocket

In top 5 In top 3 In top 1 In top 5 In top 3 In top 1

6NQ0 × × × × × ×

6J4H ✓ ✓ × × × ×

6J0O ✓ ✓ ✓ ✓ ✓ ×

6IEZ ✓ ✓ ✓ × × ×

6I2A ✓ ✓ ✓ × × ×

6GGG ✓ ✓ × ✓ ✓ ✓

6K04 ✓ ✓ ✓ ✓ × ×

6GEV ✓ ✓ × ✓ ✓ ✓

6E3T ✓ × × × × ×

6PSJ ✓ ✓ ✓ ✓ ✓ ✓

6SJM ✓ ✓ ✓ ✓ ✓ ✓

5OVE ✓ ✓ × × × ×

Summary 11 10 6 6 5 4
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and then using our method to do the rescore. In this way, our method may more easy to
use and better to compare the performance with other software. Our method has
incorporated the information of ligands together with the pockets, and the training is over
a large data set with feature distribution close to real application scenarios.

There are 10 out of 11 and 6 out of 11 cases have the native predicted in top five by the
DeepBindPoc and fpocket, respectively. Only the 6NQ0 have failed in the top five of
DeepBindPoc, but it is still better ranked than fpocket (ranked 7 vs 34, the yellow pocket
shown in Fig. S2). There are 11 out of 12 and 7 out of 11 cases have the native predicted in
top three by the DeepBindPoc and fpocket, respectively. In 10 out of 12 proteins, there
is successful identification of the correct pocket within the top three predictions, among
which 5 cases have the correct pocket at the top prediction. We also observe two cases that
failed to correctly identify within the top three predictions by visualizing the spatial
relationship between the known pocket and the predicted pockets. Interestingly, we found
even in failed predicted cases, our method often predicted better than the fpocket rank
(Fig. S2). For example, in the case 6E3T, the third predicted pocket is close to the native
pocket and shares several critical residues for the ligand binding. The fourth predicted
pocket is the near-native pocket which is still better compared to the fpocket rank 9.
In another case 6NQ0, the near-native pocket was ranked 7th by DeepBindPoc, while
ranked 34th by fpocket. Table 3 presents the prediction by DeepBindPoc with the training
dataset (fixed mean and standard deviation) as a normalization strategy.

The DeepBindPoc performance on five cases that fpocket have failed
to generate near-native pockets
We have selected five proteins deposited in PDB since 2019 for extra testing. The fpocket
fails to generate near-native conformation for them. By carefully examining these cases,
it is found that sometimes, fpocket can only generate short fragments of the native pocket.
Hence, we choose the known pocket as positive to do the testing. The results of
normalization by training A are shown in Table 4. With the known pocket as the positive,
all the known pockets of each 6 cases are ranked 1st, indicating our method is extremely
accurate once the known pocket is within the predicted decoys. This also indicates, our
DeepBindPoc model is promising to increase prediction accuracy by incorporating other
software that can extract closer to native pocket decoys than the fpocket software.

The P2Rank performance on the extra test set
The performance of P2Rank on the 17 proteins of the extra testing set was shown in
Table 5. The P2Rank have demonstrated highly accurate prediction. There are 10 cases
with near-native pocket and impressively the near-native pocket for each case is ranked
top. However, there are 7 cases that the near-native pockets are not in the predicted
pocket decoys. Since the P2Rank is based on a decision tree algorithm, inconsistent
performance for some cases is observed and this may be due to overfitting, which is a
common problem in the decision tree-based model. By incorporating fpocket, P2Rank
and our DeepBindPoc together, it is hopeful to further improve the accuracy of pocket
identification. There are 4 cases that both the fpocket and P2Rank haven’t generated near
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native pocket (6F83, 6I53, 6J5W, 6J8V), which indicates the pocket generation methods
should also be improved. The DeepBindPoc perform better than both P2Rank and fpocket
in three cases, which is shown in Fig. 3. The pockets generated by P2Rank for three
proteins (6I2A, 6F83 and 6J5W) failed. The native pocket of 6I2A is correctly ranked as
1st by DeepBindPoc, while the fpocket score ranked as 17th (Fig. 3A). Only a small part of
the native pocket of 6F83 have generated by fpocket, the fpocket ranked it in 4th,
while our DeepBindPoc successfully ranked it as 1st (Fig. 3B). Two parts of the native
pocket of 6J5W are generated by fpocket, the DeepBindPoc ranks the larger parts 13th,
while the fpocket ranks it 91th (Fig. 3C). If we add the native pocket in the prediction,
DeepBindPoc can always correctly identify the correct ones (Table 4), it indicates that the
DeepBindPoc or its further updated version, have potential to guide an accurate generation
of pocket decoys.

The DeepBindPoc performance on two cases which have two pockets
corresponding to two different ligands
The A and F chain of 6QTN have two pockets, each corresponding to a different known
ligand (ACF and GTP, Fig. 4A). The 5ZG2 also contains two pockets, each corresponding
to a known ligand (Fig. 4B). We attempted to test our model in these challenging
scenarios to evaluate whether our model has the potential to identify the ligand-specific
pockets. The results reveal that our model has identified the pocket in 6QTN for the ACF
in the 8th prediction while the fpocket has rank 35th (Table S2; Figs. 4A and 4B,

Table 4 The top three predicted values of DeepBindPoc on the five cases (extra test B) that fpocket
failed to generate near-native; the corresponding fpocket prediction value was also given for
comparison. Interestingly, for each case, the native pockets are all ranked as top 1. The Normalized
strategy is based on the training set. The pocket is Native pocket or pocket from the fpocket generation.
Pos and Neg in the table denotes positive and negative data. The number after “poc” in table represents
rank of the prediction.

Pocket Prediction Label

6MT8_native_poc 1.00 pos

6MT8_poc1 1.00 neg

6MT8_poc9 0.98 neg

6J8V_native_poc 1.00 pos

6J8V_poc31 1.00 neg

6J8V_poc18 1.00 neg

6J5W_native_poc 1.00 pos

6J5W_poc74 1.00 neg

6J5W_poc42 1.00 neg

6I53_native_poc 0.99 pos

6I53_poc3 0.98 neg

6I53_poc1 0.85 neg

6F83_native_poc 1.00 pos

6F83_poc4 0.09 neg

6F83_poc3 0.05 neg
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normalized by training A). The model has successfully ranked the correct pocket for
the GTP in the second position, but in this case, fpocket is better, which ranks this pocket
as top 1. The results reveal that our model has found the pocket in 5ZG2 for the ZKI in the
2nd rank while the fpocket prediction ranked 19th and the pocket for the 9C0 is the
2nd prediction while the fpocket prediction ranked 13th (Table S2; Fig. 4). These
observations suggest that our model can find novel pockets for a known active ligand by
incorporating the traditional fpocket method.

Performance on the GPCR membrane protein dataset
The GPCR pocket may have quite different physico-chemical features as the
non-membrane proteins due to the lipid environment, which may pose extra challenges
for pocket identification. The performance of DeepBindPoc on membrane proteins was
shown in Table 2 (normalized by training A). Our model is not so accurate in such
challenging cases that have a well-known difficulty in obtaining membrane protein
structures experimentally. The reason for the inaccurate performance is due to the
following reasons: (1) most of the training data is not membrane protein, so the training
data and the membrane protein–ligand testing set may have some different feature
distribution; (2) the membrane proteins contain lipids, and often involve conformation
change during ligand binding and the physico-chemical and geometric feature of GPCR
pocket is different; (3) the 3D structure of ligand binding with membrane protein
sometimes is not that much reliable; (4) the accessibility of ligand binding to the GPCR

Table 5 The performance of P2Rank on the 17 proteins of the extra testing set A and B. It was
observed at least one near-native pocket among all the prediction, the near native pocket often ranks top
(in this test all are rank top 1). However, there are still some cases where the near-native is not in the
predicted pocket decoys.

Protein Number of predicted Pocket Near-native pocket

5OVE 9 None

6J4H 31 6J4H_poc1

6E3T 21 6E3T_poc1

6K04 1 6K04_poc1

6F83 3 None

6GEV 5 6GEV_poc1

6PSJ 5 6PSJ_poc1

6GGG 9 6GGG_poc1

6I2A 7 None

6I53 6 None

6IEZ 5 6IEZ_poc1

6J0O 10 6J0O_poc1

6J5W 45 None

6SJM 3 6SJM_poc1

6J8V 27 None

6MT8 7 6MT8_poc1

6NQ0 26 None
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pocket is different compared to soluble proteins. In the future, we want to use the transfer
learning technique to develop a GPCR specific pocket prediction model, which will first
train on a generalized dataset and then retrain the model’s top layers on the membrane
protein–ligand dataset.

DISCUSSION
Similarity and dissimilarity comparisons of physico-chemical properties of protein
structures will help to gain valuable insights to develop methods to accurately predict
important regions in the proteins and have implications in computer-aided drug
design (Wei, Nadler & Hansmann, 2007; Saravanan & Selvaraj, 2013; Zhang et al., 2016).
In this article, we present an accurate pocket identification method “DeepBindPoc” by
incorporating the ligand information and the model’s usage has shown in Fig. S3.
We demonstrated that our model has a complementary advantage over the popular
fpocket score in many test cases. Our method takes advantage of the current popular
word2vec representation to generate protein pocket and ligand representation that can
accurately include critical physico-chemical properties. Because of the simple data
structure of a vector, the model is quite efficient during prediction. As shown in our
previous work, the densely fully connected neural network is suitable to preserve the

Figure 3 The three cases that have better performance over both P2Rank and fpocket. The Protein
Data Bank identifiers of three cases (6I2A, 6F83 and 6J5W) are shown as (A), (B) and (C), respectively.
The figure is plotted by VMD. Full-size DOI: 10.7717/peerj.8864/fig-3
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vector’s complete information compared to CNN. Another advantage is its many deep
layers allow it to learn more abstract and high-level features underlying large data.
The systematic validation of DeepBindPoc implies the efficiency of the model in estimating
the ligand binding site of the protein. Our pocket identifying method also has the potential
to be implemented in some specific protein classes, such as GPCR proteins, which
contain the most important drug therapeutic targets. Moreover, their structure and exact
drug binding site are much harder to obtain by the experimental methods, such as X-ray
Crystallography.

CONCLUSION
Through the article, we show that DeepBindPoc can be used in complement with
computational methods such as, fpocket to accurately identify the drug binding site, which
is very crucial in the first stage of GPCR-related drug development. In a real application, it
is worth trying several different pocket generation tools to comprehensive access the
potential pockets. This indicates the importance of developing a new pocket generation
tool based on the novel scoring function such as DeepBindPoc or its future updated

Figure 4 The two-ligand corresponding to two pocket cases. (A) Two pockets of the protein with PDB
ID: 6QTN. (B) Two pockets of the protein with PDB ID: 5ZG2. The figure is plotted by UCSF chimera.

Full-size DOI: 10.7717/peerj.8864/fig-4
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version. Further, it is possible to combine spatial information with the molecular vector by
convolutional graphic neural network in the near future. Although our model is not
an ultimate solution for the pocket identification problem, we provide a choice of coupling
other traditional methods and provide helpful insights for future development of powerful
pocket identification tools.
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