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MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly
impact various biological processes related to human disease. Inferring the potential
miRNA-disease associations benefits the study of human diseases, such as disease
prevention, disease diagnosis, and drug development. In this work, we propose a novel
heterogeneous network embedding-based method called MDN-NMTF (Module-based
Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-
disease associations. MDN-NMTF constructs a heterogeneous network of disease
similarity network, miRNA similarity network and a known miRNA-disease association
network. After that, it learns the latent vector representation for miRNAs and diseases
in the heterogeneous network. Finally, the association probability is computed by the
product of the latent miRNA and disease vectors. MDN-NMTF not only successfully
integrates diverse biological information of miRNAs and diseases to predict miRNA-
disease associations, but also considers the module properties of miRNAs and diseases
in the course of learning vector representation, which can maximally preserve the
heterogeneous network structural information and the network properties. At the same
time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using
modular information to improve the miRNA-disease association prediction ability. Our
methods and the other four existing methods are applied to predict miRNA-disease
associations in four databases. The prediction results show that our methods can
improve the miRNA-disease association prediction to a high level compared with the
four existing methods.

Keywords: heterogeneous network embedding, matrix factorization, miRNA, disease, miRNA-disease
association prediction

INTRODUCTION

MicroRNA (miRNA) is a category of small endogenous single-stranded non-coding RNA molecules
with about 22 nucleotides in length. They play an essential role in regulating gene expression
and complex gene regulatory networks by repressing target mRNAs expression at the post-
transcriptional level (Bartel, 2004; Meister and Tuschl, 2004). Studies show that about 60% of
human protein-coding genes are targeted by miRNAs, where the 5′ region of miRNA binds to 3′
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UTR of the target mRNAs (Friedman et al., 2009). With the
rapid development of biotechnology, increasing research has
demonstrated that miRNAs play crucial roles at multiple stages
of many critical biological processes such as early cell growth,
development, proliferation, differentiation, tumor invasion, and
apoptosis (Ambros, 2003). Furthermore, studies have shown that
abnormality and dysregulations of disease-related miRNAs may
cause human diseases (Garzon et al., 2010). Therefore, inferring
the potential miRNA-disease association is of great benefit to
studying human diseases, such as disease prevention, disease
diagnosis, and drug development. As we all know, discovering
the miRNA-disease associations through traditional biological
experiments is a time-consuming and labor-intensive process.
Instead, computational models would serve as a low-cost, and
high-efficiency way of predicting miRNA-disease associations.

Previous researches observe that similar miRNAs tend to
associate with the same diseases and similar diseases are
highly likely related to the same miRNAs. Hence, many
computational methods construct disease similarity network and
miRNA similarity network and infer miRNA-disease associations
based on the associations between or within the disease or
miRNAs (Peng et al., 2016, 2017; Zou et al., 2016; Huang
et al., 2019). Xuan et al. (2013) construct a miRNA similarity
network according to the degree of two miRNAs sharing similar
disease and consider the k most similar neighbors of each
miRNA to infer miRNA-disease associations. Chen X. et al.
(2012) implement a random walk on the miRNA functional
similarity network and explore the potential miRNA-disease
associations from the global network information. Xuan et al.
(2015) divide the miRNA nodes in the miRNA similarity
network into two categories: the given disease-related and the
given disease-unrelated nodes. They assign different transition
weights to different types of nodes and implement random walk
on the miRNA similarity network to predict miRNA-disease
associations. Besides the single network, some researchers build
a heterogeneous network that consists of miRNAs, diseases, and
their inter and intro associations. Liu et al. (2017) construct
the miRNA similarity network, disease similarity network and
known miRNA-disease association network. After that, they run
a random walk on the heterogeneous network to propagate
information and exploit potential miRNA-disease associations.
Considering the difference in the network structure of the
miRNA similarity network and disease similarity network,
Luo and Xiao (2017) use an unbalanced Bi-Random walk
(called UBiRW) on the heterogeneous network of disease
similarity network, miRNA functional similarity network and
a known miRNA-disease association network to infer potential
miRNA-disease associations. Zeng et al. (2016) enumerate all
of the paths from miRNA/disease to disease/miRNA in the
heterogeneous network, and the final score between a miRNA
and a disease is a linear combination of their path scores.
You et al. (2017) construct the heterogeneous network by
integrating known human miRNA-disease associations, miRNA
functional similarity, disease semantic similarity, and the
Gaussian Interaction Profile (GIP) kernel similarity. After that,
they do a depth-first search to find the paths between the miRNAs
and diseases on the heterogeneous network. Then they filter the

long paths and calculate the association of miRNA and disease by
combining all their paths.

Recently, a group of researchers proposes the network
embedding-based method to predict miRNA-disease
associations. The network embedding method designs an
objective function and converts the network nodes into a low
dimensional vector while maximally preserves the network
structural information. Chen and Yan (2014) develop a
regularized least square method to learn the latent vectors for
miRNAs and diseases on the miRNA similarity network and
disease similarity network. They combine the two vectors to give
the final solution of predicting new miRNA-disease associations.
Lan et al. (2016) construct multi-kernels to store the miRNA
functional similarity network, miRNA sequence similarity
network and disease semantic similarity network. Then they
employ a Bayesian matrix factorization method to infer potential
miRNA-disease associations by integrating these data sources.
Yan et al. (2019) develop a dynamic neighborhood regularized
logistic matrix factorization method called DNRLMF-MDA to
learn representation vectors for miRNAs and diseases and predict
potential miRNA-disease associations. Li et al. (2017) design
an objective function to ensure the scores of known miRNA-
disease association matrix are close to those in the predicted
miRNA-disease association matrix. They utilize the matrix
completion algorithm to update the matrix of known miRNA-
disease associations and to predict the potential associations.
Xiao et al. (2018) use a graph regularized non-negative matrix
factorization framework (named GRNMF) to identify possible
associations for all diseases simultaneously. Similarly, Chen’s
group proposes two matrix completion-based methods, namely
IMCMDA (Chen et al., 2018), and NCMCMDA (Chen et al.,
2020) for miRNA-disease association prediction. The differences
are IMCMDA uses inductive matrix completion for miRNA-
disease association prediction, while NCMCMDA integrates
neighborhood constraint in the course of matrix completion.

The methods mentioned above have achieved great success in
predicting miRNA-disease associations. However, there are still
some shortcomings in these existing methods. Firstly, the single
network-based methods only use the miRNA similarity or disease
similarity network. They may ignore the relationship between
diseases or miRNAs. Secondly, seldom heterogeneous network-
based methods consider the miRNA/disease similarity network’s
modular structure. Although some network embedding-based
methods, i.e., DNRLMF-MDA, NCMCMDA, learn node
representation only considering the constraint from part of
neighbors, most of them ignore the modular information of
miRNAs and diseases. Lu et al. (2008) constructed disease
network by giving two diseases an edge if they share at least
one common associated miRNA. Diseases cluster together,
which suggests that some diseases form modules sharing
similar associations at the miRNA level. Moreover, the disease-
associated miRNAs show various dysfunctions, such as mutation,
upregulation, deleted, and downregulation. On the other hand,
groups of homologous miRNA belong to the same miRNA
families. They might have similar functions, and therefore, their
dysfunction would lead to a similar phenotype. By analyzing
members in disease modules or miRNA modules, researchers
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found that most of the members in the miRNA module are
related to the same disease, and the members in the disease
modules are mostly related to the same miRNA too. Therefore,
this finding can guide us to predict novel disease-related miRNAs.

In this work, we propose a novel heterogeneous network
embedding-based method for predicting miRNA-disease
associations. We calculate the disease semantic similarity,
diseases functional similarity, miRNA functional similarity, and
compute the GIP kernel similarity of miRNAs and diseases. Then,
we integrate these similarities and construct a heterogeneous
network of the disease similarity network, miRNA functional
similarity network and a known miRNA-disease association
network. After that, we propose a Module-based Dynamic
Neighborhood Non-negative Matrix Tri-Factorization (MDN-
NMTF) to learn the latent vector representation for miRNAs and
diseases in the heterogeneous network. Finally, the association
probability is computed by the product of the latent miRNA and
disease vectors. MDN-NMTF not only successfully integrates
diverse biological information of miRNAs and diseases to predict
miRNA-disease associations, but also considers the module
properties of miRNAs and diseases in the course of learning
vector representation, which can maximally preserve the
heterogeneous network structural information and the network
properties. Meanwhile, we also extend MDN-NMTF to a new
version (called MDN-NMTF2) by using the modular information
to improve the prediction ability of MDN-NMTF. Our methods,
as well as the other four existing methods [DNRLMF-MDA
(Yan et al., 2019), IMCMDA (Chen et al., 2018), UBiRW
(Luo and Xiao, 2017), and GRNMF (Xiao et al., 2018)], are
applied to predict miRNA-disease associations on four data
sets. The prediction results show that compared with the four
existing methods, our methods can improve the performance of
miRNA-disease association prediction to a high level.

MATERIALS

Four datasets (see Table 1), namely HMDD2.0-You (Li et al.,
2014), HMDD2.0-Lan (Lan et al., 2016), HMDD2.0-Yan, and
HMDD3.01, were used to evaluate our methods and the
other existing methods. HMDD2.0-You, HMDD2.0-Lan, and
HMDD2.0-Yan were from HMDD database version 2.0. The
HMDD2.0-You dataset includes 495 miRNAs, 380 diseases and

1http://www.cuilab.cn/hmdd

TABLE 1 | The number of MiRNAs, diseases and miRNA-disease associations
in four datasets.

Dataset nm nd nmd

HMDD2.0-You 495 380 5424

HMDD2.0-Lan 550 329 6084

HMDD2.0-Yan 576 356 6391

HMDD3.0 1207 894 18732

The table shows the differences among the four datasets, where nm, nd ,
and nmd indicate the number of miRNAs, diseases and miRNA-disease
associations, respectively.

5,424 miRNA-disease associations. The HMDD2.0-Lan dataset
consists of 550 miRNAs, 329 diseases and 6,084 miRNA-
disease associations. The HMDD2.0-Yan dataset includes 576
miRNAs, 356 diseases, and 6,391 miRNA-disease associations.
The HMDD3.0 dataset came from HMDD database version 3.0,
which involves 1,207 miRNAs, 894 diseases, and 18,732 miRNA-
disease associations. To calculate the functional similarity of
diseases, we extracted the functional similarity scores of gene-
gene pairs from the HumanNet database that contains 16,243
genes and 476,399 associations (Lee et al., 2011). The disease-gene
associations of HMDD2.0-You, HMDD2.0-Yan, and HMDD3.0
were obtained from the DisGeNET database, where includes
13,000 diseases, over 16,000 genes, and 380,000 disease-gene
associations (Piñero et al., 2015). The disease-gene associations
of HMDD2.0-Lan were downloaded from the SIDD database,
containing 2,603 genes, 2,817 diseases, and 117,190 disease-gene
associations (Cheng et al., 2013).

METHODS

The MDN-NMTF model aims to learn the representation
vectors for miRNAs and diseases and to achieve better
prediction for disease-related miRNAs. It can maximally
maintain their features in original spaces, i.e., known miRNA-
disease associations, miRNA similarity network structure, and
disease similarity network structure. The preparing process of
MDN-NMTF is broadly divided into four steps: building the
networks, learning feature representation; reconstructing the
miRNA-disease association network, predicting miRNA-disease
associations (see Figure 1).

Disease Semantic Similarity
The disease semantic similarity between diseases is calculated
using Mesh descriptors of diseases (Nelson et al., 2002).
The disease terms can be represented as a direct acyclic
graph (DAG), where nodes represent disease terms and edges
represent the associations between diseases. The similarity
between diseases can be calculated according to their common
ancestors in the DAGs.

Let DAGd represent disease d, DAGd = (Td, Ed). Td is the set
composed of all parent disease nodes of d and itself, and Ed is
the set of all edges between disease nodes within Td. The formula
to calculate the semantic value DVd(t) of diseases t and d is as
follows:

DVd (t) =

{
1, if t = d

max
{
1× DVd

(
t′
)
|t
′

∈ children of t
}

, if t 6= d
(1)

Where t is the set of all common ancestors of diseases d. 1 is the
semantic contribution factor, whose value is between 0 and 1. We
set the value of 1 to 0.5 in this study, similar to the values in (Yan
et al., 2019). DS(d) is the semantic values of a disease d in DAG.

DS
(
d
)
=
∑
t∈Td

DVd (t) (2)
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FIGURE 1 | The flowchart of MDN-NMTF and MDN-NMTF2 to predict miRNA-disease association. The MDN-NMTF model takes four steps to predict
miRNA-disease associations: building the similarity networks, learning feature representation for miRNA and diseases; reconstructing the miRNA-disease association
network, predicting miRNA-disease associations. MDN-NMTF2 is an extended version of MDN-NMTF. It divides the miRNAs and diseases into several modules on
the basis of the representation vectors learned by MDN-NMTF. MDN-NMTF2 calculates the similarity of two miRNAs or two diseases based on the module they
belong to and infers the novel miRNA-disease associations from similar miRNAs or diseases in the same modules.

The semantic similarity between disease di and disease dj is as
follows:

Dss
(
di, dj

)
=

∑
t∈Tdi

∩ Tdj

(
DVdi (t)+DVdj (t)

)
DS(di)+DS(dj)

(3)

Disease Functional Similarity
Calculating disease functional similarity is based on the
assumption that similar diseases target similar disease genes

(Cheng et al., 2014). Therefore, given a pair of diseases da and
db, the functional similarity is defined as:

Dfs
(
da, db

)
=

∑
1≤i≤m GFSGb(gai)+

∑
1≤j≤n GFSGa

(
gbj
)

m+n
(4)

Where Ga = {ga1, ga2, . . . , gam} and Gb = {gb1, gb2, . . . , gbn} are
two gene sets which associate with diseases da and db,
respectively, and m and n are the numbers of genes in Ga and
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Gb, respectively. GFSGb

(
gai
)

denotes the functional similarity
between gene gai and the genes in Gb. It can be defined as below:

GFSGb

(
gai
)
= max

1≤j≤n

(
FS
(
gai, gbj

))
(5)

Where FS(gai, gbj) denotes the functional similarity between gene
gai and gene gbj, which is obtained from HumanNet dataset
(Lee et al., 2011) in this work. In the same way, the GFSGa

(
gbj
)

can be computed.

MiRNA Functional Similarity
The miRNA functional similarity between two miRNAs m1 and
m2 is calculated based on the semantic similarity of diseases to
which they are related. It can be defined as follows:

Mfs (m1,m2) =

∑
1≤i≤n1

MFSDT2(dt1i)+
∑

1≤j≤n2
MFSDT1(dt2j)

n1+n2
(6)

Where n1 and n2 are the number of diseases that are associated
with miRNAs m1 and m2, respectively. DT1 and DT2 are the
sets of diseases that are associated with miRNAs m1 and m2,
respectively. MFSDT2 (dt1i) is the semantic similarity of disease
dt1i and the diseases in DT2, which is defined as below:

MFSDT2

(
dt1i

)
= max

1≤j≤n2

(
Dss

(
dt1i, dt2j

))
(7)

MFSDT1

(
dt2j

)
= max

1≤i≤n1

(
Dss

(
dt1i, dt2j

))
(8)

Where Dss (dt1i, dt2j) is the semantic similarity between diseases
dt1i and dt2j.

GIP Kernel Similarity
It is observed that miRNAs with similar functions are more likely
to be associated with similar diseases and vice versa. According to
this observation, GIP kernel similarity is constructed to describe
the miRNA similarity and disease similarity (Laarhoven et al.,
2011). First, we defined a binary vector IP (mi) to represent
the interaction profile of miRNA mi by observing whether or
not there is a known association between miRNA mi and every
disease. Then, the GIP similarity between miRNA mi and mj can
be calculated as:

KMGIP
(
mi,mj

)
= exp

(
−γm||IP (mi)− IP(mj)||

2) (9)

Where, γm controls the kernel bandwidth, which normalizes
another bandwidth parameter γm

′

by the average number of
related miRNAs per disease. γm is defined as follows:

γm = γ
′

m/( 1
nm

nm∑
i=1
||IP (mi) ||

2) (10)

Here γ
′

m is set to be 1 based on the previous study (Yan et al.,
2019). nm is the number of miRNAs.

Thus, the GIP kernel similarity between disease di and dj is
defined as follows:

KDGIP
(
di, dj

)
= exp(−γd||IP

(
di
)
− IP(dj)||2) (11)

γd = γd
′/( 1

nd

nd∑
i=1
||IP

(
di
)
||

2) (12)

Where γd
′

is also set to 1 and nd is the number of diseases.

Integrating Similarity for miRNAs and
Diseases
Because not all miRNA-miRNA pairs have functional similarity,
the GIP kernel similarity for miRNA is interpolated to the
miRNA functional similarity to obtain the integrated similarity
for miRNA. The final miRNA similarity matrix between miRNA
mi and miRNA mj is defined as follows:

Rm
(
mi,mj

)
=

{
Mfs

(
mi,mj

)
, if Mfs

(
mi,mj

)
> 0

KMGIP
(
mi,mj

)
, otherwise

(13)
Similarly, the final disease similarity between disease di and
disease dj is defined as follows:

Rd
(
di, dj

)
=

{
Dfs

(
di, dj

)
, if Dfs

(
di, dj

)
> 0

KDGIP
(
di, dj

)
, otherwise

(14)

Regularized by Dynamic Neighborhood
Similar to previous DNRLMF-MDA method (Yan et al., 2019), we
only preserve the relationships between a miRNA or a disease and
their closest neighbors, when projecting the miRNA or disease
to their latent spaces. Let N(mi) and N(dj) denote the set of
nearest neighbors of miRNA mi and disease dj, respectively. The
numbers of nearest neighbors of the miRNAs are not fixed but
are dynamically determined according to Eq. (15). For miRNA
mi, h(mi) denotes its number of nearest neighbors, which can be
as follows:

h (mi) =

{
max (H) , if 1−rs(mi)l

l ≤ εl, 1 ≤ l ≤ H
0, otherwise

(15)

Where ε is the control parameter. It is set to 0.56 via cross-
validation. The rs(mi) is a ranked vector based on the similarity
between miRNA mi and other miRNAs from high to low, and
rs(mi)l is the lth most similar value. H integer ranges from 1 to
the total number of mi’s neighbors and l (the exponent of ε) is a
dynamic variable integer to satisfy the constraint. Similarly, for
disease di, its number of nearest neighbors (h(dj)) also can be
formulated as follows:

h
(
dj
)
=

{
max (H) , if 1−rs(dj)l

l ≤ εl, 1 ≤ l ≤ H
0, otherwise

(16)

Where rs(dj) is a ranked vector based on the similarities between
disease dj and other diseases from high to low, and rs(dj)l is the
lth most similar value.

Let matrix A be the dynamic nearest neighborhood matrix of
miRNAs, its element aiµ is calculated as below:

aiµ =
{
Rm

(
mi,mµ

)
, if mµ ∈ N (mi)

0, otherwise
(17)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 June 2021 | Volume 9 | Article 603758

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-603758 June 10, 2021 Time: 11:26 # 6

Peng et al. MDN-NMTF Predicting miRNA-Disease Association

Similarity, let matrix B be the dynamic nearest neighborhood
matrix of diseases, its element bjν can be calculated as below:

bjυ =
{
Rd
(
dj, dυ

)
, if dυ ∈ N

(
dj
)

0, otherwise
(18)

In this work, we assume that if the two miRNAs or two diseases
are the nearest neighbors in their original similarity networks,
they should show similar representations in the corresponding
latent spaces. Hence, the following two regularization terms
are designed for miRNA and disease, respectively, which will
be incorporated into the MDN-NMTF objective function. The
regularization term for miRNAs can be defined as the following
equation (Liu et al., 2016):

nm∑
i=1

nm∑
µ=1

aiu||gmi − gmµ||
2
F = Tr

(
G
′

mLmGm

)
(19)

Where Tr() is the trace of a matrix, and Lm =
(
Dm + D

′

m

)
−(

A+ A′
)
, in which Dm and D

′

m are the diagonal matrices,

whose diagonal elements are Dmii =
nm∑

µ=1
aiµ and D

′

mµµ =

nm∑
i=1

aiµ,

respectively. Gm represents the latent matrices of all miRNAs.
Similarity, the regularization term for diseases can be defined as
the following equation:

nd∑
j=1

nd∑
υ=1

bjυ||gdj − gdυ||
2
F = Tr

(
G
′

dLdGd

)
(20)

Where Ld =
(
Dd + D

′

d

)
−
(
B+ B′

)
, in which Dd and D

′

d are the

diagonal matrices, whose diagonal elements are Ddjj =
nd∑

υ=1
bjυ

and D
′

dυυ
=

nd∑
j=1

bjυ, respectively. And Gd represents the latent

matrices of all diseases.

The MDN-NMTF Model
Let Rm ∈ Rnm×nm and Rd ∈ Rnd×nd denote the adjacency matrix
of the miRNA similarity network and disease similarity network,
respectively. The latent matrices of all miRNAs and diseases are
represented asGm ∈ Rnm×km andGd ∈ Rnd×kd , respectively.K ∈
Rkm×kd denotes the association matrix between miRNA modules
and disease modules. Let D ∈ Rnm×nd be the matrix storing the
known miRNA-disease associations. The MDN-NMTF learns the
representation vectors for miRNAs (Gm) and disease (Gd) by
optimizing the following objective function.

minGm,Gd,Sm,Sd,Kλ1 ‖ Rm − GmSmG′m ‖
2
F

+ λ2 ‖ Y � (D− GmKG′d) ‖
2
F +λ3 ‖ Rd − GdSdG′d ‖

2
F

+ α1 ‖ Gm ‖
2
F +α2 ‖ Gd ‖

2
F +β1Tr

(
G′mLmGm

)
+ β2Tr

(
G′dLdGd

)
+ ω ‖ K ′K–I ‖2

F

s.t. Gm > 0,Gd > 0, Sm > 0, Sd > 0,K > 0 (21)

In Eq. (21), the term of ||Rm − GmSmG
′

m||
2
F captures the

intrinsic module structure within the original miRNA similarity

matrix. Because the values in Gm record the modules the miRNAs
belong to and Sm records the relationship of these modules. �
is the Hadamard product. The term of ||Y � (D− GmKG

′

d)||
2
F

indicates the miRNAs and diseases share similar relationship both
in their original space and the latent space at the module level.
We only want to use the known miRNA-disease information to
learn their representation matrixes. Hence, let Y ∈ Rnm×nd be a
label weighted matrix [see Eq. (22)], where the elements of Y are
set to 1 if the miRNA is known to associate with the disease. The
elements ofY are set to 0.2 if the miRNA is known to not associate
with the disease. Otherwise, the elements of Y are set to 0. Here,
we set different weight for knowing to have or have no miRNA-
disease associations. Because it is hard to prove that the miRNAs
do not associate to certain diseases and some associations are
temporarily not annotated due to the limitation of techniques.

Y
(
mi, dj

)
=


1, if D

(
mi, dj

)
is known and D

(
mi, dj

)
= 1

0.2, if D
(
mi, dj

)
is known and D

(
mi, dj

)
= 0

0, if D
(
mi, dj

)
is unknown

(22)
The terms of Tr

(
G′mLmGm

)
[see Eq. (19)] and Tr

(
G′dLdGd

)
[see Eq. (20)] are used to preserve the network structure of
the original miRNA similarity network and disease similarity
network, respectively. We introduce Lm and Ld to represent the
dynamic neighborhood of miRNAs and diseases, respectively,
(see section “The MDN-NMTF model”). Two terms of ||Gm||

2
F

and ||Gd||
2
F are adopted to penalize the magnitudes of the Gm and

Gd for avoiding overfitting. ||K
′

K-I||2F is relaxed the constraint
to K’K = I. λ1, λ2, and λ3 are balance parameters of matrix tri-
factorization. α1 and α2 are regularization term parameters. β1
and β2 are the dynamic neighborhood regularization parameters.
ω is the k-constraint parameter. In this work, the values of km, kd,
λ1, λ2, λ3, α1, α2, β1, β2, and ω are set to 200, 200, 0.001, 5, 0.1,
0.2, 0.8, 90, 1.5, and 160, respectively (Supplementary Table 1).

Computation of Sm, Sd, Gm, Gd, and K
To obtain the optimal solution of Sm, Sd, Gm, Gd, and K in the
objective function of MDN-NMTF model Eq. (21), we take the
partial derivative of the objective function with respect to Sm, Sd,
Gm, Gd, and K, respectively. Following the Karush–Kuhn–Tucker
(KKT) condition for the non-negativity of Sm, Sd, Gm, Gd, and K
and setting the partial derivative equal to zero, we can update Sm,
Sd, Gm, Gd, and K as follows.

Sm ← Sm �
G
′

mRmGm
G′mGmSmG

′

mGm
. (23)

Sd ← Sd �
G
′

dRdGd
G′dGdSdG

′

dGd
. (24)

Gm ← Gm �
2λ1RmGmSm+λ2Y�DGdK

′
+β1AGm

2λ1GmSmG
′

mGmSm+λ2Y�
(
GmKG′d

)
GdK

′
+α1Gm+β1DmGm

.

(25)

Gd ← Gd �
2λ3RdGdSd+λ2Y

′
�D
′
GmK +β2BGd

2λ3GdSdG
′

dGdSd+λ2Y
′
�

(
GdK

′G′m
)
GmK +α2Gd+β2DdGd

.

(26)
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K ← K �
√

λ2G
′

m(Y�D)Gd+2ωK
λ2G
′

m(Y�(GmKG
′

d))Gd+2ωKK′K
. (27)

In this algorithm, � denotes the Hadamard product, and ÷ is
entry-wise division for matrices. As shown in section “The MDN-
NMTF model,” A and B are the dynamic nearest neighborhood
matrix of miRNAs and diseases, respectively.

Predicting miRNA-Disease Associations
After getting the low-rank matrixes Gm, K, and Gd, we
rebuild matrix D1 by the produce of the matrixes Gm,
K, and Gd (D1 = GmKGd

′

) to predict miRNA-disease
associations. The elements in D1 denote the probability
between miRNAs and diseases. Following is the pseudocode of
MDN-NMTF algorithm.

Algorithm MDN-NMTF

Input: miRNA similarity Rm; disease similarity Rd;
miRNA-disease association D; the parameters λ1, λ2, λ3, α1,
α2, β1, β2, and ω.
Output: Gm, Gd, Sm, Sd, K, and D1
1: Initialize matrices Gm, Gd, Sm, Sd, and K with random
non-negative matrices, while Sm, Sd are symmetric matrices.
2: Calculate the dynamic neighbor matrices A and B by Eqs
(17, 18), and then calculate the diagonal matrices Dm and
Dd, and the Laplacian matrix Lm and Ld.
3: While objective function value in Eq. (21) not converge
do

(1) Fix Gm, Gd, Sd, and K and update Sm with Eq. (23).
(2) Fix Gm, Gd, Sm, and K and update Sd with Eq. (24)
(3) Fix Gd, Sm, Sd, and K and update Gm with Eq. (25).
(4) Fix Gm, Sm, Sd, and K and update Gd with Eq. (26).
(5) Fix Gm, Gd, Sm, and Sd and update K with Eq. (27).

end while
4: Rebuild miRNA-disease association matrix D1 = GmKGd

′

.

In the third step of the while loop, each update iteration
replaces the zero value in the matrices with 10−9 to guarantee
the constraint condition in Eq. (21). The convergence condition
is that the difference between two objective functions in the
iteration is less than 10−6 or the number of iterations reaches the
maximum number of iterations of 1,000.

Predicting miRNA-Disease Associations
With Modular Information
At the same time, we also extend MDN-NMTF to a new
version (called MDN-NMTF2, see Algorithm MDN-NMTF2)
by using the modular information to improve the miRNA-
disease association prediction ability of MDN-NMTF. Since the
factorized matrices Gm and Gd obtained from MDN-NMTF
record the modules the miRNAs or diseases belong to. MDN-
NMTF2 utilizes the Gm and Gd values to partition the miRNAs
and diseases into different models. GivenGm ∈ Rnm×km andGd ∈

Rnd×kd , there are km miRNA modules and kd disease modules.
The elements with relatively large values of each column of Gm
(Gd) is assigned to the members of the corresponding module.
We calculate the threshold for each miRNA (i.e., each row
gm(i, ·) of Gm) with:

Th (i) = µ (i) + tσ (i) (28)

where µ (i) = 1
km

km∑
k=1

gm(i, k), σ (i) =√
1

km−1

km∑
k=1

(gm(i, k)− µ (i))2, t is a given threshold. Based

on this rule, we determined miRNA mi as the kth module
member if the entries of gm(i, k) are larger than Th (i). In the
same way, the threshold for each disease [each row gd(i, ·) of Gd]
can be calculated. According to the settings of Ma et al. (2020),
we also set t = 1.5 to identify miRNA and disease modules with
proper resolution.

Then we calculate the similarity of two miRNAs based on the
module they belong to. If two miRNAs mi and mj belong to the
same miRNA module, their similarity in the kth miRNA module
(msk) can be constructed as:

msk
(
mi,mj

)
= Sim

(
mi,mj

)
, where mi ∈ msk,mj ∈ msk

(29)
The Sim(u, v) can be calculate as Eq.(30):

Sim (u, v) =
∑km

k=1 ukvk√∑km
k=1 u

2
k

√∑km
k=1 v

2
k

(30)

Here, km represents the dimension of the vectors u and v. uk and
vk represent the kth element of the vectors u and v. Similarly, if
two diseases di and dj belong to the same disease module, we can
construct their similarity in the kth disease module (dsk) as

dsk
(
di, dj

)
= Sim

(
di, dj

)
, where di ∈ dsk, dj ∈ dsk (31)

Based on the assumption that the miRNAs in the same modules
are highly likely related to the same diseases, vice versa, we use
Scoremk(mi, dj) to represent the correlation score between the
disease dj and the miRNA mi in the kth miRNA module. It can be
calculated according to Eq. (32):

Scoremk(mi, dj) =
∑nm

q=1 msk(mi,mq)D(q,j)∑nm
q=1 Sim(mi,mq)

(32)

Where D ∈ Rnm×nd is the matrix storing the known miRNA-
disease associations. Thus, let Dm be the miRNA-disease
associations that are predicted based on miRNA modules, which
can be defined as:

Dm =
1
km

km∑
i=1

Scoremi (33)

Similarly, we can get the correlation score (Scoredk) in the kth
disease module and predict miRNA-disease associations (Dm)
based on disease modules as follows:

Scoredk(mi, dj) =
∑nd

q=1 dsk(dj,dq)D(i,q)∑nd
q=1 Sim(dj,dq)

(34)
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Dd =
1
kd

kd∑
j=1

Scoredj (35)

Here, km and kd, as shown in the previous section, denote the
number of miRNA modules and disease modules. The final
predicted miRNA-disease associations of MDN-NMTF2 can be
calculated by:

D2 = D1∗ +
D∗m
2
+

D∗d
2

(36)

Here, ∗ denotes the Min-Max Normalization of the matrix.
Following is the pseudocode of MDN-NMTF2.

Algorithm MDN-NMTF2

Input: miRNA similarity matrix Rm; disease similarity matrix Rd
and miRNA-disease association matrix D; the parameters λ1, λ2,
λ3, α1, α2, β1, β2, and ω.

Output: D2
1: Get Gm, Gd, Sm, Sd, K, and D1 by the Algorithm MDN-NMTF

2: Determine miRNA mi as the kth module member if the entries
of gm(i,k) are larger than Th (i) [see Eq. (28)]

3. Determine disease di as the kth module member if the entries
of gd(i,k) are larger than Th (i) [see Eq. (28)]

4. Calculate similarity of two miRNAs If they belong to the same
miRNA module by Eq. (29)
5. Calculate Dm as the miRNA-disease associations that are
predicted based on miRNA modules [see Eq. (33)]

6. Calculate similarity of two diseases If they belong to the same
disease module by Eq. (31)

7. Calculate Dd as the miRNA-disease associations that are
predicted based on disease modules [see Eq. (35)]

8: Calculate the final predicted miRNA-disease associations
D2 = D1∗+Dm

∗/2+Dd
∗/2.

RESULTS

Performance Evaluation
To evaluate the performances of MDN-NMTF and MDN-
NMTF2, we compared them with four state-of-the-art
methods (DNRLMF-MDA, IMCMDA, UBiRW, and GRNMF).
The UBiRW uses an unbalanced Bi-Random walk on the
heterogeneous network to propagate information and to
infer potential miRNA-disease associations. DNRLMF-
MDA, IMCMDA, and GRNMF are three latest network
embedding-based methods. DNRLMF-MDA adopts a dynamic
neighborhood regularized logistic matrix factorization method
to predict potential miRNA-disease associations. IMCMDA uses
Inductive matrix completion for miRNA-disease association
prediction. GRNMF infer possible associations for all disease by a
graph regularized non-negative matrix factorization framework.
Considering there is no available interaction observed for new

diseases or miRNAs, GRNMF develops a preprocessing step
to construct the miRNA-disease associations according to the
neighbors’ information. We implemented cross-validation
under two different settings to evaluate the performance of
the proposed methods. The two different settings are 5-fold
randomly zeroing and single-column zeroing. For 5-fold
randomly zeroing cross-validation, all the known miRNA-
disease associations are randomly and equally divided into five
non-overlapping parts. In each round, one of the five parts
is for testing and the corresponding values in matrix D are
cleared as 0, and the other four parts are as positive samples for
training. Note that the miRNA and disease similarity network
should be recalculated in each round. Single-column zeroing is
to clear all miRNA-disease associations of a particular column
of diseases and take them as testing data, others as training sets,
and finally sum all AUCs to get the mean value. We repeat the
cross-validation 20 times on four different datasets and show the
average values in the following sections. For HMDD2.0-You,
HMDD2.0-Lan, HMDD2.0-Yan and HMDD3.0 datasets, we
select the way illustrated in section “Materials” to calculate the
miRNA similarity network and disease similarity network.

To make the comparison fair, we tuned the parameters
for every method to perform them the best in all of our
experiments through randomly zeroing 5-fold cross-validation
on HMDD2.0-You, HMDD2.0-Lan, and HMDD2.0-Yan. The
detailed information, please see the online Supplementary Files
(Supplementary Table 2).

Randomly Zeroing Cross-Validation
As we can see from Table 2, MDN-NMTF and MDN-NMTF2
possess the highest two performance among the four methods
on all the four datasets in terms of AUC values. On HMDD2.0-
You dataset, compared with other methods (DNRLMF-MDA:
0.9301 ± 0.0036, IMCMDA: 0.8285 ± 0.0068, UBiRW:
0.9196± 0.0036, and GRNMF: 0.9031± 0.0049), the AUC values
of MDN-NMTF and MDN-NMTF2 achieve 0.9335 ± 0.0037
and 0.9354 ± 0.0035, respectively. On HMDD2.0-Yan dataset,
the prediction performance of MDN-NMTF and MDN-NMTF2
are the best two because their AUC values are 0.9409 ± 0.0030
and 0.9424 ± 0.0033, compared with other methods (DNRLMF-
MDA: 0.9384 ± 0.0031, IMCMDA: 0.8045 ± 0.0062, UBiRW:
0.9191 ± 0.0030, GRNMF: 0.9153 ± 0.0045). On HMDD2.0-
Lan dataset, the AUC values of MDN-NMTF and MDN-
NMTF2 are 0.9391 ± 0.0033 and 0.9415 ± 0.0033, which
are both superior to the other results of DNRLMF-MDA
(0.9369 ± 0.0030), IMCMDA (0.7216 ± 0.0072), UBiRW
(0.9198 ± 0.0032), and GRNMF (0.9157 ± 0.0044). On
HMDD3.0 dataset, the AUC values of the MDN-NMTF and
MDN-NMTF2 are 0.9435 ± 0.0021 and 0.9467 ± 0.0020, which
is better than that of DNRLMF-MDA method (0.9390± 0.0015),
that of IMCMDA method (0.6572 ± 0.0052), that of UBiRW
method (0.9280 ± 0.0016) and that of GRNMF method
(0.9247 ± 0.0023). We observe that DNRLMF-MDA leads to
the highest performance among the four existing methods.
It may be the DNRLMF-MDA method adopts a dynamic
neighborhood regularized logistic matrix factorization method to
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TABLE 2 | The AUC values for the models on different databases by randomly zeroing cross validation.

Methods HMDD2.0-You HMDD2.0-Yan HMDD2.0-Lan HMDD3.0

MDN-NMTF 0.9335 ± 0.0037 0.9409 ± 0.0030 0.9391 ± 0.0033 0.9435 ± 0.0021

MDN-NMTF2 0.9354 ± 0.0035 0.9424 ± 0.0033 0.9415 ± 0.0033 0.9467 ± 0.0020

DNRLMF-MDA 0.9301 ± 0.0036 0.9384 ± 0.0031 0.9369 ± 0.0030 0.9390 ± 0.0015

IMCMDA 0.8285 ± 0.0068 0.8045 ± 0.0062 0.7216 ± 0.0072 0.6572 ± 0.0052

UBiRW 0.9196 ± 0.0036 0.9191 ± 0.0030 0.9198 ± 0.0032 0.9280 ± 0.0016

GRNMF 0.9031 ± 0.0049 0.9153 ± 0.0045 0.9157 ± 0.0044 0.9247 ± 0.0023

It can be seen from the picture that the AUC values of our methods MDN-NMTF and MDN-NMTF2 on four datasets are both higher than the other four methods, and our
extended method MDN-NMTF2 is a little higher than the original method MDN-NMTF. The highest AUC values of all methods in different datasets are in bold.

FIGURE 2 | The ROC curves of MDN-NMTF and other four methods for 14 diseases on HMDD2.0-Yan Dataset. The figure shows that the ROC curves of
MDN-NMTF in 14 diseases are all higher than that of the other four methods.

predict potential miRNA-disease associations. Both our MDN-
NMTF and MDN-NMTF2 methods and the DNRLMF-MDA
method utilize the dynamic neighborhood regularized restriction
to construct the miRNA and disease feature vectors. We observe

that our MDN-NMTF and MDN-NMTF2 methods outperform
DNRLMF-MDA. It can be partially attributed to the high quality
of miRNA and disease features extracted by our MDN-NMTF
and MDN-NMTF2 method from the heterogeneous network
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TABLE 3 | AUC values of MDN-NMTF and other four compared methods for the
14 diseases on HMDD2.0-Yan Dataset.

Disease name MDN-NMTF DNRLMF-MDA IMCMDA UBiRW GRNMF

Breast neoplasms 0.8732 0.8274 0.8340 0.8194 0.8183

Non-small-cell lung
carcinoma

0.8989 0.8748 0.8658 0.8614 0.8582

Renal cell
carcinoma

0.8699 0.8089 0.7936 0.7592 0.7846

Glioblastoma 0.8740 0.8280 0.8414 0.8248 0.8336

Heart failure 0.8528 0.7797 0.7864 0.7962 0.8120

Hepatocellular
carcinoma

0.8408 0.7585 0.7588 0.7916 0.7846

Lung neoplasms 0.9207 0.9077 0.8963 0.8922 0.8885

Melanoma 0.8898 0.8375 0.8211 0.8216 0.8251

Neoplasms 0.9555 0.9253 0.9227 0.9223 0.9264

Ovarian neoplasms 0.9262 0.8941 0.8863 0.8835 0.8885

Pancreatic
neoplasms

0.9274 0.9035 0.8943 0.8886 0.9057

Prostatic
neoplasms

0.8919 0.8623 0.8395 0.8184 0.8261

Stomach
neoplasms

0.8641 0.8054 0.8164 0.8055 0.8071

Colorectal
neoplasms

0.8899 0.8292 0.8350 0.8463 0.8425

The table shows that the AUC values of MDN-NMTF in 14 diseases are all higher
than that of the other four methods. The highest AUC values of all methods in
different datasets are in bold.

under the consideration of the networks’ module properties.
MDN-NMTF2 employs the miRNA and disease features
extracted by MDN-NMTF method to partition miRNA and
disease modules. It infers potential miRNA-disease associations
by considering the miRNAs’ neighbors and diseases’ neighbors
in the same modules, which makes the MDN-NMTF2 method
achieves a clear improvement than the MDN-NMTF method
when predicting the missing miRNA-disease associations.

Besides, we test the performance of each method on 14
common diseases related to at least 110 miRNAs. Figure 2
illustrates the Receiver operating characteristics curves of
each method on the 14 disease. Table 3 GRNMF lists the
corresponding area under the curves (AUC). Both results show
that MDN-NMTF outperforms the other four methods for all
the 14 diseases.

Single-Column Zeroing Cross Validation
It still is a challenging task to infer miRNA associations for a new
disease. To assess whether the MDN-NMTF and MDN-NMTF2
methods can successfully predict related miRNA for new diseases,
we perform single-column zeroing cross-validation. Table 4 lists
the AUC values of different methods on four datasets. The
AUC values of MDN-NMTF and MDN-NMTF2 still control the
highest two in the four datasets. Compared to DNRLMF-MDA
that has relatively better performance among the four existing
methods, the MDN-NMTF method achieves 1.04% improvement
on HMDD2.0-You dataset, 0.37% improvement on HMDD2.0-
Yan dataset, 0.72% improvement on HMDD2.0-Lan dataset, and
1.18% improvement on HMDD3.0 dataset. The results prove
that our methods considering the intrinsic module structure of
miRNA and disease networks can extract the high quality of
miRNA and disease features to predict related miRNAs for new
diseases successfully. We observe that MDN-NMTF2 has a little
lower performance than MDN-NMTF across the four datasets.
It may be MDN-NMTF2 fails to infer the associations for new
disease from the miRNA in the same modules.

Case Study
To further illustrate the performance of MDN-NMTF, we
evaluate its miRNA prediction ability for some cancer types,
such as Stomach Neoplasms (gastric Neoplasms) and Lymphoma.
The dbDEMC database and miRCancer database are used as the
benchmark datasets.

Among cancer-related deaths worldwide, Stomach Neoplasms
ranks the third. Increasing evidence indicates that many
miRNAs interact with Stomach Neoplasms by regulating the
related genes of Stomach Neoplasms. Table 5 demonstrates
the top 50 predicted novel Stomach Neoplasms-related
miRNAs predicted by MDN-NMTF on HMDD2.0-Yan
dataset and the corresponding evidence. Table 5 shows
35 of the 50 miRNAs are validated by dbDEMC database
and miRCancer database. The remaining 15 miRNAs are
all found to be related to human diseases in the literature.
miR-181b modulates multidrug resistance by targeting BCL2
in human cancer cell lines (Zhu et al., 2010). MicroRNA-
125b affects the proliferation of gastric cancer cells (Yang
et al., 2013). miR-15b and miR-16 modulate multidrug
resistance by targeting BCL2 in human gastric cancer cells
(Xia et al., 2008). miR-101-2, miR-125b-2, and miR-451a act

TABLE 4 | The AUC values of each method on four different datasets by single-column zeroing cross validation.

Methods HMDD2.0-You HMDD2.0-Yan HMDD2.0-Lan HMDD3.0

MDN-NMTF 0.8570 ± 0.1223 0.8482 ± 0.1265 0.8445 ± 0.1339 0.8917 ± 0.1108

MDN-NMTF2 0.8561 ± 0.1240 0.8473 ± 0.1292 0.8447 ± 0.1342 0.8896 ± 0.1142

DNRLMF-MDA 0.8482 ± 0.1355 0.8451 ± 0.1431 0.8385 ± 0.1487 0.8813 ± 0.1181

IMCMDA 0.8329 ± 0.1297 0.8214 ± 0.1290 0.8158 ± 0.1357 0.8781 ± 0.1308

UBiRW 0.8512 ± 0.1343 0.8403 ± 0.1356 0.8326 ± 0.1499 0.8794 ± 0.1341

GRNMF 0.7833 ± 0.1505 0.7504 ± 0.1618 0.7895 ± 0.1465 0.8245 ± 0.1502

The table lists the AUC values of different methods on four different datasets. The AUC values of MDN-NMTF and MDN-NMTF2 are still the highest two. The results prove
that our method considering the intrinsic module structure of miRNA and disease networks can improve the performance on miRNA-disease association predictions. The
bold AUC values represent the highest AUC value of all method in the four different datasets.
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TABLE 5 | Top 50 Related miRNAs of Stomach Neoplasms predicted by
MDN-NMTF on HMDD2.0-Yan Dataset.

Top1-25miRNA Evidence Top26-50miRNA Evidence

hsa-mir-21 dbDEMC,
miRCancer

hsa-mir-199a-1 PMID:22956063

hsa-mir-214 dbDEMC,
miRCancer

hsa-mir-22 dbDEMC,
miRCancer

hsa-mir-200b dbDEMC,
miRCancer

hsa-mir-375 dbDEMC,
miRCancer

hsa-mir-200c miRCancer hsa-mir-486 PMID:21415212

hsa-mir-182 dbDEMC,
miRCancer

hsa-mir-106a dbDEMC,
miRCancer

hsa-mir-221 dbDEMC,
miRCancer

hsa-mir-16-1 miRCancer

hsa-mir-181b-1 PMID:20162574 hsa-mir-222 dbDEMC,
miRCancer

hsa-mir-148a dbDEMC,
miRCancer

hsa-mir-101-1 PMID:22450781

hsa-mir-34c miRCancer hsa-mir-10b dbDEMC,
miRCancer

hsa-mir-146b miRCancer hsa-mir-195 dbDEMC,
miRCancer

hsa-mir-34a dbDEMC,
miRCancer

hsa-mir-141 dbDEMC,
miRCancer

hsa-mir-125b-1 PMID:23128435 hsa-mir-101-2 PMID:26458815

hsa-mir-200a dbDEMC,
miRCancer

hsa-mir-146a miRCancer

hsa-mir-31 dbDEMC,
miRCancer

hsa-mir-199a-2 PMID:22956063

hsa-mir-145 dbDEMC,
miRCancer

hsa-mir-106b dbDEMC,
miRCancer

hsa-mir-126 dbDEMC,
miRCancer

hsa-mir-143 dbDEMC,
miRCancer

hsa-mir-34b miRCancer hsa-mir-124-1 PMID:21365509

hsa-mir-16-2 PMID:18449891 hsa-mir-124-2 PMID:21365509

hsa-mir-125b-2 PMID:26458815 hsa-mir-103a-2 PMID:20726036

hsa-mir-107 dbDEMC,
miRCancer

hsa-mir-130a dbDEMC,
miRCancer

hsa-mir-223 dbDEMC,
miRCancer

hsa-mir-27b dbDEMC,
miRCancer

hsa-mir-183 dbDEMC,
miRCancer

hsa-mir-155 dbDEMC,
miRCancer

hsa-mir-27a dbDEMC,
miRCancer

hsa-mir-335 miRCancer

hsa-mir-25 dbDEMC,
miRCancer

hsa-mir-151a PMID:22956063

hsa-mir-181b-2 PMID:22539488 hsa-mir-7-1 PMID:22139078

From the table, 35 of the 50 miRNAs are validated by dbDEMC database and
miRCancer database. The remaining 15 miRNAs are all found to be disease-related
in the literature.

as potential tumor suppressors in primary GCs as well as in
GC-derived AGS cells (Riquelme et al., 2016). MicroRNA-181b
targets cAMP-responsive element-binding protein 1 in gastric
adenocarcinomas (Chen L. et al., 2012). Plasma miRNA-199a-3p
and miRNA-151-5p are significantly elevated (p < 0.05) and
are significantly reduced after surgery (p < 0.05) in gastric
cancer patients (Li et al., 2012). Genomic loss of miR-486
regulates tumor progression and the OLFM4 antiapoptotic factor

TABLE 6 | Top 50 Related miRNAs of Lymphoma predicted by MDN-NMTF on
HMDD2.0-Yan Dataset.

Top1-25 miRNA Evidence Top26-50 miRNA Evidence

hsa-mir-17 dbDEMC,
miRCancer

hsa-mir-363 dbDEMC

hsa-mir-20a dbDEMC,
miRCancer

hsa-mir-150 dbDEMC,
miRCancer

hsa-mir-155 dbDEMC,
miRCancer

hsa-mir-126 dbDEMC

hsa-mir-18a dbDEMC,
miRCancer

hsa-mir-200b dbDEMC

hsa-mir-19a dbDEMC,
miRCancer

hsa-mir-184 dbDEMC

hsa-mir-19b-1 miRCancer hsa-mir-200a dbDEMC

hsa-mir-92a-1 PMID:21383985 hsa-mir-499a PMID:19690137

hsa-mir-15a dbDEMC,
miRCancer

hsa-mir-34a dbDEMC

hsa-mir-146a dbDEMC hsa-mir-210 dbDEMC

hsa-mir-19b-2 miRCancer hsa-mir-200c dbDEMC

hsa-mir-16-1 miRCancer hsa-mir-205 dbDEMC

hsa-mir-16-2 miRCancer hsa-mir-145 dbDEMC

hsa-mir-21 dbDEMC,
miRCancer

hsa-mir-24-1 PMID:19177201

hsa-mir-92a-2 PMID:21383985 hsa-mir-125b-1 dbDEMC

hsa-mir-181a-1 dbDEMC hsa-mir-20b dbDEMC

hsa-mir-181a-2 PMID:21910161 hsa-mir-125a dbDEMC

hsa-mir-26a-2 dbDEMC hsa-mir-124-1 PMID:22395483

hsa-mir-26a-1 PMID:19197161 hsa-mir-141 dbDEMC

hsa-mir-122 dbDEMC hsa-mir-125b-2 PMID:23527180

hsa-mir-101-1 PMID:21960592 hsa-mir-18b dbDEMC

hsa-mir-101-2 PMID:21960592 hsa-mir-138-2 dbDEMC

hsa-mir-342 dbDEMC hsa-mir-29c dbDEMC

hsa-mir-486 dbDEMC hsa-mir-138-1 PMID:21960592

hsa-mir-203 dbDEMC hsa-mir-708 dbDEMC

hsa-mir-223 dbDEMC,
miRCancer

hsa-mir-143 dbDEMC

From the table, 39 of the 50 miRNAs are validated by dbDEMC database and
miRCancer database. The remaining 11 miRNAs are all found to be disease-related
in the literature.

TABLE 7 | miRNA modules and disease modules detected by MDN-NMTF2 on
HMDD2.0-Yan Dataset.

Modules NM AvgSize AvgSim AvgPc

miRNA 127 40 0.4409 82.20%

disease 142 22 0.0939 61.28%

This table list the detailed information of the miRNA modules and disease modules
detected by MDN-NMTF2 on the HMDD2.0-Yan dataset. Here, NM is the number
of modules with more than one member. AvgSize is the average size of the
modules. AvgSim is the average function similarity of the members in the modules.
AvgPc is the average percentage of miRNAs (diseases) in the same modules share
associations with common diseases (miRNA). It can be seen from the table that the
average function similarity of the members in the miRNA modules was 0.4409, the
values in the disease modules was 0.0939. Meanwhile, average 82% of miRNAs in
the same module are related to the same disease and 61% of the disease in the
same module is related to the same miRNA.

in gastric cancer (Oh et al., 2011). Lack of microRNA-101 causes
E-cadherin functional deregulation through EZH2 upregulation
in intestinal gastric cancer (Carvalho et al., 2012). Significant
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FIGURE 3 | An example of miRNA module detected by MDN-NMTF2 on HMDD2.0-Yan Dataset. The figure shows that all 36 miRNAs in the module are related to
Leukemia Myeloid Acute.

FIGURE 4 | An example of disease module detected by MDN-NMTF2 on HMDD2.0-Yan Dataset. The figure shows that 12 of 13 diseases in the module are related
to a miRNA has-mir-124-1.

associations are found between hypermethylation of the hsa-
miR-124a and tumor size, differentiation, lymphatic metastasis,
and invasion depth (Pei et al., 2011). miR-103, miR-21, miR-145,
miR-106b, miR-146a, and miR-148a separate node-positive from
node-negative gastric cancers (Tchernitsa et al., 2010). miR-7 is a
novel mechanism by which the inflammatory response promotes
gastric tumorigenesis (Kong et al., 2012).

Lymphoma is a type of cancer that begins in immune system
cells. It is one of the top 10 deadly diseases. Table 6 shows
the result of top 50 Lymphoma-related miRNAs detected by
MDN-NMTF on the HMDD2.0-Yan dataset. It shows that 39
of the 50 miRNAs are validated by dbDEMC database and
miRCancer database. The remaining 11 miRNAs are all found
to be disease-related in the literature. The plasma miR-92a value

could be a novel biomarker not only for diagnosis but also for
monitoring lymphoma patients after chemotherapy (Ohyashiki
et al., 2011). Compared with healthy canine peripheral blood
mononuclear cells and normal lymph nodes, mir-181a shows a
decreased expression level (Uhl et al., 2011). miR-26a is repressed
by MYC (Sander et al., 2009). The down-regulation of miR-
16, miR-26a, miR-101, miR-29c, and miR138 in the t(14;18)-
negative FL (follicular lymphoma) subset is associated with
profound mRNA expression changes of potential target genes
involving cell cycle control, apoptosis and B-cell differentiation.
miR-16 targets CHEK1 showing increased expression on the
protein level in t(14;18)-negative FL, while reducing TCL1A
expression, in line with a partial loss of the germinal center
B-cell phenotype in this FL subset (Leich et al., 2011). mir-499a
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is deregulated hypermutations (Navarro et al., 2009). miR-24
is overexpressed (Gibcus et al., 2009). A distinct set of five
microRNAs (miR-150, miR-550, miR-124a, miR-518b, and miR-
539) is shown to be differentially expressed in gastritis as opposed
to MALT lymphoma (Thorns et al., 2012). miR-125b-5p not
only regulates tumor growth in vivo but also increases cellular
resistance to proteasome inhibitors via modulation of MAD4
(Manfè et al., 2013).

Module Analysis
To probe why the modules help the MDN-NMTF2 to obtain
better result, we analyze the miRNA or disease modules
detected by MDN-NMTF2 on the dataset HMDD2.0-Yan
(Supplementary Texts 3, 4). Table 7 lists the details of these
modules. There are 127 miRNA modules with more than one
member after removing the modules. The average size of these
modules is 40. There are 142 disease modules with more than
one member and their average size is 22. The average function
similarity of the members in the miRNA modules was 0.4409,
which was 113.20% higher than the average value of 0.2068 of
the whole miRNA function similarity network (Supplementary
Text 5). Similarly, the average function similarity of the disease
modules was 0.0939, which was 160.11% higher than the average
value of 0.0361 of the whole disease function similarity network
(Supplementary Text 6). It suggests that the miRNA modules
and disease modules detected by MDN-NMTF2 consist of
members with similar functions. We also find that average 82%
of miRNAs in the same module are related to the same disease
(Supplementary Text 7). Figure 3 shows an example of miRNA
module that consists of 36 miRNAs. All of these miRNAs are
associated with Leukemia Myeloid Acute. On the other hand,
61% of the disease in the same module relate to the same
miRNA (Supplementary Text 8). Figure 4 illustrates an example
of disease module with 13 members. 12 of 13 diseases in the
module relate to a common miRNA has-mir-124-1 that expresses
in human embryonic stem cells. Hence, the MDN-NMTF2 infers
miRNA-disease associations from miRNAs or diseases in the
same modules, which helps it achieve better prediction results.

CONCLUSION

Inferring miRNA-disease associations is a crucial step to
manifest principles of disease prevention, disease diagnosis
and drug development. In this study, we have presented a
novel method named MDN-NMTF to predict miRNA-disease
associations. It constructs a heterogeneous network of disease
similarity network, miRNA functional similarity network and
a known miRNA-disease association network. After that, it
learns the vector representation for miRNAs and diseases in
the heterogeneous network by a matrix tri-factorization method
under the constraint of the module structure and dynamic
neighborhood. Finally, MDN-NMTF predicts novel miRNA-
disease association probability by the product of the miRNA
and disease latent vectors. At the same time, we also extend
MDN-NMTF to a new version (called MDN-NMTF2) by using
the modular information. Compared with the previous network

propagation-based method, like UBiRW, MDN-NMTF, and
MDN-NMTF2 project miRNAs and diseases to a latent space.
It can successfully integrate diverse biological information of
miRNAs and diseases to predict miRNA-disease associations.
Compared with the network embedding-based methods, like
DNRLMF-MDA, IMCMDA and GRNMF, and MDN-NMTF and
MDN-NMTF2 consider the module properties of miRNAs and
diseases in the course of learning vector representation, which
can maximally preserves the heterogeneous network structural
information and the network properties. In particular, MDN-
NMTF2 not only considers the modularity in the feature learning
process but also uses the miRNA module and disease module
information when reconstructing the miRNA-disease association
matrix. We test our methods and the other four existing methods
on four different datasets by implementing randomly zero cross-
validation and single-column zero cross-validation. The results
show that our methods outperform the state-of-the-art methods
not only on predicting the missing miRNA-disease associations
but also on recommending related miRNA for new diseases.
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