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Abstract High frequencies of mutant mitochondrial DNA (mtDNA) in human cells lead to cellular 
defects that are associated with aging and disease. Yet much remains to be understood about the 
dynamics of the generation of mutant mtDNAs and their relative replicative fitness that informs their 
fate within cells and tissues. To address this, we utilize long-read single-molecule sequencing to 
track mutational trajectories of mtDNA in the model organism Saccharomyces cerevisiae. This model 
has numerous advantages over mammalian systems due to its much larger mtDNA and ease of artifi-
cially competing mutant and wild-type mtDNA copies in cells. We show a previously unseen pattern 
that constrains subsequent excision events in mtDNA fragmentation in yeast. We also provide 
evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to 
persistent diversity within individual cells. Finally, we show that measurements of relative fitness of 
mtDNA fit a phenomenological model that highlights important biophysical parameters governing 
mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large 
structural changes in genomes that we show are applicable to more complex organisms like humans.

Editor's evaluation
This work provides further insight into long-time outstanding questions in the field of mitochondrial 
genetics using long-read sequence analysis and biophysical modeling. Specifically, the authors show 
how replication origins in mitochondrial DNA are recombination hotspots that can result in excision 
cascades, that lead to a variety of different mitochondrial mutants and in some cases even hetero-
plasmic cells. Finally, crossing wild-type cells with various mitochondrial mutants allowed the devel-
opment of a model for the suppressivity (fitness) of different mitochondrial variants that suggests 
that the density of replication origins in different repeated units is a major determinant of mtDNA 
suppressivity.

Introduction
The mitochondrial DNA (mtDNA) in eukaryotic cells encodes a subset of enzymes involved in 
cellular respiration. Interestingly, the integrity of mtDNA has been implicated in critical biological 
processes other than respiration such as in apoptosis, trace element and intermediary metabolism, 
heme synthesis, and iron-sulfur cluster biogenesis (Veatch et al., 2009). Because mtDNA exists in 
multiple copies within numerous mitochondrial compartments, localized mtDNA damage produces 
heteroplasmic states with coexisting mutant and wild-type mtDNA in cells. Both intracellular mtDNA 
dynamics and intercellular selection then ultimately shape the fate of cell populations, with mtDNA 
damage resulting in cellular defects in single-celled organisms such as yeast and aging and disease in 
multicellular organisms such as humans.

In humans, large mtDNA deletions accumulate during the course of aging in skeletal muscle and 
brain tissue (Fayet et al., 2002; Kraytsberg et al., 2006; Payne and Chinnery, 2015), and result in 
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observable cellular defects (Chan, 2006). The same types of deletions have also been implicated in 
numerous diseases, including Parkinson’s disease (Bender et al., 2006). While these mtDNA dele-
tions have been widely observed, much remains to be understood about the dynamics that lead to 
the propagation of these deletions within cells and resultantly in the tissues of humans. This is partly 
because of the strong dependence of human cells on mtDNA for their survival, and the complexities 
in artificially creating heteroplasmy or modifying mtDNA in mammalian systems (Mok et al., 2020). 
To address some outstanding questions regarding the dynamics of mutant mtDNA, in this article, we 
explore mtDNA dynamics using yeast as a model organism. Yeast is particularly well suited to study 
mtDNA dynamics due to the dispensability of mtDNA and because heteroplasmic cells containing 
mutant and wild-type mtDNA are easy to artificially construct.

In yeast, mtDNA deletions were first linked to the Petite phenotype (Ephrussi, 1949; Ephrussi, 
1953; Ephrussi et al., 1949). Petite colonies are smaller than their wild-type counterparts under respi-
ration conditions due to mtDNA deletions that render cells incapable of respiration. These deletions 
are due to destructive recombination events between short repeated homology in mtDNA that excise 
portions of the wild-type genome (Bernardi et al., 1976; Bernardi and Bernardi, 1980; Marotta 
et al., 1982; de Zamaroczy et al., 1983). Excision events are followed by selection for sub-genomic 
(nonfunctional) mtDNA fragments that contain a high density of replication origins (Goursot et al., 
1980; Blanc and Dujon, 1980; de Zamaroczy et  al., 1979; de Zamaroczy et  al., 1981). When 
subgenomic fragments have replication origin densities higher than the larger wild-type genome, 
they consistently outcompete or ‘suppress’ wild-type genomes within cells. Suppressivity, which is a 
measure of this replicative advantage of Petite mtDNAs over wild-type, was shown to correlate with 
origin density and was reduced when replication origins were disrupted or absent, constituting the 
rules of suppressivity (de Zamaroczy et al., 1981; Mangin et al., 1983; Bernardi, 2005). Altogether, 
rolling circle replication coupled with this excision and selection for replication origins results in the 
formation of complex concatemer structures in the mtDNA of Petite cells that often contain multiple 
replication origins from distant locations of the wild-type genome (Locker et al., 1974; Locker et al., 
1979; Faugeron-Fonty et al., 1979).

Near the time of the complete sequencing of the mitochondrial genome of yeast in 1998 (Foury 
et al., 1998), work on the structural details of mtDNA that lead to the aforementioned discoveries 
in Petites appeared to wane. However, a number of open questions about the dynamics of Petite 
mtDNAs, which are at their core a result of mtDNA deletions, remain to be explored fully.

Regarding the structure and generation of Petite mtDNA, three questions remained to be 
addressed. These include: (1) What drives mtDNA excision events in Petites to cluster near replication 
origins? Previous work shows that excisions occur all throughout the genome but with a higher density 
near replication origins (Bernardi and Bernardi, 1980; de Zamaroczy et al., 1983; de Zamaroczy and 
Bernardi, 1986; Marotta et al., 1982; Osman et al., 2015). The interplay between location-specific 
excision frequencies and selection for origin-containing fragments remains entangled. (2) What is the 
nature and dynamics of the ongoing excision cascades in Petites, that is, how do subsequent exci-
sions relate to previous excisions? Previous work in Bernardi et al., 1976; Lewin et al., 1978; Lewin 
et al., 1979; Locker et al., 1979 showed qualitatively that persistent heterogeneity in mtDNA content 
was present in the sequencing of Petite strains, pointing to continuing excision events. However, 
these works did not provide a quantitative description of this heterogeneity or explore the relation-
ship between the structure of the coexisting mtDNAs. (3) Are the contentious and rare non-periodic 
mtDNA structures observed in yeast real? The studies of Heyting et  al., 1979; Bos et  al., 1980 
provides evidence for non-periodic structures, which is unexpected given that rolling circle replication 
produces periodic, tandemly duplicated structures. The work in Faugeron-Fonty et al., 1983 refutes 
these observations, providing a conflicting hypothesis which remains to be reconciled.

Concerning the distribution of mtDNAs at a cell population level, another open question is: (4) 
How is the observed structural heterogeneity of mtDNA in yeast colonies partitioned among indi-
vidual cells? The work in Lewin et al., 1978; Lewin et al., 1979; Locker et al., 1979 points to homo-
plasmic contributions to Petite-colony heterogeneity. The extent of homoplasmic and heteroplasmic 
contributions to colony-level heterogeneity remains to be quantified.

And finally, given an understanding of both mtDNA structure dynamics and its partitioning in popu-
lations, the final question we address is related to the structure-function relationship of mtDNA: (5) 
What contributes to the fitness of mtDNA structures, and how does structure inform suppressivity? 

https://doi.org/10.7554/eLife.76557
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The suppressivity rules provided previously in de Zamaroczy et  al., 1981, which described how 
mtDNA structure influenced suppressivity, were limited to reduced Petite genomes with small sizes 
and relatively high suppressivities. Do these same rules explain suppressivity across a larger range of 
genome structures and suppressivities, and can we construct a biophysical model of suppressivity that 
relies on these rules?

In this study, we address each of these long-standing questions with new long-read sequencing 
technology and accompanying structural inference methods. We highlight some advantages of 
Nanopore sequencing in addressing these questions and future ones, but also technical challenges 
specific to structure reconstruction with Nanopore sequencing of the mtDNA in yeast. Among new 
answers to all of the aforementioned questions, we showcase a previously unseen pattern that 
constrains subsequent excision events in generating new Petite mtDNA structures from existing ones, 
settle contention in the literature surrounding the existence and generation of non-periodic ‘mixed’ 
Petite structures, and propose a phenomenological model of suppressivity that highlights important 
biophysical parameters governing mtDNA fitness. Finally, we connect these observations in yeast to 
mtDNA deletions in humans which exhibit remarkably similar patterns.

Results
Overview of the structure of Grande and Petite mtDNA
To quantify mtDNA structure and their dynamics, we opted to sequence both Petite and Grande 
colonies with a Nanopore MinION single-molecule sequencing platform. We expected the long reads 
generated from this sequencing technology to improve structure reconstruction for both high and 
low frequency structures compared to short-read sequencing approaches. In total, we sequenced 
38 Petite colonies derived from 9 spontaneous Petite colonies through passaging and 10 Grande 
(wild-type) colonies of the same Saccharomyces cerevisiae strain. Four of these Grande colonies were 
cultured under non-fermentable media (YPG), and six in fermentable media (YPAD). Starting with 
nine spontaneous Petite colonies, each colony was passaged twice onto new media (YPAD), storing 
and culturing three colonies at each passage. This generated families of Petite colonies, with nine 
colonies sharing each spontaneous progenitor after two passages (Figure 1a). The suppressivities 
of all colonies sharing a progenitor were measured (see Materials and methods), but only a subset 
was sequenced (dotted circles in Figure 1a). Subfamilies, labeled in Figure 1a as a subscript, were 
grouped based on differing mtDNA content from other members in the same family. The coverage 
curves from the sequencing of each Petite colony and a subset of Grande colonies are shown in 
Figure 1b and provide a coarse picture of their mtDNA content. It is evident that some Petite colonies 
within families, such as families 1 and 4, have differing mtDNA content but share the same sponta-
neous Petite colony progenitor. This diversity is most likely the result of early mtDNA instability in 
spontaneous progenitor colonies that segregate into different cells through genome bottlenecks and 
are sampled through passaging. It is also possible that this diversity is a result of ongoing mtDNA 
changes during the growth of the colony before sequencing. Nevertheless, comparing the mtDNA 
content in colonies that share second passage progenitors reveals that two passages followed by 
culturing (~32 generations) was sufficient to homogenize mtDNA content in all cases except family 1. 
Family 1 we believe to be a special case where early mtDNA instability occurred in the spontaneous 
progenitor, and then again in the second passage progenitor of colonies 1b and 1c or during their 
growth. Given that we sampled such a case in our experiments suggests roughly 1 in 10 chances of 
such events, but would require a larger study to quantify it.

Mapping of the mtDNA to a reference sequence, followed by careful filtering of inverted dupli-
cation artifacts (Appendix 1—figure 1) and clustering of alignment breakpoint signals with a variety 
of parameters (see Materials and methods), revealed both inverted and non-inverted mtDNA break-
points in all Petite colonies and rare mtDNA breakpoints in Grande colonies. These breakpoint signals 
delineate sequence alignments that are collinear with the reference mtDNA sequence, but merged in 
such a way that disjoint alignment locations on the reference genome have been brought together. 
Non-inverted breakpoints indicate the merging of disjoint sequences in the reference from the same 
strand, or with the same orientation, while inverted breakpoints indicate the merging of disjoint 
mtDNA sequences on opposite strands (Figure 2a). Long reads with an average read length of 6 kbp 
and maximum length of 120 kbp directly revealed that these breakpoint signals were contributed by 

https://doi.org/10.7554/eLife.76557
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Figure 1. Overview of the experiment and observed mtDNA diversity in sequenced yeast colonies. (a) An overview of the architecture of the Petite 
colony sequencing experiment in this study. Nine spontaneous Petite colonies were passaged twice onto new media, culturing and storing three 
colonies for each passage. This produced families of colonies (indicated by color), where all colonies after two passages were derived from the same 
spontaneous Petite colony progenitor, but only a subset of colonies was cultured and then sequenced with a Nanopore MinION sequencing device 

Figure 1 continued on next page
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concatemer structures in Petites, composed of tandem repeats of sub-genome sized repeat units that 
had been excised from the wild-type genome and amplified into repeated structures (Figure 2b —
leftmost spiral). Grande reads also revealed concatemer structures manifested in reads as subsamples 
of genome-sized repeating units devoid of breakpoint signals (Figure 2b —rightmost spiral). These 
concatemer structures in Petites with sub-genome sized repeat units are consistent with the existing 
literature on mtDNA structure in Petites that relied on restriction digestion mapping and electron 
microscopy (Bernardi et al., 1975; Bernardi et al., 1976; Lewin et al., 1978; Locker et al., 1979; 
Faugeron-Fonty et al., 1979; Bernardi and Bernardi, 1980).

All Petite colonies contained at least one breakpoint signal and often a diverse set of breakpoints 
totaling 84 breakpoints across 38 Petite colonies, whereas in Grande colonies sequenced only 2 
had high confidence breakpoints detected, with a total of 3 breakpoints across 10 Grande colonies 
(Figure 2c and Appendix 1—figure 2). The diversity in location of mtDNA breakpoints within Petite 
families and breakpoint counts greater than the number of members of each family/subfamily also 
echo the diversity observed in the coverage plots but with more detail. These diverse breakpoint 
distributions within families indicate either structural diversity in the progenitor colony, continued 
changes in mtDNA structure resulting in subfamilies or coexisting structures in colonies, or multiple 
breakpoint signals within colonies indicating more complex mtDNA structures generated by multiple 
excision events.

What drives mtDNA excision events in Petites to cluster near 
replication origins?
The prevailing theory for the formation of Petites relies on sequence-specific illegitimate recombina-
tion within the wild-type DNA molecule between repeated GC clusters and AT stretches (Bernardi 
and Bernardi, 1980; de Zamaroczy et al., 1983; de Zamaroczy and Bernardi, 1986), which are 
prevalent in all noncoding regions of the mitochondrial genome in yeast. In particular, the extensive 
homology of the eight mitochondrial origins of replication and their inclusion of similar GC clusters (de 
Zamaroczy and Bernardi, 1986) suggest important regions for illegitimate recombinations. Evidence 
for hybrid origins resulting from recombination between adjacent origins in the wild-type genome 
have been seen in restriction digestion data (Marotta et al., 1982). Large structural variations and 
smaller mtDNA variations have also been observed in Illumina sequencing of Petites to cluster within 
origins and within close proximity to origins (Osman et al., 2015). Given that replication origins were 
implicated in previously observed Petite mtDNA excisions and a variety of mtDNA variations, we were 
curious to understand the involvement of replication origins across the diverse set of excision events 
we observed. Placing non-inverted breakpoint locations and replication origin locations on mitochon-
drial reference coordinates reveals the clustering of breakpoints near edges of interacting origins of 
the same orientation (Figure 3a). In fact, ~30% of breakpoints reside within replication origins, indi-
cating that the structures containing these breakpoints have origins that are perturbed by excisions, 
or hybrid origins. An additional ~20% of breakpoints reside within 275 bp of the edge of an origin. 
The remaining 50% of breakpoints are located from 275 bp to 3 kbp from the edge of an origin.

Next, we asked if this non-uniform pattern of excision revealed new rules for mtDNA fragmenta-
tion. Besides the potential role of homology of the replication origins, it has been noted that a high 
density of unperturbed replication origins in Petite structures result in a replication advantage for 
Petite mtDNAs over wild-type mtDNAs (Blanc and Dujon, 1980; de Zamaroczy et al., 1981; Mangin 
et al., 1983). In concatemer structures, this means that smaller repeated fragments containing repli-
cation origins are more fit than wild-type fragments when in competition with each other. This leads to 
a natural question of whether or not clustering near origins is due to higher frequency recombination 
within or near replication origins, or if it is due to selection on a pool of arbitrary excisions with selec-
tion for the resulting small fragments containing replication origins. To this end, we compared the 

(indicated by dotted circles). In addition to families, subfamilies are labeled as a subscript and grouped based on the predominant mtDNA structure 
present in these colonies according to sequencing results. (b) The sequencing coverage (arbitrary coverage scaling, consistent genome reference 
location) in all Petite colonies in addition to a subset of wild-type (WT), or Grande colonies sequenced. Ten Grande colonies were sequenced as a 
reference, four after growth under non-fermentable conditions (YPG), and six under fermentable conditions (YPAD). Border colors correspond to (a), and 
black borders are examples of Grande colony coverages.

Figure 1 continued
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Figure 2. The mtDNA in yeast exists as concatemers that are delineated by breakpoint signals in sequencing alignments. (a) A schematic of the 
definition of alignments and breakpoint signals. Alignments (which are sequences collinear with the reference genome) with their location on the 
reference are shown as colored arrows alongside the coordinates of alignment edges (a, b) and (c, d). A hypothetical read is shown below these 
alignments, indicating how the alignments are oriented with respect to each other and the coordinates of the alignment edges in contact that define 

Figure 2 continued on next page
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distribution of displacements between breakpoints and the closest replication origins (Figure 3b, blue 
curve) to three different models. In the first model (Figure 3b, orange curve), we plotted the same 
displacement distribution for uniform random mtDNA fragments, with a size distribution given by the 
sequencing data, placed on the reference mitochondrial genome. In the second model (Figure 3b, 
black curve), we plotted the displacement distribution for random fragments between perfect repeats 
of greater than 11 bp in the reference, which is motivated by the fact that excisions require perfect 
repeats or highly homologous regions. In the third model (Figure 3b, green curve), we plotted uniform 
random fragments as in the orange curve, with a length distribution from the sequencing data, but 
conditioned on spanning a portion of a randomly selected origin of replication. A schematic summa-
rizing these models is provided in Figure 3c.

The orange and black distribution captures the breakpoint displacements from origins expected 
from random excision events and no selection for replication origin containing fragments. Note 
that the similarity between the black and orange curves demonstrates the prevalence of repeated 
homology in the mitochondrial reference genome. The green curve captures random excision, but 
strong selection for small replication origin containing fragments due to the requirement for align-
ments to contain a portion of an origin in this model. The observed data agrees nicely with the green 
curve for most of the domain of the distribution. The empirical origin to breakpoint distributions and 
their agreement with the green model are also consistent across a variety of breakpoint clustering/
filtering parameter regimes, which have minor effects on the individual breakpoints extracted from the 
sequencing data, but little effect on these distributions (Appendix 1—figure 3, Appendix 2—table 
2). Thus, while we cannot exclude a model of non-random excisions favoring close origin proximity, 
the bulk of the minimum breakpoint to origin displacement distributions observed can be explained 
by random excision and strong selection for small origin containing fragments which is in agreement 
with the prevailing theory of Petite mtDNA formation.

What is the nature and dynamics of the ongoing excision cascades in 
Petites?
Next, we were curious to know if we could observe ongoing excision cascades and whether or not 
subsequent excisions in Petites differed from initial excisions in Grandes that generated the first Petite 
mtDNAs. In 16 Petite samples sequenced from families {1a, 1b, 2, 3, 8a} there were detectable levels 
of repeated structures that differed from the ‘primary’ mtDNA structures which span the longest 
portion of the reference genome and generally contribute to the majority of mtDNA (see Materials 
and methods on details of structure reconstruction). These lower frequency structures, or ‘alternate’ 
structures as they will be described from here on, were found to contribute from 0.1% to 59% of 
total mitochondrial content in these samples. Following multiple passagings of Petite colonies before 
sequencing, which would rapidly dilute any initially coexisting structures due to mtDNA bottlenecks 
(Ling and Shibata, 2004), these alternate structures most likely result from subsequent excisions of 
the primary structure during culturing. Such ‘excision cascades,’ where further excisions act on existing 
Petite fragments were hypothesized and discussed by Locker et al., 1979; Marotta et al., 1982; 
Bernardi, 2005, where it was suggested that the varying levels of alternate structures will depend 

the breakpoints denoted as arcs. Non-inverted breakpoints represent merged alignments from disjoint locations on the reference that map to the 
same strand of DNA (red arcs), while inverted breakpoints represent the same disjoint merging of alignments but with different orientation (black arcs). 
(b) Representative examples of mtDNA structures from sequencing reads in Petite and Grande samples. The top of this panel shows the mitochondrial 
reference and annotated features of the genome in colored blocks. Below the reference are long sequencing reads wrapped around themselves in a 
spiral that display the same annotated features as colored blocks. These spiral plots also include red bars which indicate breakpoint locations. Black 
regions indicate unmapped portions near the ends of the read due to adapters and barcodes. The spiral on the left is a sequencing read from a Petite 
colony, showing that two origins of replication have been excised from the wild-type genome and tandemly repeated in a concatemer structure. The 
spiral on the right is a read from a Grande colony showing a portion of a linear segment of the genome, without breakpoints (red bars) except at the 
ends of the reads which mark the end of alignments. (c) Summary of mtDNA breakpoints detected across 38 Petite colonies, that were derived from 9 
spontaneous petite colonies through passaging (above diagonal), and 10 Grande colonies (below diagonal). In this scatter plot, each marker represents 
the centroid of a cluster of mtDNA breakpoint signals in reference coordinates from reads in a single sample. X and Y coordinates of each marker are 
the regions of mtDNA that interact to produce the breakpoint. The numbers of breakpoints in each family are indicated in the legend, as well as the 
numbers of colonies in each family sequenced. Also indicated are the regions on the reference genome that make up the repeating unit in the Petite 
read shown in (b) and the subsection of the reference genome that contributes to the Grande read in (b).

Figure 2 continued
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Figure 3. Replication origin and mtDNA excision proximity explained by random excision and selection for origin-dense fragments. (a) The 
colocalization of replication origins and alignment breakpoint locations due to excisions. Black dots represent the centroids of breakpoint clusters 
(see Materials and methods), and blue and green shading highlights replication origins and their orientation. Darker black dots are due to overlaps 
of breakpoints, indicating high densities of breakpoints at these locations. (b) A cumulative plot of the displacements between breakpoint edges 
and closest origins of replication, where the blue curve shows this enrichment of breakpoints near replication origins (top left, (c)). The orange curve 
represents a simulation of uniform random alignments placed on the reference genome following the true alignment length distribution in the data 
(bottom left, (c)). The black curve represents the simulation of alignments between randomly selected perfect repeats ≥11 bp on the reference sequence 
(bottom right, (c)). The green curve agrees much better with the data (blue) curve, which is the same simulation of random alignments placed on the 
reference following the length distribution of the data, but with the requirement that these alignments span some portion of a randomly selected origin 
of replication (top right, (c)). (c) A schematic of the models plotted in (b). Alignments are denoted as arrows, with distances between alignment edges 

Figure 3 continued on next page
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on their generation rate and selective advantage in replication over the primary structure. Part of 
what makes the dynamics of mtDNA within these cascades interesting is the multiplicity afforded by 
a large variety and number of potential excisions. Particular excisions that bring regions of homology 
together may open up entirely new trajectories of excision dynamics that were previously unlikely or 
inaccessible due to mtDNA conformation.

An extreme example of such an excision cascade is given in Figure 4a, where both primary and 
alternate alignments are shown on the reference mitochondrial genome location in addition to 
sequencing coverage. In Figure 4b, the structures of the repeated units composed of these align-
ments are also shown alongside their calculated mitochondrial content frequencies (see Materials and 
methods—Primary/alternate structural frequency calculations). The first thing to note is that the loca-
tions of alignments extracted from our structural detection pipeline that are involved in repeat units 
align well with the total sequencing coverage in Figure 4a. This diversity of alignments in Figure 4a 
is also corroborated by colonies that share the same progenitor. Each of the coverage curves of 
members of family 1 in Figure 1b share peaks with the coverage curve in Figure 4a. Second, there 
is significant diversity in the type of repeat units and necessary steps in their generation which stitch 
together these alignments in Figure 4b: Repeat unit #1 shown in Figure 4b (yellow and pink) is an 
example of a secondary excision across a segment of mtDNA containing the preexisting primary 
breakpoint, as both alignments come from opposite ends of the primary alignment and are stitched 
together. This immediately suggests that the excision occurred in mtDNA in a concatemer form, and 
across the repeat unit breakpoint (green and purple Type II excision; Figure 4c). Repeat unit #2 (blue, 
maroon, and green) also spans the primary breakpoint, but has an additional alignment in a different 
orientation that either resulted from two excisions or recombination of different repeat units (green, 
purple, and gray Type II excision; Figure 4c). Repeat unit #3 (green) is an example of an excision within 
the primary repeat unit and away from its edges (Type I excision; Figure 4c). Repeat unit #4 (purple) 
is an example of a repeat unit that shares only one edge with the primary alignment, but with this 
edge interacting with a different region of the genome producing a new alignment (Type III excision; 
Figure 4c).

In Figure 4c, we provide a schematic of the types of alternate repeat units observed across all 
samples and the plausible mechanisms of generation. We classify the resulting alternate repeat 
unit into three easily distinguishable classes in our data: Type I alternate repeat units are regions 
excised from the interior of primary repeat units. Type II alternate repeats contain or span the primary 
breakpoint, resulting from an excision across the breakpoint between two primary repeat units in a 
concatemer form. Type III alternate repeat units share one edge with the primary breakpoint and 
have a new edge within the primary alignment. For the technical details in the classification of these 
repeat unit types, see Materials and methods—Type I/II/III repeat unit classification. The proportions 
of each class of alternate repeats (35 total) across all samples are shown in Figure 4d, where it is clear 
Type III breakpoints make up the majority (57%) of alternate repeated structures observed across the 
16 colonies where we see alternate structures. In Figure 4e, we also plot the distance between the 
closest primary and alignment edges for each class of repeat normalized by the primary alignment 
length. It is clear from this figure how close subsequent excisions are to primary breakpoints in the 
most abundant class, Type III, with a mean and median fractional distance between the alternate and 
primary edge of 2% and 1%, respectively. The mean and median fractional distances of Type II and 
Type III repeats are also comparable, which is only expected if Type III repeats truly share an edge of 
the primary breakpoint; Type II repeats directly recapitulate both primary alignment edges as they 
contain a perfect copy of the breakpoint. Meanwhile, Type III structures just need to have an edge 
close enough to either edge in the primary breakpoint to be within the sequencing error that defines 
the size of breakpoint clusters. So, the fact that both Type II and Type III are comparable in these 
distances, strongly suggests that Type III structures reuse part of the primary excision site. Therefore, 
the abundance of Type III repeats indicates a strong preference for secondary excisions at the site that 
produced the primary alignment itself, that ultimately constrains the trajectories of subsequent exci-
sion events in an unexpected, and previously unreported way. It is unclear at this time whether Type II 

(breakpoints) and replication origins (dotted boxes) as dimension lines. Circled drawings depict that uniformly random alignments are selected in the 
orange model, whereas alignments conditioned on spanning replication origins are present in the green model.

Figure 3 continued
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Figure 4. mtDNA excision cascades, quantification of colony structural diversity, and contingency in subsequent excisions. (a) Example locations of 
alignments from mapped reads (linear alignments here are bounded by breakpoints) observed in long reads within Petite sample 1b. Endpoints of 
arrows are the mean breakpoint location for the cluster of breakpoint signals that punctuate alignments in repeats. The first panel shows a primary 
alignment which has the longest span on the genome and exists in long repeats. The second panel shows smaller alternate alignments that exist 

Figure 4 continued on next page
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repeats, which encompass intact primary breakpoints, are related to this phenomenon. In general, this 
pattern of a preference of excisions around or across primary breakpoints is consistent across a variety 
of clustering/filtering parameters for breakpoints detection (Appendix 1—figure 4, Appendix 2—
Tables 1 and 2), the details of which are described in methods.

Are the contentious and rare non-periodic mtDNA structures observed 
in yeast real?
Seven colonies within family 3 in Figure 1b displayed distinguishably higher variance in coverage 
than the rest of the Petite colonies sequenced. This variance in coverage suggested either a complex 
repeat unit which itself contained smaller repeated units, or heterogeneity of mtDNA content in these 
samples. As such, we were interested to understand the source of this coverage variability. In these 
colonies, sequencing revealed non-periodic or non-tandemly duplicated primary structures involving 
partial inverted duplications of sequences. This is in contrast to the repeated units as concatemers 
that are found in the remainder of the Petite colonies and are primarily in tandemly repeated (non-
inverted) forms. These non-periodic structures resemble the ‘mixed’ structures first characterized in 
detail in Heyting et al., 1979. The structure of one of these colonies is detailed in Figure 5 and is 
representative of all seven ‘mixed’ structure colonies as they contain indistinguishable alignments 
and are derived from the same spontaneous Petite colony. In Figure 5a, four alignments of different 
lengths and reference locations are depicted as arrows. Note that all four alignments share the 
common region of the red alignment. Also included is the sequencing coverage of this particular 
colony, which aligns nicely with these alignments extracted from our structural repeat detection pipe-
line, as well as the ranked length and absolute count of alignments. Correcting for sampling bias (see 
Materials and methods—Mixed structure alignment frequency calculations) due to the sampled read 
length distributions across seven colonies with this same structure reveals that each alignment exists in 
equal proportions in colonies that harbor this structure (Figure 5b). Example structures in long reads 
selected from one of these samples are provided in Figure 5c, where the mixed structure is evident 
with seemingly random orientations of alignments. These ‘mixed’ structures are clear examples of 
intramolecular heterogeneity in mtDNA and likely intermolecular heterogeneity across a population 
of mtDNA fragments within cells given the differences in the content of the fragments observed. To 
attempt to make sense of this structure, which is at odds with the concatemer structures observed 
in all other colonies, we applied the repeat detection pipeline to see if any reads exhibited repeated 
structures. Interestingly, while superficially, this structure seems devoid of a clear pattern and appears 
uniformly randomized, across all seven colonies with the structure shown in Figure 5c, we did see 
some evidence of partially repeated structures, where the same alignments were repeated with the 
same orientation but separated by other single inverted alignments (Figure 5d). In all seven colonies 
with these same four alignments, these partially repeated structures are composed of the concatena-
tion of largest and smallest alignments with opposite orientation, or the concatenation of the second-
largest and second-smallest alignments.

The detection of the partial repeats in Figure 5d and the overlapping context in Figure 5a led us 
to the proposed mechanism of generation provided in Figure 5e–f. With this new evidence of partially 
detected repeat units, we build upon the crossover mechanism first hypothesized in Bos et al., 1980 

within detected repeated structures at a lower frequency. Also included in gray is a sequencing coverage map of this sample. (b) Excision cascade in 
Petite sample 1b. This plot shows the same primary repeat unit in the first panel, and its contribution to total mitochondrial content as a percentage. 
The second panel shows the forms of alternate structures present in the same sample which were derived from the primary alignment, alongside their 
mitochondrial contribution as a percentage. (c) A schematic of the multiplicity of excision events that generate alternate repeat units. The primary 
concatemer is the red structure, where arrows indicate the alignments (contiguous regions of the reference) that make up the repeating units. The 
primary breakpoint between these alignments is denoted as a red arc. Colored rectangles above the alignments with the same colors indicate regions 
of homology in the primary structure that can interact to produce an excision. Dotted rectangles indicate excision sites that produce the alignments 
shown below them. In the lower half of the figure, five distinct excision events that can generate different repeat units are shown. These are grouped 
into three excision classes in the data: Type I, where excision occurs within primary alignments, Type II, where excisions span the existing primary 
breakpoint, and Type III, where excisions share one edge of the primary breakpoint. (d) The frequency of each class of excision across 35 alternate 
structures detected in the data. (e) A plot of the distance between alternate alignment edges and their closest primary alignment edge across all three 
classes, normalized by primary alignment length.

Figure 4 continued
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Figure 5. Non-periodic ‘mixed’ mtDNA structures and their mechanism of generation. (a) Alignment locations and their raw counts present in the 
primary structure of a ‘mixed’ repeat Petite colony. (b) Proportions of each four alignments across seven mixed Petite colonies sequenced after 
accounting for sampling bias (see Materials and methods). (c) Example structures in sequencing reads in this colony, displaying a collection of coexisting 
isoforms with identical base pair content but varying structures with two distinct inverted duplication breakpoints delimiting alignments. (d) Example 

Figure 5 continued on next page
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for what we believe is the same structure we observed. In Figure 5e, we show how the only detected 
partially repeat units are interconvertible through a single crossover event relying on interactions of 
oppositely oriented regions. This crossover event in concatemers or repeat units results in the inver-
sion of the non-repeated sequences, and such an event can produce all of the ‘mixed’ read structures 
we observed across seven samples (Figure 5f). The generative picture given this proposed mecha-
nism is the following: (1) First a recombination event produces one of the repeat units in Figure 5d, 
by a crossover mechanism like that suggested in Faugeron-Fonty et al., 1983, or origin-dependent 
mechanisms like those observed in yeast and proposed in Brewer et al., 2011; Brewer et al., 2015. 
(2) This repeat unit is amplified, forming a concatemer through rolling circle replication, which exists 
in this form only transiently. (3) High frequency recombination at the region of shared context which 
was also suggested by Bos et al., 1980 produces nearly uniformly random orientations of alignments 
in a concatemer form. This proposed mechanism, and the fact that seven colonies derived from the 
passaging of one spontaneous Petite all had this ‘mixed’ structure, strongly suggests that cells in 
these colonies are heteroplasmic in these various structures because they are not readily segregated. 
As such, this structure represents a unique example of coexisting structural isoforms in the mtDNA 
of baker’s yeast, that are produced through rapid recombination events that counteract the periodic 
structures produced by rolling-circle replication and any strong selection for particular configurations 
of mtDNA.

How is the observed structural heterogeneity of mtDNA in yeast 
colonies partitioned among individual cells?
Given the evidence of heteroplasmy in ‘mixed’ structure colonies, we were curious to understand the 
nature of the low frequency alternate mtDNA structures we observed in both Grande and Petite colo-
nies. In the bulk sequencing of colonies, low frequency structures can be contributed by both hetero-
plasmic cells and mixed populations of cells homoplasmic for primary and alternate structures. In the 
heteroplasmic limit (Figure 6a), the majority of alternate structure content in a colony is contributed 
by cells in a heteroplasmic state. One consequence of being in this limit is that biological replicates of 
colonies would be expected to have low variance in total alternate structure content if heteroplasmy 
persists. In the homoplasmic limit, the major contribution to total alternate structure content comes 
from cells solely containing alternate structures (Figure 6b). In this limit, stochasticity in the time of 
generation of the mutational event would be expected to result in high variance in alternate structure 
content across biological replicates. Furthermore, in circumstances that enable differential selection 
on homoplasmic lineages, such as in Petite lineages within Grande colonies in non-fermentable condi-
tions, one would expect the alternate structure content to change as a function of growth conditions 
if there were homoplasmic contributions.

In 10 Grande colonies sequenced, 4 were grown in YPG (non-fermentable media) and 6 in YPD 
(fermentable media). Only one colony in each growth condition harbored high confidence Petite 
concatemer structures according to our structural detection pipeline, represented by the two distinct 
breakpoint clusters in the lower half of Figure 2d. One of these high confidence structures within a 
YPG colony is shown in Appendix 1—figure 5. With a spontaneous Petite frequency of 10% in the 
genetic background of the strains sequenced (Dimitrov et al., 2009), these low detection rates are 
due to our conservative approach to detecting breakpoints. In our pipeline, we require at least three 
breakpoints from three separate reads to form a believable cluster of breakpoint signals (see Materials 
and methods). In Grande colonies that produce a diverse set of Petite structures afforded by excisions 
of the intact WT genome, forming high confidence breakpoint clusters, let alone clusters themselves, 
is unlikely. Therefore, to compute alternate structure frequencies in this analysis, we abandoned the 
requirement of breakpoint signals to form a cluster. Instead, we simply counted the total base-pair 
contribution of reads that included any detected breakpoints internal to the primary alignments as 
long as they were not accompanied by inverted duplication artifacts which are known to introduce 

partially repeated units detected after observing 1.5 periods in the repeat detection pipeline. (e) Interconvertibility of detected partial repeats. Arrow 
directions indicate the strand to which alignments have been mapped, in addition to the prime notation on length ranks of each structure which 
indicates an inverted alignment. (f) Crossover events in the background of concatemers that can produce all breakpoint transitions and structures 
observed in the data.

Figure 5 continued
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spurious breakpoints due to noise in the latter half of the read (Spealman et al., 2020; Appendix 1—
figure 5).

The results of this read enumeration approach (Figure  6b) provide two lines of evidence for 
heteroplasmy and homoplasmy in Grande cells when comparing mtDNA colony composition under 
fermentable/non-fermentable media. In Grande colonies grown under non-fermentable conditions 
(YPG), we argue that the presence of Petite (fragmented) mtDNA in bulk sequencing is contributed 

Figure 6. Evidence of heteroplasmy and homoplasmy in Grande and Petite colonies. (a) A schematic of the two limits of cellular contributions to mtDNA 
content in a colony. Left: In the heteroplasmic limit, most of the contribution to total alternate structure content comes from cells containing coexisting 
alternate and primary structures. Right: In the homoplasmic limit, most alternate structure content comes from cells homogeneous in alternate structure 
content. (b) The total fraction in bp of reads that include any breakpoint not expected from the primary structure in Grande samples in YPD (fermentable 
carbon source), YPG (non-fermentable), and Petite samples in YPD. Each dot represents the alternate structure content fraction for a single colony, 
which is the fractional contribution to total mitochondrial content of reads that contain breakpoints that differ from breakpoints in the primary structure. 
The box plot displays the median value, and the minimum, maximum, first quartile, and third quartile. Blue vectors indicate heteroplasmic/homoplasmic 
contributions in Grande colonies in YPD. The orange vector indicates heteroplasmic contributions in Grande colonies in YPG. (c) Contributions of petite 
families/subfamilies to the Petite YPD alternate structure bp fractions in (b) sorted by variance in alternate structure basepair fractions in each subfamily. 
The arrow indicates that increasing variance is expected to be accompanied by increasing homoplasmic contributions.

https://doi.org/10.7554/eLife.76557
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by heteroplasmic cells or recent heteroplasmy (orange vector in Figure 6b). This is because in contrast 
to the heteroplasmic cells containing Grande mtDNA, cells homoplasmic for Petite mtDNA cannot 
replicate under non-fermentable conditions. With this notion, any observed Petite mtDNA in YPG 
resides either in cells with Grande mtDNA in a heteroplasmic state or is stuck in homoplasmic Petite 
cells which are unable to replicate but are a product of recent heteroplasmy. The second argument is 
that the observed increase in Petite mtDNA fraction that accompanies a switch to fermentable media 
(YPD) in Figure 6b is predominantly due to homoplasmic cells. Again, since under non-fermentable 
media homoplasmic Petites are suppressed, any increase in Petite mtDNA once we relax respiration 
requirements should primarily be due to homoplasmic Petite cells. Thus, these results in Grande colo-
nies suggest that both heteroplasmic and homoplasmic cells (sum of blue vectors in Figure 6b) are 
contributing to alternate structures in fermentable conditions.

In Petite colonies where all cells regardless of mtDNA content are equally fit in fermentable media, 
we point to two lines of evidence indicating heteroplasmic and homoplasmic contributions to alter-
nate structure frequencies in Figure 6. The following arguments are based on the median value of 
the alternate structure frequency that is shown in Figure 6b, and the variance of the same frequen-
cies grouped into Petite families/subfamilies in Figure 6c. The first argument we make for evidence 
of heteroplasmy in Petite colonies is based on the observation that the median alternate structure 
frequency in Petites is lower than that of Grandes in Figure 6b. We suggest this is due to stronger 
out-competition of alternate structures by primary structures in Petites than in Grandes. Because small 
Petite primary structures replicate much faster than Grandes, alternate structures in Petites are less 
likely to take hold in this competition. Under this assumption, part of the alternate structure signals 
must be due to cells in at least transiently heteroplasmic states to enable this competition. Using 
Figure 6c and known properties of mtDNA transmission, we also argue that most variance in alternate 
structure frequencies within Petite families is due to stochasticity in the generation of homoplasmic 
lineages. This is because mtDNA transmission bottlenecks and within-cell selection favor the produc-
tion of homoplasmic clones containing alternate structures (Ling and Shibata, 2004). However, we 

Figure 7. The role of replication origins and GC clusters in mtDNA replication. (a) Replication origin content fractions in primary/alternate structures 
detected in all samples where both are present. Each dot represents the base pair fraction of any of the eight origins of replication in detected 
structures. Orange dots are the origin fractions in alternate structures, blue in primary structures, and the green line is the origin content fraction in the 
wild-type mitochondrial genome. Highlighted by a red bubble are nine alternate structures that are devoid of an origin of replication. (b) Black curves 
(nine total) represent the cumulative distribution of GC content fraction in a sliding window of 10 bp in the highlighted zero-ori alternate samples. The 
red curve highlights this same GC distribution but in the wild-type (Grande) mitochondrial reference. The gray region indicates GC content fractions 
in sliding windows that are consistent with GC clusters found in replication origins (Appendix 1—figure 8). The inset shows the fraction of black lines 
above the red line as a function of GC fraction in the 10 bp window.
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also highlight that some families have distinguishably lower variance in alternate structure fractions in 
Figure 6c (e.g., 2 and 4b), which is at odds with this hypothesis. As such, these low variance alternate 
structure fractions in select Petite families appear to indicate persistent heteroplasmic contributions. 
Thus, as in Grande colonies, we are able to tease apart indications of heteroplasmic and homoplasmic 
contributions to mtDNA diversity in Petite colonies.

What contributes to the fitness of mtDNA structures, and how does 
structure inform suppressivity?
The role of origins of replication and GC clusters in mtDNA replication
The mechanism of generation of Petite mtDNAs, as well as our explanation of the distribution of 
excisions observed in spontaneous Petites, relied on the presence of replication origins. Given their 
importance in conferring a replication advantage to Petite mtDNAs, we were interested to look for 
mtDNAs without replication origins that we expected would exist at a low frequency. We were also 
curious to know if mtDNAs devoid of replication origins had any shared structural characteristics 
that might explain their propagation. Consistent with the notion that repeated structures with high 
densities of replication origins have a selective replication advantage over wild-type Grande mtDNA 
(de Zamaroczy et al., 1981; Bernardi, 2005), 32 of the 47 repeat structures detected across the 16 
Petite colonies that contain alternate structures exhibit a higher replication origin content fraction 
than wild-type mtDNA (Figure 7a). Furthermore, all primary structures contain at least a portion of 
an origin. However, some of the detected alternate structures encircled in red in Figure 7a have no 
replication origin content at all. These resemble the ‘surrogate’ replication origin structures described 
in Goursot et al., 1982 and appear to contain GC clusters in similar configurations to replication 
origins (peaks above 0.6 GC content in Appendix 1—figure 8), which are known to be important for 
replication and transcription initiation (Baldacci and Bernardi, 1982; de Zamaroczy and Bernardi, 
1986). Consistent with this idea, seven of the nine structures without replication origins are enriched 
in GC clusters compared to the average GC cluster content of wild-type mtDNA (Figure 7b). Besides 
the suggested involvement of GC clusters in replication, the enrichment in GC clusters here is also 
consistent with the observation that GC clusters themselves may be preferred over AT-rich regions 
as excision sites (Faugeron-Fonty et al., 1979; Gaillard et al., 1980). While structures without repli-
cation origins are rare in cultured spontaneous Petites (Goursot et al., 1982), high depth long-read 
sequencing has provided access to these low frequency structures. The ease of identification of these 
mtDNA structures through long-read sequencing and accompanying structural inference techniques 
may prove useful in exploring the minimal sequences required for replication in yeast, as well as low 
frequency genome diversity in other systems.

How mtDNA structure informs suppressivity
To understand the rules of competition between wild-type and mutant mtDNA, we measured the 
suppressivity of all Petite colonies within families (see Materials and methods). Suppressivity is a 
measure of the fraction of Petite progeny in a cross between each Petite sample and a Grande tester 
strain. Unlike previous work that studied the relationship between structure and suppressivity in highly 
suppressive Petites with suppressivity upwards of 90% (de Zamaroczy et al., 1981), our strains exhibit 
suppressivities from the basal rate of the Petite frequency of the Grande strain at 10%, to ~90%, and 
these suppressivities correlate well with repeat unit lengths of up to 70 kbp (Appendix 1—figure 
9). In contrast, the repeat units in previous work were smaller than 10 kbp. While this difference 
in repeat unit size was due to the intentional selection of small repeat units in the previous work, 
distributions of deletion sizes and therefore observed suppressivities have been shown to be depen-
dent on numerous nuclear genes (Bradshaw et al., 2017; Ling et al., 2019). To describe how the 
structure of mtDNA in our samples informs suppressivity, we developed a phenomenological model 
(Figure 8a) which assumes each repeat unit is independently competing (we discuss alternate models 
in Appendix 1—figure 10). The key assumptions of the model that explains the data well are: (a) in 
mating both Grande and Petite cells contribute equal mitochondrial content, ‍M ‍, which is motivated 
by the observation of equal Grande and Petite contributions observed in MacAlpine et al., 2001, (b) 
the number of repeat units initially contributed by Grande and Petite cells during mating is given by ‍M‍ 
over the average repeat unit length (‍LG‍ or ‍LP‍ , ‍G‍ for Grande, ‍P‍ for Petite), and (c) Petite and Grande 
repeat units replicate independently and exponentially with a replication rate linearly dependent on a 

https://doi.org/10.7554/eLife.76557
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mtDNA replication speed (‍νG‍ , ‍νP‍) and replication origin density (‍ρG‍ , ‍ρP‍). The suppressivity is then the 
fraction of Petite repeat units after a certain competition time (‍t‍) and is given by the ratio of the time 
evolution of an exponentially growing population of Petite repeat units ‍NP =

(
M/LP

)
eνPρPt

‍ to total 
repeat units ‍NP + NG =

(
M/LP

)
eνPρPt +

(
M/LG

)
eνGρGt

‍ given in equation (1):

	﻿‍
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= 1
1+ LP

LG
e
(
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)
t
‍�

(1)

The data and least-squares fit of this model, with ‍νGt∗‍ and ‍νPt∗‍ as fit parameters, are shown in 
Figure 8b. These fit parameters are the products of mtDNA replication speeds in Grandes and Petites 
with the competition time (‍t∗‍) over which competition of Grande/Petite structures occurs following 
mating. The repeat unit lengths ‍LG‍ and ‍LP‍ in equation (1) are taken to be the sum of unique align-
ment lengths in each sample, and ‍NG/NP‍ is the second term in the denominator of equation (1), which 
is the ratio of the Grande to Petite fragment population. To understand the values of the fit param-
eters and whether or not they are reasonable, we compare them to equivalent parameters inferred 
from an exponential growth model of a budding Grande cell: First we assume that the mtDNA compe-
tition window (‍t∗‍) is equal to the doubling time in a diploid Grande population of cells (90 min). This is 
a reasonable assumption, as zygotes generally give rise to their first bud within 90 min in our mating 
experiments and early zygote dynamics dominate suppressivity results. If we also assume that the 
exponential replication rate of mtDNA in the Grande cell is the product of replication origin density (1 
every 10 kbp in Grandes) and replication speed, then the average mtDNA replication speed in Grande 
cells is 82 bp/min if mtDNA is duplicated over the cell doubling time. This is of the same order as ‍νG‍ 
and is within an order of magnitude of ‍νP‍ in Figure 8b. We note, however, that these mtDNA repli-
cation speeds are coarse grained parameters in the model and should not be compared to directly 

Figure 8. A phenomenological model of suppressivity. (a) A visual depiction of a phenomenological model of suppressivity. Grande and Petite cells 
are assumed to contribute equal quantities of mtDNA. It is also assumed that each repeat unit replicates independently and exponentially and that 
during mating the repeat unit input fractions of Grandes and Petites are inversely proportional to repeat unit length. Exponential growth rates are the 
product of mtDNA replication speeds and origin densities. (b) Suppressivity of all samples compared to a fit of equation (1), which is the black line. 
The fit parameters are ‍νgt∗ = 10677‍ bp, ‍νpt∗ = 2296‍ bp, and the coefficient of determination is ‍R2 = 0.85‍. Dots are the average suppressivity across 
three second passage Petite colonies that share the same first passage progenitor and belong to the families indicated in the legend (same colored 
dots share a spontaneous Petite colony progenitor). Y-axis error bars are ± the standard deviation in suppressivities across these three second passage 
Petites colonies. Samples containing inverted breakpoints in their primary structure are those derived from families 2 and 3, the orange and yellow dots, 
respectively. Family 3 is the mixed structures described in the text.
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measured DNA fork velocities which require careful consideration of numerous biological parameters 
(Hawkins et al., 2013).

With respect to the architecture of the model, a variety of alternative models were also tested 
in Appendix  1—figure 10, revealing that both exponential growth and a repeat unit input frac-
tion inversely proportional to repeat unit length are statistically important inclusions in improving 
the model in most regimes. The inverse repeat unit length terms seem to suggest that within yeast 
zygotes, early competition operates in a repeat unit limit where concatemers are reduced to mono-
meric forms which then undergo replication. Interestingly, active concatemer to monomer partitioning 
has been observed during mitosis in yeast (Ling and Shibata, 2002; Ling and Shibata, 2004; Ling 
et al., 2007), although to our knowledge little is known about the structure of mtDNA during mating 
and zygote formation. Thus, according to this model, the rules of competition between wild-type 
and mutant mtDNA in yeast depend on the exponential replication of monomeric forms of mtDNA 
in zygotes, where replication rates are proportional to replication origin densities in repeat units. This 
highlights the possibility that Petite mtDNAs may have both a replication advantage and segrega-
tional advantage if replication occurs in physically separated repeat units in zygotes.

Discussion
In this article, we studied the dynamics of mtDNA fragmentation in yeast through long-read sequencing 
and quantified Petite mtDNA fitness through mating experiments. The use of long-read sequencing 
technology, in conjunction with structural inference methods we developed, which to our knowledge 
have never been applied to Petite mtDNA in yeast, gave us the ability to reconstruct complex mtDNA 
structures within populations of growing Petite colonies. This experimental approach enabled us to 
answer some important open questions about Petite mtDNA formation and propagation. On Petite 
mtDNA generation, we discovered contingency as a driving force behind mtDNA excision dynamics 
where previous fragmentation sites seed new events. This along with evidence for the generation of 
non-periodic ‘mixed’ mtDNA structures shows the power of our approach to understand structural 
variants and their dynamics. On Petite mtDNA propagation, this article reinforced that within cell 
(intracellular) selection plays a key role in the fragmentation dynamics of Petite mtDNA. A replicative 
advantage for mtDNA fragments with a high density of replication origins explains why mtDNA exci-
sions tend to cluster near origins and was a critical component of the biophysical model of mtDNA 
fitness we developed. Both intracellular and cell-level (intercellular) selection also helped explain the 
distribution of altered mtDNAs among cells in a colony.

Building upon previous work, which alluded to ongoing mtDNA fragmentation in Petites, we 
provided direct evidence for this fragmentation in Petite colonies and discovered that subsequent 
mtDNA fragmentation is contingent on previous fragmentation. The presence of various levels of 
heterogeneity observed within Petite strains indicated by non-primary sub-stoichiometric bands in the 
restriction digests of Petite mtDNA (Bernardi et al., 1976; Lewin et al., 1978; Lewin et al., 1979; 
Locker et al., 1979; Marotta et al., 1982) suggested that the excision mechanism was ongoing, 
continuously producing lower complexity Petite structures in a hypothesized excision ‘cascade’ (Locker 
et al., 1979; Bernardi, 2005). Here, we have demonstrated unequivocal evidence of secondary exci-
sions that operate on primary structures in sequenced colonies, and unlike the previous work, were 
quantitative in computing the frequencies of these coexisting structures. We also showed, for the first 
time, that subsequent excisions are contingent on previous excisions that produced the primary struc-
ture in these colonies. This apparent preference for the reuse of existing excision locations constrained 
the fate of structures formed through subsequent excisions. The reuse of excision sites highlights a 
tension between contingency and repeatability in the formation of new Petite mtDNA structures. It 
also seems to suggest that the breakpoints in primary Petite structures are persistent instabilities in 
mtDNA, perhaps akin to structures like R-loops (Holt, 2019) that may promote strand invasion and 
recombination at or near these sites. Exploration of the nature of these instabilities in the mtDNA of 
yeast remains an interesting direction for future studies.

Then we established that previously hypothesized non-periodic ‘mixed’ mtDNA structures are real 
and indeed non-periodic, which is at odds with the structures of most Petite mtDNAs observed. Hints 
of non-periodic or non-tandemly duplicated structures (‘mixed’ structures) have been commented 
on previously in ethidium bromide treated Petites (Locker et  al., 1974; Locker et  al., 1979) and 
spontaneous Petites (Heyting et al., 1979; Bos et al., 1980; Faugeron-Fonty et al., 1983). The first 
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proposal of a model for the generation of these structures was provided in Bos et al., 1980, but was 
subsequently refuted in Faugeron-Fonty et al., 1983,- where the claim was that these were larger 
ranging periodic structures produced by an unknown mechanism. However, our evidence of partially 
repeated units in Figure 5d, where two alignments are repeated with the same orientation but sepa-
rated by an inverted alignment, precludes the structure proposed in Faugeron-Fonty et al., 1983. 
Thus, this structure is indicative of rapid recombination within mtDNA concatemers that opposes 
the homogeneity produced by rolling-circle replication and segregation through bud bottlenecks, 
which results in a collection of coexisting structural isoforms of mtDNA. While coexisting concate-
mers of various lengths and forms have been observed in yeast mtDNA with the same repeat units 
(Locker et al., 1979), as well as coexisting isoforms in plant mitochondria (Kozik et al., 2019), the 
‘mixed’ structures we have observed are a rare glimpse of this phenomenon in yeast that provide a 
unique example of persistent intramolecular and intermolecular heterogeneity. These structures are 
also interesting from the perspective of reverse excision events thought to partition concatemers into 
monomers during bud formation (Ling and Shibata, 2002). It is unclear how a monomer should be 
defined in these ‘mixed’ samples, and therefore how it is partitioned, given that circular repeat units 
are the predominant species in new buds.

Our quantitative analysis, despite using bulk sequencing, allowed us to address an important unad-
dressed question of how mutant mtDNAs were distributed among cells within colonies. Persistent 
heterogeneity in Petite colony mtDNA was observed previously as sub-molar restriction digestion 
fragments (Lewin et al., 1979). These fragments were persistent across biological replicates but seen 
to disappear and reappear with varying intensities during subcloning. While their persistence indi-
cated heteroplasmy, the varying intensities pointed toward clonal divergence through segregation 
into homoplasmic clones. Similarly, we argued that most of the variation in mtDNA structure we 
observed within colonies is likely due to homoplasmic clones in Petites, but with hints of hetero-
plasmic contributions in a few examples. Our observation of alternate structures in Grande samples 
under non-fermentable growth conditions is a direct indicator of heteroplasmy which is usually difficult 
to resolve from coexisting homoplasmic clones in bulk sequencing data. Recently, a variety of single-
cell sequencing approaches have been adapted for use in yeast (Jariani et al., 2020; Urbonaite et al., 
2021; Dohn et al., 2021) that are poised to enable direct observations of mtDNA heteroplasmy in 
yeast cells like they have in humans (Maeda et al., 2020). These tools will also provide an opportunity 
for quantification of mtDNA heteroplasmy (Lareau et al., 2021) which remains a promising direction 
for future work.

The inferred fine structures of Petite mtDNA from long reads allowed us to develop a phenomeno-
logical model for how structure informs fitness measured through the suppressivity of Petite samples. 
The relationship between suppressivity and mtDNA structure was explored in de Zamaroczy et al., 
1981, which provided two general rules: (1) Partial deletions or rearrangements of origins of replica-
tion, including inversions of fragments containing origins, reduce suppressivity, and (2), suppressivity 
is inversely proportional to repeat unit length. This was followed with an observed exception to the 
second rule (Rayko et al., 1988), which suggested that flanking regions also influenced suppressivity.

In agreement with these rules, we showed that intact replication origins are indeed enriched in both 
primary and alternate Petite structures compared to wild-type, and that surrogate origins are present 
in rare alternate structures devoid of canonical origins. We also showed that selection drives mtDNA 
excision events in Petites to cluster near replication origins. The colocalization of mtDNA excisions 
and replication origins we observed is consistent with a recent study using short-read sequencing 
(Osman et al., 2015). The study of Osman et al., 2015 suggested that the colocalization of origins 
and structural mtDNA variations may be due to replication origins themselves being recombination 
hotspots, resulting in preferential excisions at these locations. However, we demonstrated through 
comparisons to excision models that selection for small origin-containing fragments following exci-
sions throughout the entire genome can explain the empirical excision distribution. At the same time, 
although we cannot see smaller mtDNA variations like SNPs in the present study, rare single-base 
changes at inferred excision sites in Petite strains have been observed close to origins in de Zama-
roczy et al., 1983 and in Osman et al., 2015. This may mean that like the larger structural variations 
we observe in Petites, small variations may also be observed to be clustered near replication origins 
just by virtue of these regions being strongly selected for, rather than preferential mutations at these 
locations. It is also important to note that the mtDNA recombination landscape in wild-type yeast 
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(Fritsch et al., 2014) also varies significantly from the excision distribution we observed. However, 
we attribute these differences to the selection of origin containing fragments in Petites, as well as 
differences between homologous recombination (between DNA molecules) and sequence-specific 
illegitimate recombination (within individual DNA molecules) responsible for excisions.

Consistent with the role of repeat unit length in defining Petite mtDNA fitness, the most predic-
tive model of suppressivity was in limit which assumes that both Grande and Petite mtDNAs are 
independently replicating in their monomeric repeated units. We note, however, that the observed 
size distribution of concatemers between Grandes and Petites has been highly variable. Haploid 
Petite cells have been found to have both larger and smaller average molecular sizes than Grandes 
depending on the strain, and in both cases, harbor a pool of concatemers of various sizes (Locker 
et al., 1979). This seems to suggest that in haploid cells, as opposed to zygotes which we consider 
in the model, mtDNA competition may not be operating in the repeat unit limit. Nevertheless, if the 
numbers of independent mtDNA concatemers in haploid cells regardless of their size are inversely 
proportional to repeat unit length, this would be consistent with our model. In fact, in new buds, 
which all cells start as, concatemer to monomer partitioning has been observed in experiments (Ling 
and Shibata, 2002; Ling and Shibata, 2004; Ling et al., 2007). So even if during replication each 
monomer expands to different sized concatemers, the numbers of independent mtDNAs can still be 
inversely proportional to repeat unit length.

Given the emphasis in our suppressivity model on repeat unit size, but also notable outliers such 
as family 2 in Figure 8b, it is also possible that effective repeat unit sizes are dictated by the possible 
secondary structures for a given concatemer. Suppressivities in Petite family 2, which contain tandemly 
repeated inverted dimers, deviate most from the theoretical curve. Inverted sequences like those in 
family 2 would also be expected to form the hairpin structure hypothesized in the generative model of 
the mixed repeats. If this hairpin persists, it will consume directly repeated regions that are preferred 
in crossover events. The result would be a reduction in the density of repeated regions accessible to 
excision events, which upon eventual fragmentation would produce a larger effective repeat unit. This 
may in part explain the lower suppresivity of Petite family 2 from the theoretical value. Overall, more 
data is likely required to aggregate these apparent exceptions or outliers into a more encompassing 
model of suppressivity, but the present study provides a foundation of modern techniques and lessons 
to build upon in this goal.

Considering the diversity and destructiveness of the Petite mutations that this study revealed, it 
is also worthwhile to comment on the tolerance of the Petite mutation in yeast populations and why 
their mtDNA might have evolved to produce a structure susceptible to such destruction. Lab strains 
of S. cerevisiae, like the one investigated in this study, generally have higher Petite frequencies than 
feral yeast strains due to a collection of nuclear mutations (Dimitrov et al., 2009). However, feral 
yeast strains of S. cerevisiae still have highly repetitive mtDNA that is susceptible to excision, albeit 
at a lower frequency. A natural question is then, why did evolution yield such a structure? It has been 
suggested that the addition of repetitive origins and surrogate origin sequences may have conferred 
a replicative or transcriptional advantage to the wild-type genome (de Zamaroczy and Bernardi, 
1986; Bernardi, 2005). It is also possible that high rates of recombination enabled by this repetition 
is advantageous for genetic complementation. Another possibility of having a highly recombinant 
DNA and machinery is for the destruction of invasive foreign DNA. Finally, population-level selection 
for respiring yeast cells also likely played a central role in opposing the negative effects of this mtDNA 
instability in populations, helping maintain intact mtDNA in Petite-positive yeast over evolutionary 
timescales. As such, mtDNA dynamics and the Petite mutation in S. cerevisiae is a wonderful example 
of how multilevel selection can shape the evolutionary trajectories of genomes.

Finally, we comment on the applicability of the findings in this study to other organisms. We moti-
vated in this article that long-read sequencing and the structural inference methods we developed 
were able to reconstruct complex coexisting mtDNA structures in yeast colonies. This methodology 
will also be beneficial for the exploration of other systems that contain complex and repetitive mtDNA 
structures. A promising area of use is in plants, where complex mtDNA isoforms have been shown to 
coexist within cells (Kozik et al., 2019).

Interestingly, it turns out that the same components of the process that lead to mtDNA deletions in 
yeast—recombination followed by excision, selection, and persistent instability—also lead to mtDNA 
deletions in the human tissues. These mtDNA deletions in humans have been seen to accumulate 
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during aging in skeletal muscle and brain tissue (Fayet et al., 2002; Kraytsberg et al., 2006; Payne 
and Chinnery, 2015) and are also associated with a variety of diseases including Parkinson’s (Chan, 
2006; Bender et  al., 2006). Like in yeast, excisions of mtDNA due to recombination between 
repeated homology have been suggested to be the cause of large mtDNA deletions in humans (Guo 
et al., 2010). Remarkably, the ‘common deletion’ in humans, which is a ~5 kbp deletion delimited by 
interacting 13 bp repeats, appears to be most frequent because of selection for replication origins. 
While numerous repeats exist in human mtDNA, and result in a multitude of deletions associated 
with disease, the ‘common deletion’ retains both replication origins unlike lower frequency deletions 
(Samuels et al., 2004). This suggests that the most common mutant mtDNA propagated in human 
cells is also governed by the same type of intracellular selection for replication origins that drives the 
Petite mutation. Persistent mtDNA instabilities in human mtDNA, which are suggested to be due to 
mtDNA content inducing replication fork stalling, have also been observed to create recombination 
hotspots and colocalize with mtDNA deletions (Kraytsberg et al., 2004; Phillips et al., 2017). This 
type of instability studied in humans is precisely the type of event that may help explain the contin-
gency in mtDNA fragmentation we observe in yeast.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Saccharomyces 
cerevisiae) W303 GenBank: JRIU00000000.1

MATa/MATα leu2-3,112 trp1-1 can1-100 
ura3-1 ade2-1 his3-11,15

Strain, strain background (S. cerevisiae) yCO362

Boris Shraiman lab at 
UCSB

/GenBank: JRIU00000000.1
MATa W303 leu2-3,112 can1-100 ura3-1 

ade2-1 his3-11,15

Strain, strain background (S. cerevisiae) SY2081
Grant Brown lab at UofT

/GenBank: JRIU00000000.1
W303 MATα leu2-3,112 can1-100 ura3-1 

ade2-1 his3-11,15 trp1-1

Strain, strain background (S. cerevisiae) 10T3 This study
W303 MATα leu2-3,112 can1-100 ade2-1 

his3-11,15 trp1-1

Commercial assay or kit Qiagen 20/G Genomic-tip QIAGEN Cat. no./ID: 10223

Commercial assay or kit
MinION Mk1B with Starter 

Pack Oxford Nanopore
Starter Pack

(Flow Cell FLO-MIN106 R9.4.1)

Commercial assay or kit

EXP-NBD104 and EXP_
NBD114

Native barcoding expansion Oxford Nanopore
EXP-NBD104
EXP_NBD114

Commercial assay or kit
SQK-LSK109

Ligation sequencing kit Oxford Nanopore SQK-LSK109

Commercial assay or kit
AMPureXP purification and 

cleanup kit Beckman Coulter A63881

Software, algorithm Minimap2 Li, 2018 Minimap2

Yeast strains and their construction for suppressivity testing
The Grande tester strain used in mating with Petites was the baker’s yeast strain yCO362 W303 MATa 
leu2-3,112 can1-100 ura3-1 ade2-1 his3-11,15, which was a gift from the Boris Shraiman lab at UCSB. 
To construct the Grande progenitor of Petite strains, we restored URA3 function in SY2081 W303 
MATα leu2-3,112 can1-100 ura3-1 ade2-1 his3-11,15 trp1-1 which was a gift from the Grant Brown lab 
at the University of Toronto. To this end, we grew an Escherichia coli strain harboring pFA6a-URA3, 
which was a gift from Jon Houseley & David Tollervey (Addgene #61924). Plasmids were extracted 
and the URA3 fragment PCR amplified with primers that share 20 nt of short flanking homology 
with the reference yeast mitochondrial genome following the standard short flanking homology 
targeted recombination method (Petracek and Longtine, 2002). Expected PCR fragment sizes were 
confirmed on a gel and then transfected into SY2081 using the high-efficiency LiOAC yeast transfor-
mation protocol (Brown et al., 2015). Integration at the expected location was confirmed through 
PCR of flanking regions overlapping each breakpoint, and Sanger sequencing. To ensure integration 
was exclusive to our target location, we then performed tetrad analysis on the transformed SY2081 
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(named 10T3 hereafter) × yCO362 and observed 2:2 segregation as expected for a single integration 
site.

Media and growth conditions
Both Grande and Petite colonies were cultured in YPAD medium (1% yeast extract, 2% bacto-peptone, 
2% glucose, and 0.072% adenine hemisulfate). Petite colonies were detected under growth in YPADG 
medium (1% yeast extract, 2% bacto-peptone, 0.1% glucose, 3% glycerol, and 0.072% adenine hemi-
sulfate). With a reduced glucose content, Petite colonies appear smaller and more translucent than 
their Grande counterparts in this media and the differences were discernible beyond 4 days at 30°C 
(Dimitrov et al., 2009). YPG medium (1% yeast extract, 2% bacto-peptone, and 3% glycerol) was 
used in culturing a subset of Grande colonies and verifying the respiratory deficiency of identified 
Petites. To measure suppressivity, we used SC-ura-trp (DG carbon source) media (0.67% bacto yeast 
nitrogen base w/o amino acids, 0.1% glucose, 3% glycerol, 0.2% dropout powder lacking uracil and 
tryptophan) which selects for zygotes due to strain auxotrophies. Liquid cultures were grown at 30°C 
in a linear shaking water bath, while solid media growth took place in a forced air incubator also at 
30°C.

Isolation of spontaneous Petite colonies
Liquid culture of strain 10T3 inoculated in YPAD media was washed in dH2O and plated on YPADG 
media. Respiratory deficiency of these Petite colonies was confirmed through replica plating on to 
YPG, as well as patching onto separate YPG plates. Following confirmation of these colonies being 
Petites, nine different colonies were streaked onto YPAD agar as a first passage. Three colonies were 
randomly selected from this first passage plate and streaked again onto YPAD agar, constituting a 
second passage. Three colonies from each second passage plate were cultured, stored as frozen 
stocks, had their suppressivities measured, and a subset was sequenced.

Yeast suppressivity assay
Cultures of Grande (yCO362) and Petite strains (10T3 derived) were grown overnight in YPAD liquid 
media. Cultures were diluted to 0.1OD and grown for 3 hr. Equal volumes of each culture were mixed 
and incubated at room temperature for 20  hr to allow for mating. A small aliquot of this mating 
mixture was observed under a hemocytometer to calculate appropriate dilutions for plating. The 
mating mixture was diluted and washed in dH20, then plated onto SC-ura-trp (DG carbon source). 
After 5 days at 30°C, Petri dishes were scanned, and the fraction of small to total colonies on these 
plates was recorded as the suppressivity of the strain, calculated based on an average of 250 colonies 
labeled per strain. The average standard deviation in suppressivity across strains related by the same 
first passage progenitor was ~5%.

Nanopore sequencing
Three or more progeny from 9 separate spontaneous Petites derived from strain 10T3, and 10 Grande 
colonies under YPD (6) /YPG (4) liquid culture growth of the same strain were sequenced on an Oxford 
Nanopore MinION Mk1B (Figure 1). Whole genomic DNA from these 48 colonies following culturing 
was extracted using a modified enzymatic Hoffman-Winston DNA extraction protocol as described in 
Boeke et al., 1985. DNA was then purified with a Qiagen 20/G Genomic-tip and barcoded with the 
Oxford Nanopore EXP-NBD104 and EXP_NBD114 barcoding kits in conjunction with the SQK-LSK109 
ligation sequencing kit with long fragment Agencourt AMPureXP purification, following manufactur-
er’s instructions. Twenty-four barcoded samples were pooled at a time in two FLO-MIN106 flow cells 
with R9.4.1 chemistry. Sequencing generated a total of 8.5Gbases of reads across both flow cells 
within 24 hr, with a mean read length of ~6 kbp and maximum length of 120 kbp. About 429 Mbases 
of reads were mapped to mitochondrial DNA, resulting in an average coverage per primary structure 
of ~700 across all Petite samples sequenced.

Read basecalling, alignment, and filtering
Raw Nanopore reads were basecalled and demultiplexed with the ONT Guppy package 3.1.5-1. 
Reads that passed default quality score filtering (>9 qscore) were aligned using Minimap2 with default 
parameters (Li, 2018) to the S. cerevisiae reference release R64-2-1_20150113 (Engel et al., 2014) 
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available from yeastgenome.org. Following initial alignment, unmapped regions in reads were recur-
sively aligned to the reference sequence to combat the Z-drop heuristic, which exists to remove 
spurious alignment artifacts introduced due to the expectation of collinearity between alignment 
anchors. This is a particularly insidious heuristic when mapping Petite structures due to large numbers 
of repeats within reads. See Appendix 1—figure 12, where we provide an example of the effect of 
this Z-drop heuristic in resolving Petite structures, and how in a small subset of reads the pseudo-
global alignment produced in our recursive mapping improves structure resolution. Alignments in 
reads were kept with PHRED scaled mapping quality scores>20, and alignment lengths>300 bp due 
to the high degree of homology between mt replication origins which makes alignment of these small 
regions of context difficult (de Zamaroczy et al., 1981).

Mitochondrial DNA alignment breakpoint detection
Alignment breakpoints are defined in our pipeline to be deviations of more than 30 bp between the 
read and reference coordinates in adjacent alignments within one read. They are also identified by 
strand changes across adjacent alignments regardless of the separation in reference/read coordi-
nates. As such, these breakpoint signals encompass large insertions, and deletions, and inversions 
within reads, and are delineated by alignment termination from the mapping program Minimap2 
(with default parameters), which are stored and processed in a structural detection pipeline written 
in Python.

Removal of prevalent inverted duplication artifacts
Before breakpoint signals can be clustered, inverted duplication artifacts, which are prevalent in our 
particular sequencing chemistry and are apparently affected by growth media (Appendix 1—figure 
1a), must be filtered out from real inverted duplication breakpoint signals. These artifacts appear 
to be due to complementary strands being pulled in succession through the pore, resulting in an 
unfolding of a double-stranded DNA molecule into a molecule of double the length with a charac-
teristic inversion. This may be due to either physical tethering or lingering of the separated comple-
mentary strand near the pore opening. In any case, conveniently this results in a nearly centered 
inversion within such reads (Appendix 1—figure 1b), that is sometimes skewed toward the end of 
the read because of increased translocation speed and self-interaction of the strands in a ratcheting 
mechanism as described in Spealman et al., 2020. This increased speed also results in reduced read 
quality in the latter half as reported in Spealman et al., 2020 and Appendix 1—figure 6a, which 
means that distances between reference positions of alignments at inversions have the distribution in 
Appendix 1—figure 6b. Given that 90% of artifacts result in adjacent alignment edges with distances 
less than 1000 bp, we take this to be one of our criteria for an inversion artifact.

Inverted duplication artifacts are filtered from real inverted duplications at two levels before clus-
tering: (1) Breakpoint signals where within read positioning of the inverted breakpoint is >1% likely 
to be derived from the purely artifact distribution in Appendix 1—figure 1b is recorded in a list. (2) 
If breakpoints that follow criteria (1) are derived from reads with only a single inverted duplication 
signal, then they are considered artifacts.

Breakpoint clustering
Inverted/non-inverted breakpoints are clustered separately using the DBSCAN algorithm (Ester et al., 
1996). This algorithm requires two parameters: ‍ϵ‍, which defines the neighborhood of a breakpoint 
as a radius in base pairs, and ‍minPts‍, which is the number points required within ‍ϵ‍ of a breakpoint to 
be considered a core point, or dense region. Breakpoints within dense regions are then connected 
together iteratively to produce a density-connected cluster. In case this density-based clustering inad-
vertently merges true clusters, k-means clustering, with k=2, is also performed within clusters output 
from DBSCAN. This handles the case where breakpoints transitions in a read occur within a DBSCAN 
cluster, indicating too coarse clustering. These marginal cases, however, only occurred in 3/35 alter-
nate structures, and never in primary structures.

For both inverted and non-inverted breakpoints, we set ‍minPts = 3‍, to capture even the smallest 
clusters which will undergo further filtering described later. For non-inverted breakpoints, ‍ϵ = 1‍ kbp, 
which is a lenient choice given that the most catastrophic deviations in expected breakpoint posi-
tions due to sequencing error in inverted duplication artifacts are largely under 1 kbp. For inverted 
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breakpoints post artifact-filtering described above, an optimal ‍ϵ‍ is computed by sorting nearest-
neighbor distances across all inverted breakpoints and computing the Euclidean distance to the 
nearest-neighbor that results in the largest curvature in a plot of nearest-neighbour distance versus 
breakpoint number. This is the so-called ‘elbow’ method. Then ‍ϵ = min

(
optimal

(
ϵ
)

, 1kbp
)
‍ is taken to 

be the nearest-neighbor radius for inverted breakpoints. This extra step for inverted breakpoints is 
required solely because of the possibility of low frequency artifact noise that is not present for non-
inverted breakpoints.

Breakpoint filtering based on read support and a majority voting 
scheme
Following clustering with the above parameters, breakpoint clusters are then required to have a 
minimum of three separate reads supporting them to be considered real. Furthermore, in reads that 
contain a detected inverted duplication artifact, we use the duplicated signals on either side of this 
artifact to our advantage in a majority voting scheme: For breakpoints belonging to cluster ‍j‍, we 
count the number of times a breakpoint belonging to ‍j‍ is recapitulated on either side of an inverted 
duplication artifact, ‍Pj‍ , and the number of times it isn’t, ‍Nj‍ . If ‍Pj > Nj‍ we consider this breakpoint to 
be real. In the case that ‍Pj = Nj = 0‍, meaning that the breakpoint does not exist in reads that contain 
inverted duplication artifacts, we perform a similar majority vote on the basis of a breakpoint being 
repeated or not within reads. The notion here is that real breakpoints should be repeated within reads 
because of the expected concatemer structure of Petites, while spurious breakpoints that are low 
frequency are less likely to be. To this end we compute ‍NRj‍ and ‍PRj‍ , which are the number of times a 
breakpoint from cluster ‍j‍ is present in a read with repeats but is not repeated itself, and the number 
of times a breakpoint assigned to cluster ‍j‍ is repeated, respectively. Similar to the above, if ‍PRj > NRj‍ 
we consider this cluster to be real.

See Appendix 2—table 1 for a summary of all parameters in our pipeline described in this section 
and the three preceding it. See Appendix 1—figure 13 for the effect that changing these parameters 
has on breakpoint counts. See Appendix 1—figure 11 for the effect that this majority voting scheme 
has on removing spurious breakpoints.

Breakpoint labeling and read encoding schemes
Breakpoints are labeled based on the segmentation provided by a Python implementation of DBSCAN 
(an integer), in addition to two other features: (1) the strand in this transition (±), and (2) the transition 
from a low (L) to high (H) or vice-versa reference base position. This means that read with a repeated 
excised repeat unit with the same orientation and in the +strand takes the form: [2LH, 2LH, 2LH, ..., 
2LH] in the number transition encoding, and [2++, 2++, 2++, ..., 2++] in the orientation encoding 
scheme. In addition to these two schemes, the mapped ends of the reads in reference locations 
are also stored and used later in assigning reads to inferred structures. Both encoding schemes are 
necessary when considering complex structures such as the ‘mixed’ repeat structures described in 
results where only two breakpoints exist, but permutations in their orientation produce four unique 
alignments which would be missed with a simple numerical labeling scheme.

Reconstructing mtDNA repeat structures from reads
For long reads containing small repeated structures with numerous breakpoints passing filtering 
criteria, repeats are detected by directly computing the longest common prefix within a read in both 
read encoding schemes described above. We require two periods to be present for this type of 
repeat detection method to produce a candidate structure, and that the detected repeat is a tandem 
repeat, meaning there are no intervening breakpoints between periods. This is how all low frequency 
alternate structures are detected within samples, and for some samples primary structures when small 
enough to be repeated within single reads.

Large primary structures that are too large to be fully repeated twice within reads are inferred 
through the construction of a breakpoint transition matrix, ‍Tij‍ , that stores the number of transitions 
between breakpoint i to breakpoint ‍j‍ across all reads within a sample. If two entries in this matrix 
share a breakpoint, and if the fractional difference in their average counts to individual counts is <0.34, 
these breakpoint transitions are merged into a list together. This is a Binomial merging criterion for 
being within one standard deviation of the average counts assuming that both breakpoint transitions 
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sharing a breakpoint come from the same structure. Following recursive merging of transitions and 
then lists of transitions with the same criteria, if in each list the number of breakpoints equals the 
number of unique transitions (meaning this structure is a true repeat), then the structure is recorded 
alongside its average count and its span on the reference. Structures inferred from this method with 
the largest span on the reference are considered to be primary repeats, and if small enough are reca-
pitulated by the direct repeat detection scheme described above.

Mixed structure alignment frequency calculations
Consider an alignment of length ‍L1‍ , where we are interested in computing its frequency in these 
mixed samples that contain four alignments with lengths ‍

{
L1, L2, L3, L4

}
‍, accounting for read sampling 

bias. Given a read of length ‍x > L1‍ , assuming sampling of a random pattern of all four alignments (or 
equivalently, random sampling of a periodic pattern including all four alignments), the probability this 
read is not truncating an alignment with length ‍L1‍ is ‍1 − L1

L1+L2+L3+L4 ‍ .
The estimated probability that we see this read of length ‍x > L1‍ is:

	﻿‍

ˆ x=∞

x=L1

PR
(
x
)

dx
‍�

where ‍PR
(
x
)
‍ is an exponential fit to the empirical read length distribution (Appendix 1—figure 

14), with the following form, and is the read length probability distribution:

	﻿‍ PR
(
x
)

= 1
β e

−
(

x−µ
)

β

‍�

where ‍β‍ and µ are the scale and location parameters determined from the fit.
The joint probability that we have a read long enough to see an alignment, and that it does not 

abruptly truncate the alignment at its ends is the product of these two terms:

	﻿‍
QL1 =

(
1 − L1

L1+L2+L3+L4

)
e−

(
L1−µ

)
β

‍�

Alignment frequencies can then be computed by normalizing raw observed counts ‍Ni‍ by ‍QLi‍ , and 
computing their relative frequency, ‍νi‍ :

	﻿‍
νi =

Ni
QLi∑i=4

i=1
Ni

QLi ‍�

Primary/alternate structure frequency calculations
Unlike mixed samples where breakpoint identity does not uniquely define alignments (permutations 
of two breakpoints result in four alignments), in most samples we can simply count breakpoints, 
assuming that repeat units ~ unique breakpoint counts in a particular structure and perform a similar 
normalization to account for sampling bias.

To do this, each read is assigned to one class of potential structures based on the maximal overlap 
between breakpoint labels in known structures and the read, conditioned on containing content only 
within the known structure. Because we are counting breakpoints, we no longer have to worry about 
truncation of a whole alignment and can consider reads smaller than the expected alignment length.

Consider a repeat unit with period ‍Lk‍ in bp, and a breakpoint count ‍Jk‍ that is unique to this struc-
ture. The probability that we see this structure given the read distribution in this sample is:

	﻿‍
QLk =

ˆ x=∞

x=Lk

PR
(
x
)

dx +
ˆ x=Lk

x=u

x
Lk

PR
(
x
)

dx
‍�

The first term is the product of the probability (=1) that we see this breakpoint for read lengths 

‍x > Lk‍ and the probability that we have such reads (‍PR
(
x
)
‍ is the read-length distribution fit as 

described above). The second term is the product of the probability we see this breakpoint for reads 

‍x < Lk‍ (‍
x

Lk ‍) and the probability that we see reads with these lengths.
The relative frequency can then be calculated by normalizing counts ‍Jk‍ by ‍QLk‍ and computing rela-

tive frequency across all structures as in the previous section.
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Type I/II/III repeat unit classification
Type I repeat units are those excised from the interior of a primary Petite alignment. Type II repeat units 
contain alignments that span the primary alignment breakpoint when it is present in a concatemer 
form. Type III repeat units share one edge with the primary alignment and have another edge internal 
to the primary alignment. Because each edge in a reconstructed structure is truly a cluster of edge 
signals, for an alignment edge to be considered ‘shared’ the means of alignment edge location distri-
butions must be equal to within one standard deviation of each other. Thus, according to this criteria, 
Type I repeats have no shared edges, Type II repeat units have two such shared edges and multiple 
alignments, and Type III repeat units have one shared edge and one alignment.

Data availability
Raw Nanopore sequencing data (that has been demultiplexed and labeled with the corresponding 
colony name in the main text) is available alongside sequence alignment code and Python code for 
primary/alternate structure analysis. The data is available at https://doi.org/10.5061/dryad.vdncjsxwx. 
The code for analysis is available at https://doi.org/10.5281/zenodo.5851771. Preprocessed data 
and code to produce the plots in this article are available at https://github.com/javathejhut/Continge​
ncyAndSelection, (copy archived at swh:1:rev:5b6f6c7e1fbff2a537f29d3b26bc292035170f6b; Nunn, 
2022).
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Appendix 1

Additional figures

Appendix 1—figure 1. Inverted duplication artifacts are prevalent in Nanopore sequencing of mitochondrial 
DNA but exhibit patterns that enable their detection. (a) The fraction of reads containing repeated inverted 
annotated genome features were plotted above for all Grande colonies grown in YPD and YPG for both nuclear 
DNA (nDNA) and mtDNA. Inverted duplication artifacts were enriched in reads mapped to mitochondrial DNA. 
Appendix 1—figure 1 continued on next page
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While it has been suggested that these artifacts are caused by either tethered complementary strands being 
brought through the pore in series, or lingering complementary strands near the pore opening, it is unclear why 
there is such a difference between nDNA and mtDNA reads. Base composition does differ significantly between 
the two genomes, with only 18% GC content in mtDNA, compared to 38% in nDNA. The abundance of inverted 
duplication artifacts also appears to be affected by growth conditions, potentially due to differences in mtDNA 
conformation under respiration and fermentation conditions, but this remains unexplored. This effect was also 
seen in other Nanopore experiments performed by another lab with the same flow cell and sequencing chemistry 
described in Materials and methods (data not shown). (b) Here, we are plotting the probability distribution 
of the read locations of singleton inverted duplication artifacts in mtDNA across all Grande samples for both 
YPG and YPD conditions, as well as pooled reads from chromosome I (chrI) across both conditions. Mean and 
standard deviations of each set of samples are denoted in the legend. Artifact inverted duplications are generally 
concentrated toward the center of the read but biased slightly toward the second half. This is consistent with 
the self-interaction ratcheting mechanism described by Spealman et al., 2020 in sequencing real inverted 
duplications, where self-interaction increases translocation speed in the second half of the read. Increased 
translocation speed results in skipped bases, effectively shortening the second half of the read which results in this 
bias to the right in fractional length. Inverted duplications detected are filtered to those residing within the 1% tails 
of this distribution.

Appendix 1—figure 1 continued

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 2. Separated non-inverted/inverted circular breakpoint plots. Here, we provide an alternate 
representation of the breakpoint summary in Figure 2c that separates non-inverted and inverted breakpoints 
and represents breakpoints as arcs to improve readability. The mitochondrial reference has also been circularized. 
(a) Non-inverted breakpoint locations. Here solid-colored arcs directly show the regions of mtDNA that interact in 
creating breakpoints. (b) Inverted breakpoint locations represented as dashed lines.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 3. Distribution of minimum distances between alignment edges and origin edges is robust 
to different structural detection pipeline parameter regimes. Real data (solid lines in this plot) follow all filtering 
steps in our structural pipeline, including inverted duplication artifact filtering, and majority voting (except ‘lenient’ 
parameter set). The different data curves are a result of the aforementioned filtering steps in the pipeline, but 
with different parameters (Appendix 2—table 2). Small, dotted lines represent simulations of uniform random 
alignments spanning origins, with length distributions of alignments from each set of data curves. Long dashed 
lines represent the same type of simulation with no requirement for alignments to span origins. Both the green 
and purple data curves reside close to the ‘strong origin selection’ models or the small, dotted lines. The blue 
parameter regime, which we would expect to cluster more noise because we are being more lenient with filtering 
thresholds, differs at least to a larger degree than green/purple. Overall, however, all three parameter regimes 
perform similarly, suggesting that the shape of these distributions and the claims we are making here are robust 
at least to changes in parameter values in our structure detection pipeline. In another sense, this suggests that 
minimap2 is already neglecting most base-level changes very well and only considering severe deviations in 
expected collinearity to be the end of alignments that form breakpoints.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 4. The preference for primary structure excision sites is robust to different filtering parameter 
regimes. Here, we are plotting the cumulative distribution of fractional distances between the primary alignment 
edge and closest alternate alignment edge for three different parameter regimes (Appendix 2—table 2). 
The blue curve, which represents our ‘lenient’ regime in this case, is now simply the purple curve (parameters 
in Appendix 2—table 1, regimes in Appendix 2—table 2) without majority voting. This change is necessary 
compared to Appendix 1—figure 3 because we now must infer structure through repeat detection, which 
requires more strict parameters to begin with. Without the majority voting it is clear that alternate alignments 
begin to creep outside primary alignments due to noise, but as a whole, all three parameter regimes display a high 
density at small fractional distances, suggesting a preference for excision sites across or near the primary structure 
excision site as described in the main text.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 5. Structures observed in Grande cells grown in YPG—evidence of heteroplasmy. (a) The first 
panel on the left shows the only high confidence primary and alternate structure detected in one of the four YPG 
Grande samples sequenced. Primary structure is an intact genome, while the alternate structure is a repeat that 
spans two origins of replication near 30 kbp. The panel on the right shows the numbers of reads that support this 
alternate structure (RC), and the estimated number of monomer (repeat unit) counts observed across reads (MC). 
Given that true Petite lineages cannot exist in YPG media, this signal is due to at least transient heteroplasmy 
within cells. While this is the only structure detected across four samples, there are other breakpoints present 
at low frequencies in other YPG Grande samples, but they are not prevalent enough to infer high confidence 
structures from. Structure detection from Grandes is difficult because these structures are diverse (afforded by the 
WT genome being the reference point) and exist within cells and not lineages (therefore not enriched by chance 
through early bottlenecks). Given the results from Marotta et al., 1982 that show this ori2–ori7 breakpoint is most 
prevalent in Petites, it is not surprising that it was only this breakpoint that was detected in YPG Grandes. (b) An 
example read contributing to this breakpoint signal. Annotated features are colored and labeled blocks, red lines 
are breakpoint locations determined from mapping. (c) An example of another structure in this same YPG sample 
that has been detected but is not prevalent enough for the algorithm to infer its structure (require >3 read support, 
and more than two periods of a repeat). It is a direct repeat of a region spanning from ori2 to the var1 gene.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 6. Inverted duplication artifact breakpoint edges are further separated than expected due 
to reduced base calling accuracy. (a) For all reads with and without invdup artifacts in chrM in one representative 
Grande sample, a sliding window of 100 bp was moved across the reads and the average PHRED scaled base 
quality score was computed in this window. Reads with invdup artifacts have a clear decrease in PHRED quality 
score in the latter half of the read due to complementary strand interaction and ratcheting as described in 
Spealman et al., 2020. This decrease in base call quality means that mapping algorithms have to contend with 
more noise, resulting in a larger separation distance between invdup breakpoint edges which in an ideal case 
would perfectly coincide in reference coordinates. (b) The distribution of separation distances between invdup 
breakpoint edges in reference coordinates. Breakpoint edges largely (90%) reside within 1 kbp of each other in 
reference coordinates. Inverted duplications residing outside of the expected artifact read location distribution 
and beyond 1 kbp separation are unlikely to be this particular sequencing artifact. We rely on these ideas in the 
filtering described in Materials and methods.

Appendix 1—figure 7. Alternate structure frequencies when not neglecting reads containing inverted duplication 
artifacts. In the above plot, we are computing the base-pair content fraction of any reads that contain a breakpoint 
we have deemed to not be an inverted-duplication artifact, regardless of whether or not an artifact is present in 
the read. Each dot represents this alternate structure fraction across all reads in a single strain sequenced. The 
box plot displays the minimum, maximum, first quartile, and third quartile. We have done this same calculation 
for Grande samples in YPD/YPG media, and in Petites. Given that YPG samples have 2× the number of inverted 
duplication artifacts, which are often accompanied by spurious breakpoints, the discrepancy here between YPD 
and YPG samples is strongly suggestive of clonal divergence playing a role.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 8. GC clusters in origins and alternate structures without origins. (a) A visualization of the 
distinct GC clusters within all eight origins of replication. A 10 bp sliding window is moved along the origin 
sequences. GC clusters are the 3–4 distinct peaks in each of the origin sequences, all above 0.6 GC content in 
the sliding window which are consistent with the locations described in de Zamaroczy and Bernardi, 1986. (b) A 
visualization of the GC clusters within observed alternate structures without canonical origins of replication. These 
clusters at similar GC content (0.6 and above) may act as surrogate replication origin sites.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 9. Supressivity and its correlation with repeat unit size. Black dots represent the average 
suppressivity and repeat unit size from the range of suppressivities and repeat unit sizes published in de 
Zamaroczy et al., 1981; Mangin et al., 1983. Each colored dot indicates the average suppressivity across three 
second passage Petites derived from the same first passage progenitor. Y-axis error bars are ± the standard 
deviation in suppresivities across these three second passage Petite colonies. Shared colors indicate that these 
strains were derived from the same spontaneous Petite colony and constitute a Petite family. As in the main text, 
repeat unit size is taken to be the sum of the unique alignment lengths in the primary alignment of each sample. 
Samples containing inverted breakpoints in their primary alignments are those in families 2 and 3, the orange and 
yellow dots, respectively. Family 3 was confirmed to be a mixed sample.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 10. Comparison of suppressivity models. The y-axis is the Akaike Information Criterion, 
computed from a least-squares fit for each model by transforming the least-squares statistic into a Normal 
negative log-likelihood statistic. The left pane includes models that exist in the repeat unit limit, meaning growth 
rate terms (‍ρiνi‍) either in the exponent (exponential), or as is (linear) are multiplied by the inverse repeat unit 
length (‍1/Li‍), where ‍ ‍ is Petite or Grande. These products represent the time evolution of the abundance of each 
structure (‍Ni‍ as shown in the axis of Figure 8 in the main text). The right pane is the concatemer limit, which takes 
the same form of the models in the left except with the exclusion of the inverse repeat unit length prefactors. The 
notation ‘Primary’ indicates that only primary structures are considered in the theoretical suppressivity calculation, 
while ‘Primary+alternate’ indicates that both alternate structures and primary structures observed in strains 
contribute to the theoretical suppressivity. There are two ways alternate structures are included in the models here: 
(I) The heteroplasmic limit, where it is assumed that these structures coexist. In this case, the relative contributions 
of alternate/primary structures are included by computing ‍NP‍ as an average over all structures weighted by their 
mitochondrial contributions. (II) The homoplasmic limit, where it is assumed that all structures are segregated 
into their own homoplasmic lineages. In this case, the theoretical suppressivities are an average weighted by 
mitochondrial contributions of each structure. By comparing the relative likelihood of each model, in the repeat 
unit limit the exponential model is significantly favored over the linear model (**, ‍2σ‍). All pairwise comparisons 
between the same models in the repeat unit limit are significantly favored over the concatemer models with the 
exception of the heteroplasmic linear models. Homoplasmic/heteroplasmic limits with the inclusion of alternate 
structures have little effect.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 11. Effect of repeat detection (RD) and majority voting scheme (MV) on breakpoint filtering. 
(a) Between the green and blue curves, we see the effect that majority voting (MV in legend) has on the cumulative 
fraction of breakpoints that exist outside the primary alignment (and are therefore unlikely to be real given the 
notion of an excision cascade). Between the green and red curves, we see the effect of tandem repeat detection 
(RD in legend) of breakpoint labels in reads, which largely eliminates breakpoints that exist outside of the primary 
alignment. The purple curve indicates the effect of both repeat detection and majority voting, indicating that 
across all samples breakpoints are contained within the primary alignment which makes them believable. (b) Here, 
we are plotting the locations of breakpoints that are removed through repeat detection and the majority voting 
process. Breakpoints that are removed this way largely bridge between origins of replication due to significant 
homology. Sequencing errors can perturb one origin into another, resulting in these spurious breakpoints that are 
removed by these two schemes.

Appendix 1—figure 12. The necessity and effect of recursive Minimap2 alignments in resolving Petite structure. 
(a) A spiral plot showing a raw Minimap2 alignment of a Nanopore read with default parameters. The legend 
indicates annotated features that are present, black regions represent clipped (unmapped) regions, red bars 
indicate the start or ends of adjacent alignments. Large portions of this read are unmapped due to the default 
Minimap2 z-offset parameter, which truncates repeated alignments due to the expectation of colinearity with the 
reference sequence. Instead of varying this parameter, which requires balancing early truncation and enforcing 
colinearity with the reference, we opted to recursively apply Minimap2 in unmapped portions after the first run. 
(b) The effect of recursively mapping unmapped portions in the same read which almost entirely eliminates the 
unmapped regions except at the ends of reads where adapters still reside, and sequencing error is generally 
higher. While this produces a pseudo-global alignment, only alignments with MAPQ>20 are retained in 
subsequent analysis so our requirements of alignment specificity are maintained. (c) The most impactful change 
that recursive mapping has in improving mapping fraction in 10 samples. (d) The global effect, which is minimal, 
but does improve statistics in repeat detection and structure construction especially in low frequency structures 
where every read counts.

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 13. Structural detection pipeline parameter sweeps—The effect of majority voting, minimum 
read support, and DBSCAN clustering radius, insertion/deletion size threshold, and minimum alignment length. 
(a) A plot of total unique breakpoint counts (identified through DBSCAN clustering) without applying the majority 
voting scheme described inMaterials and methods across a parameter sweep of DBSCAN clustering radius and 
minimum read support. Minimum alignment length and minimum insertion/deletion size were fixed at 300 and 
30 bp, respectively. As expected, we see a monotonic decrease in counts as clustering radius is expanded, and 
the same type of decrease for increasing read support. The high-density cluster to the lower left is an indication 
that in this regime, we are largely clustering noise. (b) The same plot in (a) but with majority voting for breakpoints, 
which results in a fourfold decrease in unique breakpoint counts at the extremum. The flatness across these 
parameter ranges is a sign that the breakpoint counts represent real structures that are largely insensitive to 
parameter selection with the exception of a small clustering radius which will always produce more clusters in the 
lower left. (c) A plot of total unique breakpoint counts (identified through DBSCAN clustering) without applying 
the majority voting scheme described in Materials and methods across a parameter sweep of minimum insertion/
deletion length and minimum alignment length. The DBSCAN clustering radius and minimum read support were 
fixed at 1 kbp and 3, respectively. We see low variance in counts along the insertion/deletion length threshold 
axis, suggesting that most breakpoint calls from minimap2 on its own are capturing real breakpoints and that this 
parameter has little effect. Increasing minimum alignment length as expected results in a monotonic decrease in 
breakpoint counts because less reads exist in the tail of the read-length distribution, and because small structures 
are thrown away. (d) The same plot in (c) but with majority voting for breakpoints, which results in a threefold 
decrease in unique breakpoint counts at the extremum. While we see less steep descent along the minimum 
alignment length axis, it is clear that below 300 bp in alignment length there appears to be a transition to 
clustering of noise, which is due to spurious replication origin to replication origin transitions (Appendix 1—figure 
11).

https://doi.org/10.7554/eLife.76557
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Appendix 1—figure 14. Example read length distribution from sequencing of a single Petite strain and its 
exponential fit. A plot of an empirical read length distribution from one sequence Petite strain. Mean, median, and 
the number of reads are denoted in addition to a fit to an exponential probability distribution in orange. For this 
particular fit, the location and scale parameters were 213 and 6779, respectively.

https://doi.org/10.7554/eLife.76557
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Appendix 2
Additional Tables
Summary of algorithm

1.	 Data set across all samples is restricted to reads that pass default Guppy QC, alignments with 
PHRED alignment score >20 and alignment length >300 bp.

2.	 Breakpoints in alignments where the read-space and reference-space differ by  >30  bp are 
recorded as ‘breakpoints.’

3.	 Inverted breakpoints, where the strand changes mid read, are filtered from hairpin artifacts 
based on the positions within reads, allowing for 1% false positive error at this stage (see 
Appendix 1—figure 1). Hairpin artifacts are marked for use later in a majority voting scheme.

4.	 Non-inverted breakpoints, and inverted breakpoints are separately clustered using DBSCAN, 
with a clustering distance of (eps) of 1 kbp, and a minimum cluster occupancy of 3. K-means 
clustering, with k=2, is also performed within clusters in case breakpoint transitions occur within 
a cluster, indicating too coarse DBSCAN clustering. This happens for example in a 1LH to 1HL 
encoded breakpoint transition, although in practice it was rare in the data (3/35 alternate struc-
tures, and no primary structures required subsequent clustering).

5.	 All breakpoints are further filtered with a majority voting scheme which eliminates clusters that 
exist due to sequencing error and are not periodic (assuming concatemer structures), or are not 
recapitulated on either strand of read when both strands are present. The latter is reminiscent 
of Oxford Nanopore 2D basecalling, but is performed post alignment.

6.	 Breakpoints are further filtered so that only those represented across >3 separate reads remain.

Appendix 2—table 1. Structural detection pipeline overview and summary of parameters.
Detailed summary of parameters.
Parameter Value Description/justification of choice of value

PHRED alignment 
score 20 1/100 probability of a false positive alignment by chance given a particular size/complexity of reference

Minimum alignment 
length 300 bp

Mt replication origins are ~300 bp on average and exhibit significant homology. Below 300 bp, alignments 
containing origin fragments are often indistinguishable in Nanopore sequencing error background, resulting in 

erroneous alignments that break expected collinearity. This would also be the expected lower limit for detectable 
repeat units in Petites. See Appendix 1—figure 13 for effects of this parameter.

Insertion/deletion 
threshold 30 bp

The minimum discrepancy in reference ersus read space to call a breakpoint. This parameter appears to have little 
effect at low values, suggesting breakpoints we see break collinearity by much larger distances, and are therefore 

more believable over Nanopore sequencing error background which often introduces small (~10 bp) insertions and 
deletions. See Appendix 1—figure 13 for effects of this parameter.

DBSCAN epsilon 
(minimum clustering 
distance) 1 kbp

This is the upper threshold for Sniffles (Sedlazeck et al., 2018) and NanoSV (Cretu Stancu et al., 2017) clustering, 
and will cluster within smaller distances if the SV’s themselves are smaller. Varying this value has little effect even in 
a range of a few hundred bp due to the majority voting scheme. See Appendix 1—figure 13 for the effect of this 

parameter.

DBSCAN minimum 
cluster occupancy 3

Fixed at 3 in this pipeline to allow for small clusters, and generally affected by coverage. More stringent filtering 
along similar lines is available with read support filtering. Also important to note that we do not see high confidence 

structures with breakpoint counts <10 once repeats have been detected.

Minimum read 
support 3 Reasonable values for this parameter are largely dependent on sequencing coverage. See Appendix 1—figure 13.

Appendix 2—table 2. Definitions of parameter regimes referenced in Appendix 1—figure 3 and 
Appendix 1—figure 4.
Parameter ‘Lenient’ parameter set value ‘Selected’ parameter set value ‘Strict’ parameter set value

Minimum alignment length 100 bp 300 bp 1 kbp

Insertion/deletion threshold 30 bp 30 bp 30 bp

DBSCAN epsilon (minimum clustering distance) 100 bp 1 kbp 1.4 kbp

Minimum read support 1 3 5

Majority voting? No Yes Yes

https://doi.org/10.7554/eLife.76557
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