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13Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
14Co-first author
15Co-senior author

*Correspondence: araya@cmrb.eu (A.R.), consiglio@ub.edu (A.C.)

https://doi.org/10.1016/j.stemcr.2018.12.011
SUMMARY
Parkinson’s disease (PD) is associated with the degeneration of ventral midbrain dopaminergic neurons (vmDAns) and the accumulation

of toxic a-synuclein. A non-cell-autonomous contribution, in particular of astrocytes, during PD pathogenesis has been suggested by

observational studies, but remains to be experimentally tested. Here, we generated induced pluripotent stem cell-derived astrocytes

and neurons from familial mutant LRRK2G2019S PD patients and healthy individuals. Upon co-culture on top of PD astrocytes, control

vmDAns displayed morphological signs of neurodegeneration and abnormal, astrocyte-derived a-synuclein accumulation. Conversely,

control astrocytes partially prevented the appearance of disease-related phenotypes in PD vmDAns. We additionally identified dysfunc-

tional chaperone-mediated autophagy (CMA), impaired macroautophagy, and progressive a-synuclein accumulation in PD astrocytes.

Finally, chemical enhancement of CMA protected PD astrocytes and vmDAns via the clearance of a-synuclein accumulation. Our find-

ings unveil a crucial non-cell-autonomous contribution of astrocytes during PD pathogenesis, and open the path to exploring novel ther-

apeutic strategies aimed at blocking the pathogenic cross talk between neurons and glial cells.
INTRODUCTION

Parkinson’s disease (PD) is the secondmost prevalent neuro-

degenerative disease after Alzheimer’s disease, affecting 7

to 10 million people worldwide (Global Burden of Disease

Study Collaborators, 2015). PD is characterized by a signifi-

cant loss of ventral midbrain dopaminergic neurons

(vmDAns) in the substantia nigra pars compacta. The pres-

ence of intracellular protein aggregates of a-synuclein

(a-syn) in the surviving vmDAns has been reported in post-

mortem PD tissue (Greenamyre and Hastings, 2004). Most

PD cases are sporadic (85%), but familial mutations are

accountable for 15% of patients (Lill, 2016). Mutations in

the gene encoding leucine-rich repeat kinase 2 (LRRK2),

causing an autosomal dominant form of PD, account for

5% of familial cases and 2% of sporadic cases (Gilks et al.,

2005; Nichols et al., 2005). LRRK2 is a highly complex

protein with both GTPase and protein kinase domains
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involved in several cellular functions, including autophagy

(Cookson, 2016; Orenstein et al., 2013; Su et al., 2015).

Correlations between mutant LRRK2 and several path-

ogenic mechanisms linked to PD progression have been

previously reported, including alterations in autophagy

and consequent accumulation of a-syn (Cookson,

2017). Neuronal mutant LRRK2 toxicity was found to

depend on LRRK2 levels and a-syn accumulation as

opposed to kinase activity or inclusion bodies in induced

pluripotent stem cell (iPSC)-derived neurons (Skibinski

et al., 2014). During PD pathogenesis, mutant LRRK2

was found to directly bind LAMP2A, the receptor respon-

sible for chaperone-mediated autophagy (CMA) nor-

mally used by both LRRK2 and a-syn for degradation

(Orenstein et al., 2013). This binding blocks the proper

functioning of the CMA translocation complex, resulting

in defective CMA, leading to the accumulation of a-syn

and cell death.
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Table 1. Summary of the Healthy Controls and Patients Used in
This Study

Code Status Sex
Age at
Biopsy Mutation

Isogenic
Control

SP09 control M 66 no

SP11 control M 52 no

SP17 control F 48 no

SP06 Parkinson’s

disease

M 44 LRRK2

G2019S

SP12 Parkinson’s

disease

F 63 LRRK2

G2019S

SP13 Parkinson’s

disease

F 68 LRRK2

G2019S

LRRK2 G2019S

corrected
iPSCs derived fromhealthy individuals and patients have

accelerated advances in developing genuinely human

experimental models of diseases (Zeltner and Studer,

2015). In the case of PD, previous studies by our groups

and others have generated iPSCs from patients with PD

associated with LRRK2 mutations, and described the

appearance of disease-specific phenotypes in iPSC-derived

neurons, including impaired axonal outgrowth and defi-

cient autophagic vacuole clearance (Heman-Ackah et al.,

2017; Nguyen et al., 2011; Sanchez-Danes et al., 2012;

Skibinski et al., 2014). Moreover, dopaminergic (DA) neu-

rons from LRRK2-mutant iPSCs displayed alterations in

CMA that were, at least in part, responsible for the

abnormal accumulation of a-syn observed in these cells,

which predated any morphological signs of neurodegener-

ation (Orenstein et al., 2013).

Studies investigating PD pathogenesis have been mostly

focused on the mechanisms underlying vmDAn degenera-

tion and death. However, there is evidence of astrocytes

accumulating a-syn during PD through postmortem anal-

ysis (Braak et al., 2007; Wakabayashi et al., 2000). Altered

a-syn released by axon terminals in the surrounding synap-

ses is taken up by astrocytes, supporting the hypothesis of

the spread of a-syn through neuron-astrocyte interactions

(Braak et al., 2007; Lee et al., 2010). Overexpression of

mutant SNCA in primary astrocytes altered their normal

functioning and impaired proper blood-brain barrier con-

trol and glutamate homeostasis, and eventually resulted

in a significant loss of vmDAns (Gu et al., 2010). In a study

using human brain homogenates from PD patients with

Lewy bodies, a-syn was found to be taken up and spread

from astrocytes to neurons, leading to neuronal death

(Cavaliere et al., 2017). As a result, a role of astrocyte

dysfunction in PD pathogenesis is emerging (Booth et al.,

2017).

In the present study, we generated patient-specific iPSC-

derived astrocytes and vmDAns from PD patients with the

LRRK2 G2019S mutation and healthy individuals. We

consistently generated a population of human vmDAns

in vitro that expressed postmitotic dopaminergic markers

and fired action potentials. Subsequently, we co-cultured

healthy iPSC-derived vmDAns with iPSC-derived astro-

cytes expressing the mutated form of LRRK2 associated

with PD. In co-culture experiments, we detected a signifi-

cant decrease in the number of vmDAns in the presence of

LRRK2-PD astrocytes, which correlated with the abnormal

accumulation of astrocyte-derived a-syn. Conversely, con-

trol astrocytes were able to partially rescue disease-related

phenotypes in LRRK2-PD vmDAns during co-culture. A

more in-depth investigation revealed impaired autopha-

gic machinery, as well as progressive accumulation of

endogenous a-syn in PD astrocytes, compared with con-

trol astrocytes. By treating the cells with an activator
214 Stem Cell Reports j Vol. 12 j 213–229 j February 12, 2019
of CMA, we were able to prevent the appearance of

PD-related phenotypes in patients’ astrocytes. Overall,

our findings represent a direct indication that dysfunc-

tional astrocytes play a crucial role during PD pathogen-

esis and may have broad implications for future

intervention in early stages of PD.
RESULTS

Generation and Characterization of iPSC-Derived

Patient-Specific Astrocytes

To establish an in vitro human cellular model for dissecting

the interplay between neurons and astrocytes in PD, we

first derived astrocyte-like cells from iPSCs, using a previ-

ously published protocol (Serio et al., 2013). Specifically,

astrocyte cultures were successfully established from iPSC

lines from three PD patients carrying the G2019Smutation

in the LRRK2 gene (PD SP06, PD SP12, and PD SP13) and

two healthy age-matched controls (Ctrl SP09 and Ctrl

SP17) (see Table 1 and Tables S1 and S2 for a summary of

the iPSC lines used, and Experimental Procedures for de-

tails on their origin). Immunocytochemistry (ICC) detec-

tion of key astrocyte markers showed robust expression

of CD44, glial fibrillary acidic protein (GFAP), and S100

calcium-binding protein b (S100b), as well as of the excit-

atory amino acid transporter 2 (EAAT2, also known as

GLT1), in all human iPSC-derived astrocytes (Figure 1A).

No evident contamination by other cell types, such as

neurons or oligodendroglial progenitors, was found as

assessed by immunostaining with anti-MAP2 or NG2

antibody, respectively (Figures 1A and 1B). The astrocytic

identity was further confirmed by quantitative RT-PCR of

GFAP and additional astrocyte-specific genes, including

MLC1, SOX9, ALDH1L1, AQP4, DIO2, and SLC4A4, which

were expressed in Ctrl and PD astrocytes, and in human

primary astrocytes, but not in iPSCs (Figures S1A–S1C).



Figure 1. iPSC-Derived Patient-Specific Astrocyte Generation and Characterization
(A) Representative ICC images of astrocytes from two Ctrl iPSC lines (Ctrl SP09 and Ctrl SP17) and three PD iPSC lines (PD SP12, PD SP13,
and PD SP06) staining positive for CD44 (astrocytic precursor marker), GFAP (general astrocytes), S100b (mature astrocytes), and GLT1
(excitatory amino acid transporter 2), and negative for TUJ1 (immature neurons), MAP2 (mature neurons), and NG2 (oligodendrocytes)
expression. Number of independent astrocyte lines generated from iPSC per patient = 3. Number of independent experiments per astrocyte
line generated = 3. Scale bar, 100 mm.
(B) Astrocyte cultures are composed of approximately 95% astrocytes, 4% neurons, and 1% other (n = 3).
(C) Heatmap showing sample similarities taking the rlog transformed data and Euclidean distances between samples. iPSC-derived
astrocyte (Ctrl SP09 and PD SP12) samples cluster closer to the human primary astrocytes than the corresponding iPSC group (n = 2).
(D) Functional ATP production luminescence (counts normalized to controls) in both Ctrl (SP09 and SP17) and PD (SP13, SP12, and SP06)
astrocytes (n = 3). Data are expressed as mean ± SEM, unpaired two-tailed Student’s t test.
To validate astrocyte cell type identity, we also tested

the expression of astrocyte-specific genes revealed by the

Human Astrocyte RNA-Seq database (www.brainrnaseq.

org/) in our iPSC-derived astrocytes, through RNA

sequencing. We found that the transcriptomic profile of
both Ctrl and PD iPSC-derived astrocytes was closer to

that of human primary astrocytes than to that of their

corresponding iPSC line, thus confirming their identity

(Figure 1C). We next determined the functional matura-

tion of iPSC-derived astrocytes by confirming their capacity
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Figure 2. vmDAn Generation, Characterization, and Co-culture Setup
(A and B) Representative immunofluorescence images of Ctrl SP11 vmDAn after (A) 35 or (B) 50 days of neuronal differentiation.
iPSC-derived neural cultures express markers specific for neurons (MAP2), DAns (TH), and midbrain-type DAns (FOXA2 and GIRK2).
Scale bar, 20 mm.
(C) Percentage of differentiated cells that stained positive for TH and double positive for TH and FOXA2 and TH and GIRK2 after 50 days of
differentiation (n = 4).

(legend continued on next page)
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to produce ATP (Figure 1D) and propagate intercellular

Ca2+ waves (Figures S1D–S1H). Indeed, by using the

Fluo-4 AM Ca2+ indicator, recordings from Ctrl and PD

astrocytes showed a heterogeneous pattern of Ca2+ fluctua-

tions under basal conditions, revealing their func-

tionality. All together, these data support the successful

generation of highly pure populations of functionally

equivalent astrocyte-like cells, which represent a contin-

uous source of human Ctrl and PD astrocytes for subse-

quent analyses.

Generation of vmDAns and Setup of Neuron-Astrocyte

Co-culture System

To investigate whether astrocytes contribute to PD patho-

genesis, we established a co-culture system of iPSC-derived

astrocytes and iPSC-derived vmDAns. PD vmDAns were

generated from iPSC lines from two PD patients carrying

the G2019S mutation in the LRRK2 gene (iPSC lines PD

SP12 and PD SP13), whereas Ctrl vmDAns were obtained

from two independent iPSC clones (Ctrl SP11 and Ctrl

SP11#4) from a healthy age-matched control (see Tables

1, S1, and S2 for a summary of the iPSC lines used). To

differentiate iPSCs toward vmDAns, we used a combina-

tion of two previously published (Chambers et al., 2009;

Kriks et al., 2011) midbrain floor-plate differentiation pro-

tocols that was comparably effective in all iPSC lines

analyzed. Under these conditions, �20% of cells in the

cultures were committed to DA neuron fate by day 35 of

differentiation, as judged by the expression of tyrosine

hydroxylase (TH) and forkhead box protein A2 (FOXA2)

(Figure 2A). By day 50 of differentiation, the percentage

of TH+ neurons reached �30%, most of which also

expressed the A9-domain-specific marker G-protein-

activated inward rectifier potassium channel 2 (GIRK2),

and displayed spontaneous action potential firing (Figures

S2B–S2D). For co-culture experiments with control astro-

cytes, we dissociated vmDAn cultures after 35 days of dif-

ferentiation and plated them onto a confluent layer of

Ctrl iPSC-derived astrocytes (Figure 2E). After 4 weeks of

co-culture, we found that astrocyte-neuron glutamate

exchange was present through glutamate transporter 1

(GLT1) expression (Figure 2F) and neuronal synapse for-

mation (Figure 2G). Accordingly, an overall healthy
(D) Calcium wave flux recording over 30 min with calcium tracer Fluo
(E) Diagram of co-culture system.
(F) Representative ICC images of 4-week co-culture staining positive
amino acid transporter 2 (GLT1), and nuclear DAPI. Scale bar, 20 mm
(G) Representative ICC images of presynaptic markers a-syn and syna
after 4 weeks in co-culture. Scale bar, 10 mm.
(H) Representative ICC images of Ctrl SP11 vmDAns (TH) and mature
4-week co-culture period. Scale bar, 20 mm.
Boxed area on the left in (F), (G), and (H) is shown on the right.
neuronal network comprising MAP2-positive cells was

formed upon co-culture (Figure 2H).

Control vmDAns Show Morphological Signs of

Neurodegeneration when Co-cultured with PD

Astrocytes

We then examined the effects of astrocytes expressing

mutated LRRK2 on the survival of Ctrl iPSC-derived

vmDAns upon co-culture (Figure 3A). After 2 weeks of

co-culture with PD astrocytes, Ctrl vmDAns displayed

morphological alterations, including shortened neurites,

and significantly decreased cell survival compared with

co-cultures with Ctrl astrocytes (Figures S2A–S2C). These

alterations were much more evident after 4 weeks of

co-culture, when Ctrl vmDAns cultured on top of PD

astrocytes showed extensive signs of neurodegenerative

phenotypes (fewer and shorter neurites, and abundance

of beaded-necklace neurites) and severely compromised

cell survival (less than �25% of control), compared with

co-cultures with control astrocytes (Figures 3B–3F). The

fact that the numbers of vmDAns did not change signifi-

cantly during the co-culture with control astrocytes, but

progressively declined when co-cultured with PD astro-

cytes, strongly suggests that vmDAns were lost under the

latter conditions as a result of neurodegeneration, rather

than a blockade in vmDAn differentiation or maturation.

Viability tests of both Ctrl and PD astrocytes at 2 and

4 weeks of co-culture revealed highly similar values, indi-

cating that neurodegenerative signs displayed by Ctrl

vmDAns were not caused by a dying PD astrocyte (Fig-

ure S2D). Interestingly, vmDAn neurodegeneration upon

co-culture with PD astrocytes was specific to this type of

neuron, because non-dopaminergic neurons (TH�/MAP2+)

did not significantly change in numbers or morphology

after co-culture with Ctrl or PD astrocytes (Figures S2E–

S1J). All together, these results indicate a neurotoxic capac-

ity of PD astrocytes toward vmDAns, with no effects on

other neuronal types concomitantly present in cultures.

Control vmDAns Accumulate a-syn when Co-cultured

with PD Astrocytes

Given the relevance of a-syn in the context of PD patho-

genesis (Braak et al., 2007), we sought to examine whether
-8 AM of vmDAns at day 50 (n = 3).

for Ctrl SP11 vmDAns (TH), Ctrl SP17 astrocytes (S100b), excitatory
.
psin-1 of a Ctrl SP11 vmDAn (TH) on the top of Ctrl SP11 astrocytes

neurons (MAP2) on the top of Ctrl SP09 astrocytes (GFAP) during a
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vmDAns co-cultured with PD astrocytes abnormally accu-

mulated a-syn. a-syn was barely detectable in the cyto-

plasm of Ctrl vmDAns cultured alone (data not shown) or

when co-cultured with Ctrl astrocytes (Figure 3G). In

contrast, Ctrl vmDAns accumulated high levels of a-syn

throughout the neurites and cell body after 4 weeks of

co-culture with PD astrocytes (Figures 3H and 3I). Notably,

while Ctrl astrocytes had undetectable levels of a-syn (Fig-

ure 3J), PD astrocytes displayed high levels of a-syn (Figures

3K and 3L), raising the intriguing possibility that a-syn

from PD astrocytes might be transferred to Ctrl vmDAns.

To directly address if this was the case, we genetically engi-

neered two iPSC lines (representing one PDpatient and one

healthy control) using CRISPR/Cas9 technology so that the

endogenous a-syn would be tagged with a FLAG peptide

(a-syn-FLAG iPSC lines; Figures S2K and S2L and Tables

S2 and S3). a-syn-FLAG-tagged astrocytes were generated

and fully characterized (Figure S2M). As expected, PD

a-syn-FLAG tagged astrocytes accumulated abnormally

high levels of a-syn, which co-localized with anti-FLAG

staining (Figure 3M). More importantly, the co-culture of

Ctrl vmDAns on top of a-syn-FLAG-tagged PD astrocytes

for 4 weeks resulted in FLAG-tagged a-syn accumulation

in neurons, demonstrating the direct transfer of astrocytic

a-syn to neurons (Figure 3N).

In addition to co-culturing cells with direct glia-neuron

contact, we tested the effect of culturing Ctrl vmDAns

with medium conditioned by Ctrl or PD astrocytes at
Figure 3. Ctrl Neurons Show Signs of Neurodegeneration and Acc
(A) Scheme representing co-culture system of Ctrl neurons on the top
(B and C) Representative ICC images of tyrosine hydroxylase (TH, black
and (C) PD SP13 astrocytes for 4 weeks. Images on the right show a m
20 mm and (right) 0.2 mm.
(D) Percentage of TH+/DAPI of Ctrl SP11 and Ctrl SP11#4 neurons whe
SP06 astrocytes for 4 weeks (n = 3 per combination).
(E and F) (E) Neurite length quantification and (F) number of branc
neurons when co-cultured on Ctrl SP09, Ctrl SP17, and Ctrl SP11 astrocy
30 neurons counted per experiment.
(G and H) Representative ICC images of Ctrl SP11 vmDAns co-culture
stained for TH (vmDAn), a-syn, and DAPI. Arrows indicate the selected
0.2 mm.
(I) Quantitative analysis of the percentage of vmDAns stained positive
with Ctrl SP09, Ctrl SP17, or PD SP12, PD SP13, and PD SP06 astrocyt
(J and K) Representative ICC images of (J) Ctrl SP09 or (K) PD SP13 astr
(vmDAn), GFAP (astrocytes), a-syn, and DAPI. Arrows indicate the s
Scale bar, 20 mm.
(L) Quantitative analysis of the percentage of astrocytes stained p
co-cultured with Ctrl SP09, Ctrl SP17, or PD SP12, PD SP13, and PD S
(M) Scheme representing the generation of CRISPR/Cas9 edited a-syn
astrocyte (GFAP) showing perfect a-syn (red) and FLAG (green) co-lo
(N) Representative ICC image depicting astrocyte-derived FLAG (gree
co-culture period with PD SP12 a-syn-FLAG astrocytes (n = 3). Dashe
Data are expressed as mean ± SEM, unpaired two-tailed Student’s t te
different concentrations (Figure S3A). Exposure of Ctrl

vmDAns to PD astrocyte-conditioned medium for 1 week,

even at low concentrations, resulted in a-syn accumula-

tion, morphological alterations suggestive of neurodegen-

eration, and decreased cell survival (Figures S3B–S3H),

indicating that PD astrocytes secrete a molecule(s) that is

toxic to vmDAns. Direct uptake by vmDAns of a-syn

from conditioned medium was tested by exposing Ctrl

vmDAns to medium collected from PD a-syn-FLAG-tagged

astrocytes (Figures S3I–S3J), suggesting that the neurotoxic

effect of PD astrocytes on vmDAns is, at least in part, medi-

ated by secretion of a-syn.

Control Astrocytes Partially Rescue

Neurodegeneration of PD vmDAns

We have previously shown that vmDAns derived from

PD-iPSCs show signs of neurodegeneration (including

reduced numbers of neurites and neurite arborization, as

well as accumulation of abnormal a-syn in the soma) after

50 days of culture, which are not evident in Ctrl vmDAns

(Sanchez-Danes et al., 2012). To test whether the neurode-

generation could be rescued or prevented by healthy

astrocytes, we co-cultured PD vmDAns with Ctrl or PD

astrocytes. After a 4-week co-culture, PD vmDAns showed

a partially recovered neurite number and complex

neurite arborization when co-cultured on control astro-

cytes, compared with co-cultures with PD astrocytes (Fig-

ures 4A–4E). This rescue was partial, since PD vmDAns
umulate a-syn when Co-cultured with PD Astrocytes
of Ctrl or PD astrocytes for 4 weeks.

) from co-cultures of Ctrl SP11 neurons with (B) Ctrl SP09 astrocytes
agnification of the area boxed in the left images; scale bars, (left)

n co-cultured with Ctrl SP09, Ctrl SP17, or PD SP12, PD SP13, and PD

hes of Ctrl SP11 TH-positive neurons and Ctrl SP11#4 TH-positive
tes or PD SP12, PD SP13, and PD SP06 astrocytes for 4 weeks (n = 3);

d with (G) Ctrl SP09 and (H) PD SP13 astrocytes after 4 weeks and
cell for which an insert is shown at higher magnification. Scale bar,

for a-syn when Ctrl SP11 and Ctrl SP11#4 neurons were co-cultured
es for 4 weeks (n = 3).
ocytes co-cultured with Ctrl SP11 vmDAns for 4 weeks, stained for TH
elected cell for which an insert is shown at higher magnification.

ositive for a-syn when Ctrl SP11 and Ctrl SP11#4 neurons were
P06 astrocytes for 4 weeks (n = 3).
-FLAG astrocyte line. Representative image of a-syn-FLAG PD SP12
calization. Scale bar, 20 mm.
n) inside of a TH-positive Ctrl SP11 neuron (red) during a 4-week
d line shows the outline of the cell. Scale bar, 10 mm.
st, ***p < 0.001.
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co-cultured with control astrocytes did not reach the levels

of cell survival and complex neurite arborization seen in

co-cultures of Ctrl vmDAns and Ctrl astrocytes (compare

Figures 4A and 4C–4E with 3B and 4D–4F). Moreover,

co-culture with Ctrl astrocytes also prevented the accumu-

lation of a-syn in PD vmDAns that was evident in co-cul-

tures with PD astrocytes (Figures 4A, 4B, and 4F). Notably,

most Ctrl astrocytes when co-cultured with PD vmDAns

adopted a flat morphology with moderate levels of a-syn;

however, some harbored a hypertrophic morphology

with retracted processes that accumulated very high levels

of a-syn (Figures 4G and 4H), suggesting that reactive astro-

cytes may contribute to the clearance of vmDAn a-syn

accumulation. Culture of PD vmDAns with medium

conditioned by Ctrl astrocytes also rescued cell survival,

morphological alterations, and a-syn accumulation (Fig-

ures S3K–S3S), indicating that direct neuronal-glial contact

was not necessary for the neuroprotective effect.

We next investigated the causative role of the genetic

background of patient-specific astrocyte cells by ectopically

expressing mutated LRRK2 G2019S in Ctrl astrocytes. In

these experiments, Ctrl astrocytes were transfected with a

plasmid expressing V5-tagged LRRK2 G2019S, or with a

Ctrl plasmid expressing GFP, and analyzed 7 days after

transfection for the presence of a-syn. Astrocytes trans-

fected with LRRK2 G2019S exhibited diffuse cytoplasmic

accumulations of a-syn (Figure S4A), which were not

present in GFP-transfected cells (Figure S4B). The transfec-

tion efficiencies (30%–40%, as evaluated by co-staining for

V5/GFAP or GFP/GFAP) were comparable under both con-

ditions (Figure S4C). Next, we co-cultured Ctrl vmDAns for

4 weeks with LRRK2 G2019S-transfected Ctrl astrocytes, or

with GFP-transfected astrocytes as a control, and we found

a-syn accumulation in 50% of the TH+ neurons only in

co-cultures with LRRK2 G2019S-transfected astrocytes

(Figures S4D–S4G). Overall in these cultures we found
Figure 4. PD Neurons Restore Arborized Morphology and Accumu
(A and B) Representative ICC images of PD SP12 vmDAns during 4-week
TH (vmDAns), a-syn, GFAP (astrocytes), and DAPI. Images on the righ
indicate the selected cell for which an insert is shown at higher mag
(C) Quantitative analysis of the percentage of PD SP12 vmDAns remai
astrocytes (n = 3).
(D and E) (D) Neurite length quantification and (E) number of branches
SP13 astrocytes for 4 weeks compared with the wild-type condition Ct
4 weeks (n = 3); 40 neurons counted per experiment.
(F) Quantitative analysis of the percentage of PD SP12 vmDAns that sta
SP17, Ctrl SP11, PD SP13, and PD SP12 astrocytes for 4 weeks (n = 3)
(G) Immunofluorescence analysis of PD SP12 neurons on the top of Ctr
the right show a magnification of the area boxed in the left image. Arro
processes. Inset scale bar, 20 mm.
(H) Quantitative analysis of the percentage of astrocytes that staine
4 weeks. Ctrl astrocytes were derived from SP09, SP11, and SP17 iPSCs,
Data are expressed as mean ± SEM, unpaired two-tailed Student’s t te
decreased survival of vmDAns and evident morphological

alterations (Figures S4H–S4I), including fewer and shorter

neurites compared with vmDAns cultured on top of GFP-

transfected astrocytes, indicating that the expression of

pathogenic LRRK2 in Ctrl astrocytes is deleterious for the

survival of dopaminergic neurons.

For the converse experiment, we generated isogenic PD

astrocytes lacking the LRRK2 G2019S mutation by

CRISPR/Cas9-mediated gene editing of PD iPSCs (iPSC

line PD SP13, from here on referred to as PD iso), and fully

characterized these cells (Figures S5A–S5E). Abnormal

a-syn accumulation did not occur in gene-corrected astro-

cytes, in contrast with their isogenic mutant counterparts

(Figures S5F and S5G). Moreover, co-culturing gene-

corrected astrocytes with Ctrl vmDAns for 4 weeks pre-

vented the accumulation of a-syn and decrease in neuron

survival observed when Ctrl vmDAns were co-cultured

with PD astrocytes (Figures S5H–S5J), further supporting

that the expression of mutant LRRK2 in astrocytes is path-

ogenic to Ctrl vmDAns.

Dysfunctional Chaperone-Mediated Autophagy and

Progressive a-syn Accumulation in PD Astrocytes

Since PD astrocytes displayed higher levels of a-syn

compared with controls, we next investigated possible dif-

ferences in a-syn turnover in these cells. Degradation of

a-syn in lysosomes occurs in large extent through CMA

(Cuervo et al., 2004; Martinez-Vicente et al., 2008). To

investigate possible changes in CMA in PD astrocytes, we

first stained at 6 and 14 days for both a-syn and LAMP2A,

the receptor for CMA (Figures 5A and S6A). Ctrl astrocytes

showed LAMP2A in the perinuclear area (perinuclear lyso-

somal positioning occurs during CMA activation; Kiffin

et al., 2004) and barely detectable levels of a-syn at both

6 and 14 days (Figures 5A, 5B, and S6A). In contrast, PD

astrocytes displayed LAMP2A-positive vesicles all around
late Less a-syn when Co-cultured with Ctrl Astrocytes
co-cultures with (A) Ctrl SP09 or (B) PD SP13 astrocytes stained for
t show a magnification of the area boxed in the left images. Arrows
nification with a-syn accumulation. Scale bar, 20 mm.
ning after 4-week co-culture with Ctrl SP09, PD SP13, and PD SP12

of PD SP12 TH-positive neurons when co-cultured on PD SP12 or PD
rl SP11 neurons on Ctrl SP09, Ctrl SP17, and Ctrl SP11 astrocytes for

ined positive for a-syn when co-cultured on the top of Ctrl SP09, Ctrl
.
l SP09 astrocytes stained for TH, GFAP, a-syn, and DAPI. Images on
ws in the inset shows a-syn accumulation inside Ctrl SP09 astrocyte

d positive for a-syn after being cultured with PD SP12 neurons for
while PD astrocytes were derived from SP12 and SP13 iPSCs (n = 3).
st, **p < 0.01, ***p < 0.001).
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Figure 5. Altered CMA and a-syn Accumulation in LRRK2-PD Astrocytes
(A) Representative ICC images of CMA receptor (LAMP2A), astrocyte marker GFAP, a-syn, and nuclear marker DAPI in Ctrl SP09 and PD SP13
astrocytes at 6 and 14 days. Scale bar, 20 mm. Smaller white circles represent perinuclear area, whereas larger green circle represents
non-perinuclear area.
(B) Percentage of astrocytes with LAMP2A-positive puncta positioning outside of perinuclear area and percentage of astrocytes that
stained positive for a-syn. Astrocyte lines used in the experiment were Ctrl SP09, Ctrl SP17, PD SP12, and SP13 (n = 3).
(C) Representative ICC image of positive co-localization of LAMP2A and a-syn in PD SP13 astrocytes. Scale bar, 10 mm.

(legend continued on next page)
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the cell body as early as 6 days, which continued to be pre-

sent after 14 days (Figures 5A, 5B, and S6A). Moreover,

abnormal accumulation of a-syn was confirmed in PD

astrocytes after 14 days of culture, compared with Ctrl as-

trocytes (Figures 5A–5E). Interestingly, this accumulation

was not present after 6 days of culture, suggesting progres-

sive a-syn accumulation over the 14-day time period.

Co-localization analyses of a-syn with the LAMP2A recep-

tor revealed a positive co-localization that was more

evident in PD astrocytes (Figures 5C and S6B). CMA sub-

strates are usually rapidly internalized and degraded inside

lysosomes, but we have previously described a similar

persistent association of a-syn with LAMP2A-positive lyso-

somes in PDmodels due to blockage in a-syn translocation

inside lysosomes (Orenstein et al., 2013). These findings

suggest, thus, a similar CMA blockage in the PD astrocytes

at the receptor level. Also supportive of reduced a-syn

degradation, western blot analysis confirmed a higher

monomeric protein level of a-syn in PD astrocytes

compared with controls (Figures 5D, 5E, and S7A). By using

an antibody that detects specifically oligomeric a-syn, we

were able to detect other pathogenic forms of a-syn in PD

astrocytes, which were similar to those of PD postmortem

brain tissue (Figure S7B).

To investigate the contribution of the defect in CMA to

the progressive accumulation of a-syn in PD astrocytes,

we next performed a knockdown of LAMP2A using lentivi-

ral-mediated short hairpin RNA (shRNA) targeting and

silencing the LAMP2A spliced transcript (shLAMP2A), or

an shRNA targeting the Luciferase gene (shLuc) as a control

(Figure 5F). The shLuc control astrocytes displayed an

expected low level of a-syn, whereas after shLAMP2A trans-

duction, there was a statistically significant (p < 0.001)

2.5-fold increase in a-syn puncta, comparable to the levels

observed in PD astrocytes (Figure 5G). Knockdown of

LAMP2A did not change a-syn puncta levels in PD astro-

cytes, further suggesting defective CMA for a-syn in these

cells. CMA activitywasmonitored using a photoactivatable

CMA reporter, KFREQ-Dendra (Koga et al., 2011), in all

astrocyte lines at 52 hr after photoactivation (Figures 5H
(D and E) (D) Western blot of a-syn and a-tubulin as a loading contr
14 days in culture (n = 4).
(F) Representative ICC images of Ctrl SP09 and PD SP13 astrocy
LV-shLuciferase (as a control) stained for a-syn, GFP, and DAPI. Boxed
shown. Scale bars, 20 and 10 mm, respectively.
(G) Percentage of a-syn puncta area per cell in Ctrl SP09 and PD SP13 a
(H) KFERQ-DENDRA (CMA reporter) in Ctrl SP09 and PD SP13 astrocyte
insets at the bottom are a magnification of the boxed area.
(I and J) (I) Western blot of a-syn and b-actin as a loading control
Ctrl SP09 and PD SP13 after the addition of inhibitors of lysosomal
degradation (lactacystin [LAC], 5 mM) for 2 hr (n = 3).
Data are expressed as mean ± SEM, unpaired two-tailed Student’s t te
and S6C). KFREQ-Dendra is present in the cytosol (diffuse

fluorescent pattern) but as it is delivered to lysosomes via

CMA it changes to a fluorescent punctate pattern. Ctrl

astrocytes displayed these puncta, indicative of functional

CMA, whereas the signal in PD astrocytes remained

diffused in the cytosol, suggestive of an inactive CMA.

Since PD astrocytes displayed higher levels of a-syn

compared with Ctrl astrocytes, we next investigated

possible differences in a-syn turnover in these cells. a-syn

has previously been shown to undergo degradation both

by the ubiquitin/proteasome system and by autophagy

(Cuervo et al., 2004; Webb et al., 2003); therefore a-syn

flux in the presence of lysosomal and proteasome inhibi-

tors (leupeptin and lactacystin, respectively) was evaluated

in Ctrl and PD astrocytes at 14 days (Figures 5I, 5J, and

S7D). An increase of �40% in a-syn levels was found in

Ctrl astrocytes after leupeptin treatment, while this in-

crease was not found in PD astrocytes analyzed under the

same conditions, indicating an impaired flux. No changes

were found in either Ctrl or PD astrocytes after lactacystin

treatment (Figures 5I, 5J, and S7D). These findings suggest

major alterations in a-syn proteostasis due to poor degrada-

tion by lysosomal systems in PD astrocytes.

Impaired Macroautophagy in PD Astrocytes

Cells often respond to blockage in CMA by upregulating

other autophagic pathways such as macroautophagy (Mas-

sey et al., 2006; Schneider et al., 2015). However, altered

macroautophagy has also been reported in the context of

PD (Sanchez-Danes et al., 2012; Winslow et al., 2010). To

investigate the status of macroautophagy, the endo/lyso-

somal marker LAMP1, autophagosome marker LC3, astro-

cyte marker GFAP, and nuclear DAPI were used during

ICC on all astrocyte lines at both 6 and 14 days. In Ctrl

astrocytes, there was lysosomal LAMP1 staining in the

perinuclear area and very few visible autophagic vacuoles

(LC3-positive vesicles) at both 6 and 14 days (Figures 6A,

6B, and S6D). In PD astrocytes, as for LAMP2A, LAMP1-

positive vesicles lost the preferable perinuclear distribution

and were found throughout the entire cell (Figures 6A, 6B,
ol and (E) quantification in Ctrl SP09 and PD SP13 astrocytes after

tes after 14 days of transduction with either LV-shLAMP2A or
areas highlight the region for which high magnification images are

strocytes transduced with LV-shLuciferase or LV-shLAMP2A (n = 3).
s 52 hr after photo-switching with UV light (n = 3). Images in the

and (J) quantification of a-syn flux ratio normalized to b-actin in
proteolysis (leupeptin [LEU], 100 mM) for 12 hr and proteasomal

st, *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 6. Dysfunctional Macroautophagy in LRRK2-PD Astrocytes
(A) Representative ICC images of lysosomal protein marker LAMP1 and autophagosome marker LC3 in Ctrl SP09 and PD SP13 astrocytes
(GFAP) at 6 and 14 days. Smaller white circles represent perinuclear area, whereas larger green circle represents non-perinuclear area.
Scale bar, 20 mm.
(B) Percentage of astrocytes with LAMP1-positive puncta positioning outside of perinuclear area and percentage of astrocytes that stained
positive for LC3-II. Astrocyte lines used in the experiment were Ctrl SP09 and SP13 (n = 3).
(C–E) (C) Western blot of LC3-II protein levels and b-actin as loading control with corresponding quantification of (D) the LC3-II basal
expression and (E) LC3-II flux with or without lysosomal inhibitors NH4Cl and leupeptin (L/N) for 2 hr in Ctrl SP09 and PD SP13 astrocytes
(n = 3).
(F–H) (F) Western blot of p62 protein levels and b-actin as loading control with corresponding quantification of (G) the P62 basal
expression and (H) P62 flux without inhibitors or with inhibitors leupeptin for 12 hr and lactacystin for 2 hr in Ctrl SP09 and PD SP13
astrocytes (n = 3).
Data are expressed as mean ± SEM, unpaired two-tailed Student’s t test, *p < 0.05, **p < 0.01, ***p < 0.001.
and S6D). In addition, there was a marked increase in auto-

phagic vacuoles starting as early as 6 days that continued

increasing through the 14-day time point (Figures 6A, 6B,

and S6D). Most of the accumulated LC3-positive vesicles

in PD astrocytes did not co-localize with LAMP1 lysosomes

(Figures S6E and S6F), suggesting that they were autopha-

gosomes that persisted in these cells due to their poor

clearance by lysosomes.

In agreement with the immunofluorescence studies,

western blot analyses detected higher basal levels of

LC3-II in PD astrocytes compared with Ctrls (Figures 6C,

6D, and S7C). To monitor the autophagy flux and to gain
224 Stem Cell Reports j Vol. 12 j 213–229 j February 12, 2019
insights into the mechanism behind the accumulated

LC3-II levels in PD astrocytes, both Ctrl and PD astrocytes

were treated with leupeptin and NH4Cl, inhibitors of lyso-

somal proteolysis, to inhibit LC3-II degradation. Under

these conditions, PD astrocytes exhibited lower increase

in LC3-II levels compared with controls, suggesting an

impairment of the autophagy flux in PD astrocytes (Figures

6E and S7C). Moreover, we found higher p62 levels in PD

astrocytes at baseline compared with controls, and lower

flux ratio in the presence of inhibitor (Figures 6F–6H and

S7E). Overall these findings suggest that reduced function

in both autophagic pathways, CMA and macroautophagy,



Figure 7. CMA Activator Drug Treatment Rescues a-syn Accumulation in Neurons Cultured with PD Astrocytes
(A and B) Representative ICC images of (A) Ctrl and (B) PD astrocytes after 2 weeks in culture without treatment stained for LAMP2A, a-syn,
GFAP, and DAPI. Orthogonal views reveal positive co-localization of a-syn to LAMP2A in PD untreated sample. Images on the right show a
magnification of the area boxed in the left images. Dashed circles outline the perinuclear area of the cell. Scale bars, 100 and 20 mm in
merge and zoom, respectively.
(C) Representative ICC images of PD astrocytes after 20 mg of CA drug treatment stained for LAMP2A, a-syn, GFAP, and DAPI. Scale bars,
100 and 20 mm in merge and zoom, respectively.
(D and E) (D) Quantitative analysis of PD astrocytes (SP13 and SP12) stained positive for a-syn either not treated or treated with CA;
(E) quantitative analysis of the same astrocytes under the same conditions, showing LAMP2A puncta in the perinuclear area (n = 3).
(F) Representative ICC images of 4-week Ctrl SP11 vmDAns co-cultured on PD SP13 astrocytes (left) or treated with CA for 2 weeks (right).
Samples were stained for GFAP, TH, a-syn, and DAPI. Scale bars, 20 mm.

(legend continued on next page)
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contribute to the altered a-syn proteostasis observed in PD

astrocytes.

Restoration of a-syn Proteostasis in PD Astrocytes

Alone and during Co-culture of Control Neurons with

PD Astrocytes

Intracellular accumulation of a-syn has been shown to

contribute to cellular toxicity in PD and to further disrupt

functioning of cellular proteostasis systems (reviewed in

Abeliovich andGitler, 2016).Wenext investigatedwhether

a-syn accumulation in PD astrocytes could be ameliorated

by enhancing lysosomal activity. PD astrocytes were

treated with a CMA activator (CA), which operates through

the release of the endogenous inhibition of the retinoic

receptor-a signaling pathway over CMA (Anguiano et al.,

2013). Cells were treated with a concentration of 20 mM

for 5 days and levels of a-syn were analyzed by immunoflu-

orescence (Figure 7). LAMP2A-positive lysosomes in PD as-

trocytes treated with the CA (Figures 7C–7E) recovered the

perinuclear distribution observed in Ctrl cells (Figure 7A)

compared with when not treated (Figure 7B), suggesting re-

activation of CMA in these cells. Consistent with higher

CMA activity, CA-treated cells had significantly lower

a-syn content than untreated cells (Figures 7C–7E).

In addition, we treated PD astrocytes when in co-culture

with Ctrl neurons (Figure 7F). Under untreated conditions,

Ctrl neurons accumulate astrocytic a-syn and show signs of

neurodegeneration. Interestingly, the treatment with CA

cleared out a-syn not only in astrocytes, but also in

vmDAns, partially restored neuron survival, and decreased

the number of TH-positive cells with a degenerative

morphology (Figures 7G–7L). These findings suggest that

although multiple protein degradation pathways fail to

efficiently degrade a-syn in PD cells, reactivation of one

of these pathways, in our case CMA, is able to restore func-

tional a-syn proteostasis.
DISCUSSION

Astrocytes from three PD patients carrying the G2019Smu-

tation in the LRRK2 gene and two healthy individuals were

successfully generated using a previously published proto-

col and fully characterized. By implementing a patient
(G–I) (G) Quantitative analysis of the percentage of vmDAns rema
treatment or treated with CA) for 4 weeks. Percentage of the (H) vmDA
same co-culture conditions (n = 6).
(J) Representative ICC images of 4-week Ctrl SP11 vmDAns co-culture
Samples were stained for TH, a-syn, and DAPI. Arrows indicate the ab
bars, 20 mm.
(K and L) (K) Neurite length quantification and (L) number of branch
SP13 astrocytes with or without CA treatment for 2 weeks (n = 4); 20
Data are expressed as mean ± SEM, unpaired two-tailed Student’s t te
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iPSC-based co-culture model, in this study we describe a

role for PD astrocytes in midbrain neuronal cell death. Spe-

cifically, in a 4-week co-culture system, we found morpho-

logical alterations resembling those of neurodegeneration,

such as short and few neurites as well as beaded necklace-

like neurites, typically observed in neurons upon transport

alterations (Fu et al., 2005; Garrido et al., 2011), and

increased neuronal loss in Ctrl neurons co-cultured with

PD astrocytes. We interpret these altered phenotypes as

representing PD astrocyte-induced vmDAn neurodegener-

ation. An alternative explanation could be that PD astro-

cytes impinged on the differentiation and/or maturation

of DAn progenitors in our iPSC-derived co-culture system.

However, while we cannot formally rule out this possibil-

ity, two lines of evidence strongly argue against it playing

a significant role in the phenotypes described here. First,

we used vmDA neural differentiation cultures at 35 days

of differentiation for our co-culture experiments. At

this time, most vmDAns are already committed in fate

(TH+/FOXA2+, see Figure 2A), but are still at a stage ofmatu-

ration that does not compromise their survival upon cell

dissociation and plating on top of the astrocyte cultures.

Second, the numbers of vmDAns at different time points

along the co-culture experiments showed progressive

decline in co-cultures with PD astrocytes, but no significant

changeswhen co-culturedwithCtrl astrocytes (Figure S2C).

These results indicate that few new TH+ neurons are gener-

ated during co-culture, and further support that the

decreased numbers of vmDAns observed upon co-culture

with PD astrocytes are a consequence of vmDAn degenera-

tion. Importantly, the altered phenotypes were specifically

observed in the subpopulation of midbrain dopaminergic

neurons, as numbers of MAP2+/TH� neurons did not

change significantly upon co-culture with Ctrl or PD astro-

cytes. In accordance with this, it has been already shown

that a-syn toxicity was responsible for nigrostriatal

neuronal cell death in midbrain cultures (Petrucelli et al.,

2002), a relevant finding regarding the particular vulnera-

bility of nigral neurons in PD. However, it remains to be

tested whether, in prolonged culture, PD astrocytes also

impair the survival of TH� populations.

Postmortem brain tissue of PD patients revealed a-syn

accumulation in astrocytes (Wakabayashi et al., 2000).
ining after being co-cultured with PD SP12 or PD SP13 (without
ns or (I) astrocytes that stained positive for a-syn 4 weeks after the

d on PD SP12 astrocytes with or without CA treatment for 2 weeks.
sence of a-syn accumulation in the selected TH-positive cell. Scale

es of 4-week Ctrl SP11 vmDAns when co-cultured on PD SP12 or PD
neurons counted per experiment.
st, *p<0.05; ***p < 0.001.



It has been previously described that astrocytes accumulate

neuronal-derived a-syn as a mechanism of neuroprotection

(Booth et al., 2017). Indeed, in our study we found that Ctrl

astrocytes accumulate a-synwhen co-culturedwith PDneu-

rons and partially rescued the morphological phenotype of

neurodegeneration and clearance of neuronal a-syn. This

behavior suggests a neuroprotective effect via inflamma-

tory-mediated activation of the Ctrl astrocytes. In addition,

by using a CRISPR/Cas9 gene-edited cell line tagging the

endogenous SNCA locuswith an FLAG tag, our results reveal

that PD astrocytes also accumulate and transfer a-syn to the

surrounding neurons, suggesting that astrocytes actively

contribute to the distribution of a-syn.

Taking into account that our PD astrocytes come from

patients carrying the LRRK2 G2019S mutation, we investi-

gated whether disease-specific phenotypes related to the

mutation were present. The a-syn accumulation in our

co-culture system indicated a disruption in the way a-syn

is usually degraded in PD astrocytes. Degradation of a-syn

has been shown to occur by both proteasome and autopha-

gic pathways, and conversely, high levels of a-syn have

been demonstrated to be toxic for both systems (Tanaka

et al., 2001; Webb et al., 2003; Winslow et al., 2010). Here

we found that lysosomal degradation of a-syn was severely

inhibited in PD astrocytes.We have previously described in

PD neurons that one of the early events in the dysfunction

of the proteostasis systems in these cells is the disruption of

CMA by mutant LRRK2 binding to the LAMP2A, thus

causing the accumulation of a-syn (Orenstein et al.,

2013). Here we demonstrate that CMA is also altered in

PD astrocytes and confirm that a-syn degradation by

CMA in these cells was almost completely abolished.

The increase in intracellular levels of a-syn, due to its

poor degradation in PD astrocytes by CMA,may contribute

to precipitating malfunctioning of other proteostasis

mechanisms, such as the proteasome and macroautoph-

agy. In fact, we demonstrated that macroautophagy was

also markedly impaired in these cells, by showing higher

basal levels of autophagic vacuoles (LC3-II) and the auto-

phagic cargo p62, and reduced autophagic flux (for both

LC3-II and p62). The lower co-localization between the

autophagosomal and lysosomal markers observed in PD

astrocytes suggests that the reduced autophagic flux is

due to a defect in autophagosome/lysosome fusion, similar

to that previously described in PD neurons.

Taking into account the coordinate functioning of the

proteolytic systems, and the fact that CMA disruption

seems to occur early during the development of PD pathol-

ogy, we attempted to restore normal a-syn proteostasis by

enhancing CMA activity. Our findings in cells treated

with a chemical activator of CMA suggest that upregulation

of CMA is still possible in these cells and that this interven-

tion is sufficient to return levels of a-syn close to those in
Ctrl cells. Although a-syn was cleared, restoration during

a co-culture with Ctrl neurons was only partial in terms

of neurite length and number, suggesting that the neurode-

generation observed could also be due to other non-a-syn-

related factors secreted by PD astrocytes.

Overall, our findings propose a specific role for astrocytes

in mediating dopaminergic cell death during PD. PD-spe-

cific phenotypes specifically related to dysfunctions in the

pathways of protein degradation have been observed in

PD astrocytes and not in Ctrl astrocytes. Dysfunctional

CMA, progressive a-syn accumulation, and glia-to-neuron

transfer found in our PD astrocytes are all aspects that can

compromise neuronal survival during PD pathogenesis.

Future studies will identify whether additional factors other

than a-syn are being secreted by (or lacking in) PD

astrocytes, and thus contributing to triggering vmDA

neuronal cell death. iPSC-based technology allows for the

proper recapitulation of patient-specific disease-related phe-

notypes, which will aid in the discovery of new therapies.
EXPERIMENTAL PROCEDURES

Experimental procedures are also provided in Supplemental

Information.

iPSC-Derived Astrocyte Generation and Culture
The parental iPSC lines used in our studies were previously gener-

ated and fully characterized (Sanchez-Danes et al., 2012). The gen-

eration and use of human iPSCs in this work were approved by the

Spanish competent authorities (Commission on Guarantees con-

cerning the Donation and Use of Human Tissues and Cells of the

Carlos III National Institute of Health). iPSCs were differentiated

into astrocytes following a previously published protocol (Serio

et al., 2013). See Supplemental Information for more details.

iPSC-Derived vmDAn Generation
Four different iPSCs, two PD (SP12 and SP13) and two Ctrl (SP11

and SP11#4), were differentiated into dopaminergic neurons using

a combination of two previously published protocols for midbrain

induction (Chambers et al., 2009; Kriks et al., 2011). Detailed

methods are provided in Supplemental Information.

ICC

ICC on cell cultures was performed as described in Supplemental

Information.

Statistical Analysis

Statistical analyses of the obtained data were performed using two-

tailed unequal variance Student’s t tests and ANOVA (*p < 0.05,

**p < 0.01, ***p < 0.001), and the mean and standard error of the

mean were plotted using Prism (Mac OS X). Number of indepen-

dent experiments (n) is indicated in each figure legend.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and three tables and can be found
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12.011.
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