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Abstract: Uveal melanoma (UM) is a malignant tumor that arises in the melanocytes of the uveal tract.
It is the most frequent eye cancer, and despite new therapeutic approaches, prognosis is still poor, with
up to 50% of patients developing metastasis with no efficient treatment options available. In contrast
to cutaneous melanoma, UM is considered an “immune-cold” tumor due to the low mutational
burden and the unique immunosuppressive microenvironment. To gain insight into the role of the
UM microenvironment in regard to prognosis and metastatic progression, we have performed a pool
analysis characterizing the UM microenvironment by using a bioinformatic approach. A variety of
scores based on gene expression measuring stromal infiltration were calculated and used to assess
association with prognosis. As a result, the highest immune and stromal scores were associated with
poor prognosis. Specifically, stromal cells (fibroblasts and endothelial cells), T cells CD8+, natural
killer (NK) cells, and macrophages M1 and M2 infiltration were associated with poor prognosis.
Contrary to other tumors, lymphocytic infiltration is related to poor prognosis. Only B cells were
associated with more favorable prognosis. UM samples scoring high in both angiogenesis (Angio)
and antigen presentation (AP) pathways showed a poor prognosis suggesting an additive role of
both functions. Almost all these tumors exhibited a chromosome 3 monosomy. Finally, an enrichment
analysis showed that tumors classified as high Angio-high AP also activated metabolic pathways
such as glycolysis or PI3K-AKT-MTOR. In summary, our pool analysis identified a cluster of samples
with angiogenic and inflammatory phenotypes exhibiting poor prognosis and metabolic activation.
Our analysis showed robust results replicated in a pool analysis merging different datasets from
different analytic platforms.

Keywords: uveal melanoma; angiogenesis; immune system; pool analysis; prognosis; gene expression

1. Introduction

Uveal melanoma (UM) is a malignant tumor arising at the melanocytes of the uveal
tract [1]. It is the most frequent cancer in the eye, and is considered a rare tumor (10 cases per
million incidence in Europe) [2]. Prognosis in UM is poor, with median overall survival (OS)
of less than one year in most cases, and up to 50% of patients developing metastasis (M1),
mostly in the liver. Currently, metastatic UM (MUM) does not have an effective standard
treatment available and survival rates have not improved in the last decades [1,3–5]. Recent
meta-analysis reviews on progression-free survival (PFS) and overall survival (OS) from

Int. J. Mol. Sci. 2021, 22, 2669. https://doi.org/10.3390/ijms22052669 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4931-1267
https://orcid.org/0000-0003-0285-5451
https://orcid.org/0000-0001-9017-2460
https://orcid.org/0000-0002-2187-3527
https://doi.org/10.3390/ijms22052669
https://doi.org/10.3390/ijms22052669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22052669
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/5/2669?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2669 2 of 17

different clinical trials have shown that none of the different novel treatments carried
out in recent years has improved the prognosis of UM patients, reinforcing the need for
further research.

Immunotherapy has shown extraordinary results on cutaneous melanoma (CM).
Monoclonal and combined therapies with anti-programmed death ligand 1 (PDL1) and anti-
cytotoxic T-lymphocyte antigen-4 (CTLA-4) checkpoint inhibitors are already a standard
therapy for CM. However, these results have not been reproduced in UM [6,7], which
differs from CM at the genetic and molecular level and should be treated with specific
treatments [8]. One important difference is the tumor mutational burden (TMB), which
is very high in CM, which generates a great amount of neoantigens that renders high
immunogenicity and attracts T CD8+ lymphocytes. By contrast, UM has a low TMB, and
therefore is considered a tumor with low antigenicity [9].

Tumors with microsatellite instability (MSI) phenotype or harboring mutations in
mismatch repair (MMR) genes are highly mutated. A recent study analyzing the frequency
of MMR genes in three independent cohorts of UM patients showed that mutations in
these genes were extremely rare [10]. Also explaining the low TMB, a work by Cross et al.
analyzing microsatellite instability in UM demonstrated that, in contrast to CM, MSI not
occurring in UM [11]. A study by Johansson et al. analyzing 103 UM by whole-genome
sequencing from different sites of the uveal tract demonstrated that only patients with
tumors located in the iris showed high TMB. This phenotype is associated with ultraviolet
radiation signature, common in CM. However, only 8 out of 103 analyzed tumors were
located in the iris [12]. Furthermore, UM is located in an immune-privileged organ with
an immunosuppressive microenvironment, protected by the blood–ocular barrier, and an
absence of lymphatic vessels that prevent the traffic of immune cells to the eye [13].

Molecular profiling has provided a new perspective of the biology of UM. The Cancer
Genome Atlas (TCGA) recently performed the analysis of 80 UM primary tumors and
identified four different molecular subtypes [14]. Molecular subgroups 1 and 2 are asso-
ciated with disomy of chromosome 3 (D3) and better prognosis, whereas subgroups 3
and 4 are associated with monosomy of chromosome 3 (M3) and have worse prognosis.
The immune profiling of TCGA-UM analysis is scarce and limited to the association of
M3 tumors with higher levels of CD8+ T cells, Interferon gamma signaling, and immune
suppressor factors. Therefore, the immune microenvironment of UM seems to be related
to the genomic alterations, mostly to mutations in BAP1 gene, rather than to response
to immune signaling [15]. In this regard, it has been recently described that UM tumors
harboring mutations in BAP1 gene showed upregulation of several genes associated with
suppressive immune responses [16].

Dissemination in UM is hematogenous, suggesting an important role of tumor angio-
genesis (the development of new blood vessels) in tumor growth and metastasis. Indeed,
we have previously shown that enrichment in pro-angiogenic factors was related to worse
prognosis in UM but not in CM [17]. Angiogenesis is directly associated with immune eva-
sion and resistance to immunotherapy by suppressing dendritic cell maturation, inhibiting
T-cell effector response and recruiting myeloid derived suppressor cells. Thus, therapeutic
strategies combining immunotherapy with anti-angiogenic factors could modulate the
tumor microenvironment to make it more susceptible to the immune checkpoint inhibitors.

In this study, we perform a bioinformatics analysis using public gene expression data
in order to perform an in-depth characterization of the tumor microenvironment of UM
primary tumors and assess its association with prognosis.

2. Results
2.1. Clinical Description

A total of 213 primary UM patients from 5 datasets were included in the meta-analysis,
described in Table 1. The median age was 62.3, with 41.3% female and 58.7% males. Up to
56% of patients had recurred with a median disease-free survival (DFS) of 38.6 months. Dif-
ferences between the different datasets were evaluated for continuous variables (Kruskal–
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Wallis test) and categorical variables (Chi-squared test of proportions). No differences were
found for age, sex and recurrence status, while strong differences between datasets were
found on chromosome 3 status, cell type and DFS. Due to the differences between datasets
for DFS, all survival analyses were performed stratified by dataset.

Table 1. Baseline characteristics of samples included in the analysis by dataset. p-values for categorical variables indicate
results from Chi-Squared Tests. p-values for continuous variables indicate results from Kruskal tests. DFS: disease-free
survival.

Variable Entire Cohort
n = 213

GSE22138
n = 63

GSE27831
n = 29

GSE73652
n = 13

GSE84976
n = 28

TCGA
n = 80 p-Value

Age 62.3 61.0 66.0 61.6 62.2 0.411
Sex 0.801

Female 71 (41.3%) 24 (38.1%) 12 (41.4%) 0 (0.0%) 0 (0.0%) 35 (43.8%)
Male 101 (58.7%) 39 (61.9%) 17 (58.6%) 0 (0.0%) 0 (0.00%) 45 (56.2%)
NA 41 0 (0.0%) 0 (0.0%) 13 (100%) 28 (100%) 0 (0.0%)

Chr 3 status <0.001
Disomy 64 (32.2%) 18 (28.6%) 11 (37.9%) 0 (0.0%) 14 (50.0%) 21 (26.2%)
Partial

monosomy 5 (2.5%) 5 (7.94%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Monosomy 94 (47.2%) 32 (50.8%) 17 (58.6%) 0 (0.0%) 14 (50.0%) 31 (38.8%)
NA 36 (18.1%) 8 (12.7%) 1 (3.5%) 13 (100%) 0 (0.0%) 28 (35.0%)

Cell type <0.001
Epithelioid 40 (18.7%) 21 (33.3%) 6 (20.7%) 0 (0.0%) 0 (0.0%) 13 (16.2%)

Mixed 72 (33.8%) 23 (36.5%) 12 (41.4%) 0 (0.0%) 0 (0.0%) 37 (46.2%)
Spindle 39 (18.3%) 0 (0.0%) 9 (31%) 0 (0.0%) 0 (0.0%) 30 (37.5%)

NA 60 (28.2%) 19 (30.2%) 0 (0.0%) 13 (100%) 28 (100%) 0 (0.0%)
Recurrence 0.245

Non-recurrent 119 (55.9%) 28 (44.4%) 18 (62.1%) 8 (61.5%) 15 (53.6%) 50 (62.5%)
Recurrent 94 (44.1%) 35 (55.6%) 11 (37.9%) 5 (38.5%) 13 (46.4%) 30 (37.5%)

DFS Months 38.6 41.1 37.2 77.8 23.2 <0.001

2.2. Stromal and Immune Cell Infiltration Is Associated with Poor Prognosis in Uveal
Melanoma (UM)

A variety of scores based on gene expression measuring stromal and immune cell
infiltration were calculated and used to assess association with prognosis. First, we used
the ESTIMATE (Estimation of Stromal and Immune Cells in Malignant Tumor Tissues
Using Expression Data) tool to measure tumor purity and immune cell/stromal infiltration.
The four resulting scores were used as global indicators since the tool does not deconvolute
between different cell lineages. The tumor purity score had a trend toward better prognosis,
although it was not significant (HR = 0.99 [0.97–1.01]). On the contrary, The ESTIMATE
score, which is a measure of non-tumoral cell infiltration was associated with worse
prognosis (HR = 1.01 [1–1.03]). The ESTIMATE score was calculated based on both immune
and stromal scores, both associated with bad prognosis (immune score HR = 1.02 [1–1.05];
stromal score HR = 1.04 [0.99–1.08]), Figure 1A. Thus, highly infiltrated tumors (with both
stromal and immune cells) showed a poor prognosis. In other words, the more tumor
purity the better the prognosis. Table S1 shows the ESTIMATE scores in each sample.
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Figure 1. Forest plot showing survival pool analysis using immune and stromal infiltration scores. Horizontal bars indicate 
the 95% confidence intervals (CI) of the hazard ratio (HR). Each score was evaluated individually and ordered based on 
the summary effect. Univariate Cox HR analysis were performed using the disease-free survival time. (A) HR based on 
the ESTIMATE scores. (B) HR based on the Immunophenoscore individual scores and Aggregated score. (C) HR based on 
immune cell infiltrate scores from MCP-counter. (D) HR based on the immune infiltrates from Quantiseq analysis. (E) HR 
based on markers of immune infiltrates from ConsensusTME. 

Next, immunophenoscore (IPS) scores were used as an indicator of immune system 
activation (Figure 1B). The aggregated score, a composite score measuring the overall im-
munogenicity of a tumor, was associated with poor prognosis (HR = 1.01 [1.01−1.02]). In-
terestingly, when individual scores were interrogated, effector cells (HR = 1.02 [1.01−1.03]) 
and antigen presentation (HR = 1.01 [1−1.01]) scores were associated with poor prognosis. 
On the contrary, checkpoints markers (HR = 0.99 [0.98−1]) and suppressor cell scores (HR 
= 0.99 [0.98−1]) were associated with better prognosis (Figure 1B). Forest plots showing 
separated ESTIMATE and IPS analysis for each dataset are available in Figure S1. In sum-
mary, immunogenic tumors (those scoring higher in IPS) were associated with poor prog-
nosis. Moreover, if samples were divided between high and low infiltrated according to 
the ESTIMATE score, those included in the high category scored higher in Antigen presen-
tation and effector cells (Figure S2A). Also, they show a trend toward poor prognosis 
(Log-rank p-value = 0.07) (Figure S2B). 

Finally, since ESTIMATE only performs a global estimation of non-tumoral cell infil-
tration, a cell-type detailed analysis was done using quantification methods based on gene 
expression. A general trend towards infiltration association with poor prognosis was ob-
served. However, exceptions in several cell lineages emerged in the analysis (Figure 1C–
E). The MCP-counter (Microenvironment Cell Populations-counter) method selected B 
cells as the only cells associated with better prognosis (HR = 0.76 [0.49−1.19]). By contrast, 
cytotoxic lymphocytes (HR = 1.31 [1.05−1.63]), fibroblasts (HR = 1.35 [1.11−1.66]), and en-
dothelial cells (HR = 1.66 [1.04−2.67]), were significantly associated with poor prognosis 
(Figure 1C). The Quantiseq method, measuring additional cell lineages, showed CD4 T-
cells (HR = 0.87 [0.70−1.07]), B-cells (HR = 0.89 [0.77−1.01]), and dendritic cells (HR = 0.93 

Figure 1. Forest plot showing survival pool analysis using immune and stromal infiltration scores. Horizontal bars indicate
the 95% confidence intervals (CI) of the hazard ratio (HR). Each score was evaluated individually and ordered based on the
summary effect. Univariate Cox HR analysis were performed using the disease-free survival time. (A) HR based on the
ESTIMATE scores. (B) HR based on the Immunophenoscore individual scores and Aggregated score. (C) HR based on
immune cell infiltrate scores from MCP-counter. (D) HR based on the immune infiltrates from Quantiseq analysis. (E) HR
based on markers of immune infiltrates from ConsensusTME.

Next, immunophenoscore (IPS) scores were used as an indicator of immune system
activation (Figure 1B). The aggregated score, a composite score measuring the overall
immunogenicity of a tumor, was associated with poor prognosis (HR = 1.01 [1.01–1.02]).
Interestingly, when individual scores were interrogated, effector cells (HR = 1.02 [1.01–
1.03]) and antigen presentation (HR = 1.01 [1–1.01]) scores were associated with poor
prognosis. On the contrary, checkpoints markers (HR = 0.99 [0.98–1]) and suppressor cell
scores (HR = 0.99 [0.98–1]) were associated with better prognosis (Figure 1B). Forest plots
showing separated ESTIMATE and IPS analysis for each dataset are available in Figure S1.
In summary, immunogenic tumors (those scoring higher in IPS) were associated with poor
prognosis. Moreover, if samples were divided between high and low infiltrated according
to the ESTIMATE score, those included in the high category scored higher in Antigen
presentation and effector cells (Figure S2A). Also, they show a trend toward poor prognosis
(Log-rank p-value = 0.07) (Figure S2B).

Finally, since ESTIMATE only performs a global estimation of non-tumoral cell infil-
tration, a cell-type detailed analysis was done using quantification methods based on gene
expression. A general trend towards infiltration association with poor prognosis was ob-
served. However, exceptions in several cell lineages emerged in the analysis (Figure 1C–E).
The MCP-counter (Microenvironment Cell Populations-counter) method selected B cells
as the only cells associated with better prognosis (HR = 0.76 [0.49–1.19]). By contrast,
cytotoxic lymphocytes (HR = 1.31 [1.05–1.63]), fibroblasts (HR = 1.35 [1.11–1.66]), and
endothelial cells (HR = 1.66 [1.04–2.67]), were significantly associated with poor prognosis
(Figure 1C). The Quantiseq method, measuring additional cell lineages, showed CD4
T-cells (HR = 0.87 [0.70–1.07]), B-cells (HR = 0.89 [0.77–1.01]), and dendritic cells (HR = 0.93
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[0.86–1.02]), were associated with better prognosis. On the contrary, macrophages M1
(HR = 1.12 [0.93–1.36]), macrophages M2 (HR = 1.05 [1.02–1.09]), and NK cells (HR = 1.25
[1.08–1.45]) were associated with poor prognosis. Additionally, the ConsensusTME (Consen-
sus Tumor Microenvironment) method also selected B-cells (HR = 0.98 [0.96–1]), as good
prognosis biomarkers along with eosinophils (HR = 0.99 [0.98–1]). Inconsistent results were
found across different quantification methods when dendritic cells (DC) were interrogated.
Since this is a heterogenous group of cells, we use additional signatures to discriminate
between immature DC (iDCs) and activated DC (aDCs). However, we did not observe an
association between iDCs and/or aDCs with prognosis (Figure S3). The genes included in
all signatures used in the analysis are listed in Table S2.

In summary, all methods indicated that B cells are associated with better prognosis.
By contrast, stromal cells (fibroblasts and endothelial cells), T cells CD8+, NK cells, and
macrophages M1 and M2 were associated with poor prognosis in at least two out of the
three methods evaluated. Interestingly, B cells act as APCs through HLA class II whereas
NK and CD8+ T cells destroy cells not expressing HLA class I or cells presenting antigens
through HLA class I, respectively. Since the later are inflammation-related pathways
classically associated with better prognosis in other solid tumors, we speculated that UM
is a divergent type of tumor in this regard.

Thus, to see whether antigen presentation genes were prognosis biomarkers in UM, a
survival analysis was done. Kaplan-Meier plots in Figure 2 showed that tumors showing
high expression levels of genes related to the antigen presentation pathway were associated
with poor prognosis. Tapasin 1 (TAP1) (Figure 2A), beta-2-microglobulin (B2M) (Figure 2C),
human leukocyte antigen-B (HLA-B) (Figure 2F), HLA-E (Figure 2H) and HLA-F (Figure 2J)
were the more significant genes with Log-rank p-values < 0.0001. Regarding cytotoxicity,
tumors showing high expression of CD8A, GZMA and PRF1 were associated with poor
prognosis (Figure S4).
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Figure 2. Kaplan-Meier survival curves with genes related to antigen processing and presentation machinery in uveal
melanoma (UM) samples (n = 200). Genes included are (A) tapasin-1 (TAP-1), (B) TAP-2, (C) beta-2-microglobulin (B2M),
(D) calreticulin (CALR), (E) human leukocyte antigen-A (HLA-A), (F) HLA-B, (G) HLA-C, (H) HLA-E, (I) HLA-G, (J) HLA-F.
Patients were divided into High and Low groups by the median value within each dataset and joined afterwards. p-values
of Log-rank tests are indicated. High expression is painted in red whereas low expression is painted in blue.
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Mutational data was only available in the TCGA dataset. To see if the number of
mutations was associated with prognosis, we calculated the tumor mutational burden
(TMB). As expected in a cold tumor, only a median of 16 mutations per sample were found.
TMB was not associated with prognosis.

2.3. Combination of Angiogenesis and Antigen Presentation Confers Poor Prognosis

Results showed that endothelial cells, fibroblasts (stromal cells) and immune cells
(specifically cytotoxic ones) were associated with poor prognosis. Across these three mi-
croenvironmental factors, overlapping genes are scarce providing strength to the analysis.

Only one gene (HIF1A) has been found in common between fibroblasts and Angiogen-
esis signature. ConsensusTME signatures measuring immune cell infiltration overlap with
angiogenesis signature in: B cells (PRKCB), monocytes (HIF1A and ARNT), Macrophages
M2 (FLT1), T cells CD4+ (EIF2B5 and PLCG1), T cells CD8+ (FLT4 and PLCG1).

Apart from fibroblasts, endothelial cell infiltration was strongly associated with re-
lapse; in agreement with previous results in the group. Thus, we wonder if these two
features were additive and confers a particularly aggressive phenotype. To do this, we used
angiogenesis (Angio) and antigen presentation pathways (AP) as reporter ones. Antigen
presentation pathway was used as a surrogate of immune system activation. First, we
assessed if a correlation between these two features existed. A statistically significant
but moderate correlation was found when all samples were taken together (R = 0.42,
p = 2 × 10−10, black line in the Figure 3A) and also when stratifying between relapsing
(R = 0.24, p = 0.021, dark grey line in Figure 3A) and non-relapsing patients (R = 0.44,
p = 9.4 × 10−7, light grey in Figure 3A). Next, we classified the samples based in the com-
bination of the scores, obtaining four groups (High Angio-High AP, High Angio-Low AP,
Low Angio-High AP, Low Angio-Low AP). As can also be seen in Figure 3A, the bar plot in
Figure 3B showed that High Angio-High AP group includes the high number of recurrent
samples, whereas Low Angio-Low AP group includes the higher number of non-recurrent.
Phenotypes High Angio-Low AP and Low Angio-High AP exhibited an intermediate,
similar numbers of recurrent samples (Chi-squared test, p = 4.5 × 10−6).

Indeed, a survival analysis shows strong differences in DFS probability between the
four groups (Log-rank test, p < 0.0001), being the High Angio-High AP the group with
worse prognosis in opposition to Low Angio-Low AP group (p-value = 4.4 × 10−8) which
is the group showing better survival (Figure 3C). Because intermediate phenotypes (High
Angio-Low AP and Low Angio-High AP) have intermediate survival probability and those
tumors classified as High Angio-High AP were more prone to metastasize, we think these
two features had an additive role in prognosis. We tested the hypothesis that differences in
recurrence time could exist between group of samples, being Low Angio-Low AP patients
those relapsing later. Although no statistical differences were found, Figure S5 showed a
trend towards High Angio-High AP tumors as the earlier relapsing ones.

Finally, we performed an unsupervised hierarchical clustering using Angio and AP
scores that reflected the four groups previously described, as expected. The High Angio-
Low AP and Low Angio-Low AP were separated clusters. A mixture in the dendrogram
was observed between Low Angio-High Ap and High Angio-High AP groups (Figure 3D).
It is worth mentioning that there is an enrichment in samples harboring disomy in chromo-
some 3 in the Low Angio-Low AP cluster. On the contrary, almost all High Angio-High Ap
exhibited a chromosome 3 monosomy.
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relation plot of Angio and AP signatures, colored by recurrent (light grey) and non-recurrent (dark grey) status. Black
line represent correlation for all samples, regardless of recurrence status. The Spearman correlation was calculated and
regression lines correlation scores and p-values were added for each recurrence status and for all the samples. Dashed lines
indicate the cut-off used for generating the four groups. (B) Bar plot showing the frequency of recurrent samples in the
different groups of Angio-AP combinations. (C) Kaplan–Meier survival curves of the four groups from combination of
Angio and AP scores. Log-rank p-value is indicated. Cox proportional hazard ratios test between the Low Angio-Low AP
reference group and the other three groups was calculated, and p-values are also indicated. (D) Hierarchical clustering of all
UM samples (n = 213) using the Angio and AP scores. Bars on top represent chromosome 3 status, dataset, recurrence and
combined score.

Next, we consider whether the poor prognosis group might be susceptible to treatment
with immunotherapy. To answer this question, samples were scored using a genetic profile
reported as a good predictor of clinical response to anti-PDL1 pembrolizumab (T-cell
inflammatory signature (TIS) score). As expected, tumors with inflammatory phenotype
High Angio-High AP showed high TIS score values. Also, Low Angio-Low AP tumors
showed very low values. However, it is interesting to note that there was High Angio-High
AP samples with low TIS score. On the contrary, a group of Low Angio-High AP samples
showed high TIS score thus was susceptible to be treated with immunotherapy (Figure 4).
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combination groups.

Finally, we wonder if fibroblasts (Fibro) also have an additive effect on prognosis,
along with AP. First, we assessed correlation between fibroblasts and endothelial cells
infiltration finding a strong correlation (R = 0.7, Figure S6A). Therefore, we expected similar
results with Angio/AP than with Fibro/AP. Indeed, the correlation between Fibro/AP
is very similar to correlation between Angio/AP (statistically significant but moderate
R = 0.44, Figure S6B). When tumors were stratified in four groups (High AP-High Fibro,
High Ap-Low Fibro, Low AP-High Fibro and Low AP-Low Fibro), tumors in Low AP-Low
Fibro showed the better prognosis (Figure S6C).

2.4. Metabolic and Tyrosine Kinase Pathways Are Activated in Poor-Prognosis Tumors

In order to deepen our knowledge of the biological behavior of tumors with poor
prognosis, a functional analysis comparing relapsing tumors between extreme phenotypes
was conducted. As expected, the enrichment analysis (Figure 5A) showed an angiogenesis
and inflammatory response in High AP-High Angio tumors, along with immune-related
pathways such as complement, tumor necrosis factor alpha (TNF-α) and interleukin-
2 (IL2) signaling. However, other non-infiltration-related pathways emerged, such as
glycolysis, epithelial-mesenchymal transition, KRAS signaling, mTORC1 signaling, and
PI3K-AKT-MTOR signaling. This suggested a crosstalk between immune infiltration,
angiogenesis and metabolic pathways. Similar results were achieved when the permuting-
labels method was utilized instead of the pre-ranked gene set enrichment analysis (GSEA).
An alternative method, using the most differentially expressed genes, reported signal
transduction pathways and metabolisms-related pathways as the most significant ones, as
well as the antigen presentation pathway (Figure 5B).
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Figure 5. Functional analysis of recurrent tumors within phenotypes “High Angio-High AP” (n = 45)
versus “Low Angio-Low AP” (n = 16). (A) Bar plot of enriched Hallmarks from pre-ranked GSEA
analysis, ordered by NES and colored by p-values. (B) Dot plot of enriched pathways from DEGs
in “High Angio-High AP” phenotype, colored by adjusted p-values. GeneRatio correspond to the
frequency of genes from the gene set in the list of DEGs. Count represents the total number of genes.
GSEA: Gene Set Enrichment Analysis, NES: Normalized Enrichment Score, DEGs: Differentially
Expressed Genes.

3. Discussion

To show the importance of inflammation and other stromal cells, we have performed
a pool analysis of 5 datasets containing prognostic, and transcriptomic information from
213 primary UM samples available in the literature [14,18–21]. We have identified a clus-
ter of samples with angiogenic and inflammatory phenotypes exhibiting poor prognosis
(Figure 6). Contrary to what is found in other tumors, lymphocytic infiltration is related
to poor prognosis. In a similar vein, a study by Luo and Ma [22] in UM also associ-
ated CD8 lymphocytic infiltration with poor prognosis (univariate analysis), and B-cell
infiltration with better prognosis (multivariate analysis). This association between inflam-
mation and poor prognosis in uveal melanoma has already been described in individual
studies [14,23–25].
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Figure 6. Hypothesis. Our results suggest a combinatory function of angiogenesis and inflammation
in UM tumors. Infiltration of macrophages, fibroblasts and natural killer (NK) cells is associated with
poor prognosis, whereas infiltration of B cells is associated with good prognosis. HLA over-expression
could trigger a mechanism to evade the NK-cells mediated attack. This immunosuppressive envi-
ronment, together with the high levels of stromal activity and checkpoints blockade, allows UM
cells to disseminate and metastasize. New therapeutic strategies such as, combining immune check-
point inhibitors (anti-programmed death ligand 1 (PDL1) or anti-cytotoxic T-lymphocyte antigen-4
(CTLA4)) with anti-angiogenic targeted therapy (anti-vascular endothelial growth factor (VEGF))
could improve patients’ response. Figure created with BioRender.com.

Tumor infiltrating lymphocytes (TILs) in primary UM are mainly CD8+ cytotoxic T
cells and were present in all 43 cases analyzed by Bronkhorst et al. [23]. In addition, CD4+
T-helper cells could also be found in 91% of the samples, and approximately half of these
were FoxP3+ regulatory T cells. It is also noteworthy that a well-characterized prognostic
factor in UM, such as chromosome 3 monosomy, seems to be strongly correlated with larger
lymphocytic infiltrate. The key question here is why TILs lead to poor prognosis. One of the
hypotheses is that metastatic dissemination is required to create a T-cell response due to the
peculiar immune ocular characteristics [25]. If that hypothesis is true, only the UM that dis-
seminates outside the eye should have TILs in the primary tumor. The immunosuppressive
microenvironment of the primary site, along with inhibitory characteristics displayed by
UM cells, would render this infiltrate non-effective when it comes to immune-surveillance.
Another, more intriguing, possibility is that TILs not only fail to eliminate tumor cells but
also help tumor growth [26]. Many examples demonstrate that inflammation can promote
proliferation and survival of cancer cells [27]. Activated TILs would produce inflammatory
mediators, generating a cancer-related inflammatory microenvironment. The cell-type
detailed analysis performed using quantification methods based on gene expression found
cytotoxic lymphocytes, macro-phages and NK cells associated with poor prognosis in at
least two of the three methods evaluated. On the other hand, B cells were found to be
correlated with better prognosis with all bioinformatic tools tested.

There are no previous reports associating B cells with better prognosis in uveal
melanoma, but recently different studies have associated the presence of B cells with
survival and immunotherapy response in different tumors [28–30].

The cell-detailed analysis also revealed fibroblasts and endothelial cell signatures asso-
ciated with poor prognosis. UM arises in one of the most capillary-rich tissues of the body
and disseminates hematogenously. Highly vascularized UM tumors are more aggressive
and indicate a worse prognosis. Recently, we have shown that primary UM included in the
TCGA that relapses systemically shows a much higher angiogenesis enrichment score than

BioRender.com
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non-relapsed patients [17]. Differences in disease-free survival (DFS) when comparing
high vs. low angiogenesis enrichment scores were statistically significant in UM patients
but did not show significance when we compared signature high vs. low using primary
tumors included in the CM dataset from the TCGA.

We next sought to study if there was association between T-cell activation and an-
giogenesis signatures. We identified a group of patients with extremely poor prognosis
characterized by high levels of activation of both signatures and 82.9% 5-year relapse
rate. On the other hand, tumors with low activation showed good prognosis with only
31.5% of patients relapsing at 5 years. VEGF, along with other angiogenic factors, plays
a crucial role in modulating the immune system and fostering an immunosuppressive
microenvironment by directly suppressing dendritic cell maturation, inhibiting T-cells by
enhancing PD-1 and other inhibitory checkpoints, disrupting the normal differentiation
of hematopoietic precursor cells, and recruiting immunosuppressive cells such as T-cells
and myeloid derived suppressor cells [31,32]. Thus, a pro-angiogenic environment could
be a reason why immunotherapy with checkpoint inhibitors has not been very effective
in metastatic uveal melanoma compared to other tumors. Angiogenesis activation has
been a hallmark of tumors resistant to checkpoint inhibitors and is associated with more
immune-suppressed stroma in different cancers probably due to the close relationship
between aberrant cancer angiogenesis and immunosuppression [33,34].

Several antiangiogenic drugs have been used to treat MUM [17]. It is difficult to reach
a full conclusion because most of the trials are small and lack a comparator arm, but from
the results we can assume that although no objective responses are seen, clinical trials with
antiangiogenic drugs usually show slightly higher PFS and OS than clinical trials with con-
ventional chemotherapy. Based on these observations, it would be of special interest to test
the activity of antiangiogenic drugs combined with checkpoint inhibitors and see if we can
reproduce results observed in other diseases where checkpoint inhibitors in monotherapy
do not work such as endometrial cancer. Interestingly, hepatocellular carcinoma, another
disease with liver involvement, has become a target for this combination strategy after the
IMbrave150 (Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma)
study showed the superiority of atezolizumab and bevacizumab vs. sorafenib in terms
of OS [35].

In order to find other weaknesses that could arise due to therapeutic interventions, we
compared primary UM tumors with high angiogenic and antigen presentation activation,
with tumors with low activation of both pathways. Interestingly, glycolysis and the PI3K-
AKT-MTOR pathways were among the non-infiltration-related pathways. These metabolic
pathways have already been linked to immune-resistance to checkpoint inhibitors in
different studies [34,36–38]. Interestingly, a recent study has shown that UM is among the
tumors with the highest oxidative phosphorylation gene expression and correlates with
prognosis in primary UM [39]. Our group has recently made the same observation in MUM
patients [40]. We evaluated glucose metabolism in liver metastasis using positron emission
tomography (PET-CT) with [18F]-fluorodeoxyglucose (FDG). Increased metabolic activity
in liver metastases was found to be an independent predictor of overall survival even in
patients with small lesions (M1a).

Our analysis showed robust results replicated in a pool analysis merging different
datasets from different analytic platforms. However, this study has limitations. Because it is
an in-silico analysis using public data, we have no control over initial stages of the analysis
such as sample selection or RNA extraction. Transcriptomic data in each dataset has been
analyzed and normalized separately. Also, clinical information is scarce. Specifically, anti-
tumoral treatments could affect stromal and immune infiltration. Unfortunately, therapy
information was not available and/or detailed. Thus, further experimental validation is
needed in order to validate the hypothesis in Figure 6.
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4. Materials and Methods
4.1. Patients and Samples

Gene expression, mutations, and clinical data from 80 UM primary tumor samples
from the TCGA-UM dataset were collected from the cBioPortal. RNA-seq was downloaded
in fragments per kilobase per million (FPKM), then converted to log2 scale. Also, a total of
133 UM primary samples analyzed using microarrays were downloaded from the Gene Ex-
pression Omnibus (GEO) repository; accession numbers GSE27831 (n = 29) [18], GSE22168
(n = 63) [19], GSE73652 (n = 13) [20], GSE84976 (n = 28) [21]. Gene expression data from
GEO was log2 scaled. To control for the batch effect, an adjustment was performed using
Combat function from R package “sva”. All datasets include information of progression-
free survival (PFS), except GSE73652 which only includes the recurrence status. Table S3
includes a detailed description of the datasets.

4.2. Microenvironment Characterization

Gene expression data was used to characterize the immune microenvironment of
samples, using a variety of bioinformatics tools. The immunophenoscore (IPS) function
was used to measure the immune state of the samples [41]. IPS uses a number of markers
of immune response or immune toleration to quantify four different immune phenotypes
in a tumor sample (Antigen Presentation, Effector Cells, Suppressor Cells and Checkpoint
markers). It also generates an aggregated z-score summarizing the global immune state of
the samples. Then, the ESTIMATE R package was used to predict the purity from the sam-
ples. ESTIMATE is a tool that predicts the tumor purity and infiltrating stromal/immune
cells from gene signatures [42]. ESTIMATE calculates four scores. The Stromal score and
the Immune score were calculated using gene expression signatures. Then, a combination
of both generates the ESTIMATE score, a measure of the global infiltration of non-tumoral
cells in a sample. Finally, the ESTIMATE score is used to calculate the score called Tumor
purity, a measure of the number of tumor cells in a sample that are inversely correlated with
the ESTIMATE score. The higher the ESTIMATE score, the lower the Tumor purity score.

Three different methodologies of quantification were used; MCP-counter, Quantiseq,
and ConsensusTME. We have followed the recommendations by Strum et al. [43] and used
three different methods to obtain robust results. However, each methodology analyzes a
different number of cell types and with different levels of detail that can generate ambiguity
when comparing results. The Immunedeconv R package was used to infer cell infiltration
using MCP-counter and Quantiseq methods [43]. MCP-counter is a method based on
marker genes that quantifies the relative fraction of 10 cell types, including two stromal
cell types. Quantiseq is a deconvolution method that infers the absolute fraction and
shows a more detailed picture of the immune cell subtypes. Finally, a list of the total 18
gene markers from ConsensusTME was used to perform the enrichment analysis with gene
set variation analysis (GSVA) [44]. All analyses were performed independently for the
different datasets and resultant scores matrices were joined for further analysis.

In addition, we have searched for gene expression signatures discriminating between
dendritic cells. Specifically, immature dendritic cells (iDC) and activated dendritic cells
(aDC) were extracted from Tamborero et al. [34].

4.3. TMB (Tumor Mutational Burden)

Mutational data was only available in the TCGA data and were used to calculate
tumor mutational burden (TMB) per sample.

4.4. Angiogenesis and Antigen Presentation Enrichment Analysis

Angiogenesis (Angio) and antigen presentation (AP) gene sets were manually selected
from the curated gene set collection of the Molecular Signatures Database (MSigDB) (BIO-
CARTA_VEGF_PATHWAY and REACTOME_ANTIGEN_PRESENTATION, respectively).
The GSVA R packages were used to perform Gene Set Variation Analysis [45]. This function
performs a non-parametric, unsupervised analysis for estimating variation of the given
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gene sets through the samples in the expression matrix, returning an enrichment score
for each sample. The GSVA function was performed with 1000 bootstraps and arguments
as default. GSVA was performed independently on the different datasets and resultant
matrices were joined for further analysis. The association between the two scores was
evaluated with the Spearman correlation test for all samples, recurrent and non-recurrent.
Samples were divided into “High” and “Low” groups for each score, with a zero value
as cut-off. Next, samples were divided into four groups based on the combination of
the two scores (High Angio-High AP; High Angio-Low AP; Low Angio-High AP; Low
Angio-Low AP). The frequency of recurrence between the four groups was evaluated with
a Chi-squared test.

4.5. Hierarchical Clustering

Samples were clustered by agglomerative hierarchical clustering on the basis of the
GSVA enrichment scores on the two selected gene sets. Sample distances were computed
via the R function “dist”, with Euclidean distance. Next, the “hclust” function generated a
clustering from the distances, with the “average” linkage method. Finally, a heatmap was
plotted and a dendrogram was drawn for distance-tree visualization purposes.

4.6. Functional Analysis

To identify enrichment in specific cellular functions and pathways, a GSEA was per-
formed comparing the recurrent samples from extreme phenotypes (‘High Angio-High
AP’ vs. ‘Low Angio-Low AP’) [46]. GSEA analysis was performed with the clusterProfiler
R package. Gene sets Hallmarks and Canonical pathways from MSigDB were interro-
gated. Samples were scored with the GSVA method using the T-cell inflammatory (TIS)
signature [47].

4.7. Statistical Methods

All statistical analyses were performed with R version 3.5.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria). For homogenization of methods, all comparisons
between continuous variables were analyzed using non-parametric tests (Wilcoxon test
and Kruskal–Wallis test). For all tests applied, differences were considered statistically
significant when p-value < 0.05. The Cox proportional hazard regression model was used
to assess the prognostic effect of the different scores. Cox analysis was performed inde-
pendently for the different cohorts. A random-effects model was used to summarize the
effect for each of the different scores with the “metagen” function from R package meta.
This function performs a meta-analysis based on hazard ratio estimates and their standard
errors. The overall effect is calculated with the inverse variance method. The results were
plotted in a forest plot. For the pool analysis, all samples were joined and a Cox regression
model stratified by dataset was performed. Results were summarized and plotted with a
forest plot. Survival probabilities were plotted with the Kaplan–Meier method, and the
Log-rank test was used to compare the survival proportions among different groups. For
categorical variables, samples were divided into “High” and “Low” groups based on the
cut-off points (zero value for scores, median value for gene expression).

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2669/s1. Figure S1: Meta-analysis of immune markers by dataset for the different scores of
ESTIMATE (A) and Immunophenoscore (B). Figure S2: A. Boxplots of scores of antigen presentation,
effector cells, suppressor cells and checkpoint markers for High (n = 106) and Low (n = 107) Immune
groups. B. Kaplan-Meier survival curves for High and Low groups. Patients were divided into High
and Low groups by the median value of the ESTIMATE score. Figure S3: Meta-analysis of dendritic
cell markers by dataset for Activated dendritic cells (aDCs) (A) and Immature dendritic cells (iDCs)
(B). Figure S4: Kaplan-Meier survival curves for cytotoxic markers CD8A (A), GZMA (B) and PRF1
(C). Patients were divided by the median expression value for each dataset and joined afterwards.
Figure S5: Boxplots showing time to recurrence by Angio-AP groups. Figure S6: (A) Fibroblasts and
endothelial cells correlation plot (Spearman correlation). (B) Correlation plot between Fibroblasts
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and Antigen Presentation signatures colored by recurrent (light grey) and non-recurrent (dark grey)
status. Black line represents correlation for all samples, regardless of recurrence status. Spearman
correlation is indicated (C) Kaplan-Meier survival curves for the four groups combining Fibroblasts
and AP scores. Table S1: Resultant scores of the ESTIMATE method and immune groups generated
from the ESTIMATE score. Table S2: Gene signatures of the different methods used in the analysis.
Table S3: Detailed clinical and molecular information for each dataset.
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Abbreviations

aDC activated dendritic cell
Angio Angiogenesis
AP Antigen Presentation
B2M Beta-2-Microglobulin
BAP1 BRCA1 Associated Protein 1
CALR Calreticulin
CI Confidence Interval
CM Cutaneous Melanoma
CTLA-4 Cytotoxic T-Lymphocyte Antigen-4
D3 Disomy of Chromosome 3
DC dendritic cell
DEG Differentially Expressed Genes
DFS Disease Free Survival
FPKM Fragments per Kilobase per Million
GEO Gene Expression Omnibus
GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation Analysis
GZMA Granzyme A
HLA Human Leukocyte Antigen
HR Hazard Ratio
iDC immature dendritic cell
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IL2 Interleukin-2
IPS Immunophenoscore
KM Kaplan-Meier
M1 liver metastasis
M1a small lesion liver metastasis
M3 Monosomy of Chromosome 3
MSigDB Molecular Signatures Database
mTORC1 Mammalian target of rapamycin complex 1
MUM Metastatic Uveal Melanoma
NES Normalized Enrichment Score
NK Natural Killer
OS Overall Survival
PD-1 Programmed Cell death protein 1
PDL1 Programmed Death Ligand 1
PET-TC Positron emission tomography
PFS Progression Free Survival
PI3K Phosphoinositide 3-kinase
PRF Perforin
TAP Tapasin
TIL Tumor Infiltrating Lymphocyte
TIS T-cell Inflammatory Signature
TMB Tumor Mutational Burden
TME Tumor microenvironment
TNF-α Tumor Necrosis Factor alpha
UM Uveal Melanoma
VEGF Vascular Endothelial Growth Factor
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