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Abstract: Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS
demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyeli-
nation capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in
response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the
MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of
TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective
and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1
promoting neurotoxicity. To better understand the mechanisms underlying repair failure in MS, we
investigated the cellular responses of OPCs to inflammatory exposure and the specific role of TNFR2
signaling in their modulation. Following treatment of cultured OPCs with IFNγ, IL1β, and TNF, we
observed, by RNA sequencing, marked inflammatory and immune activation of OPCs, accompanied
by metabolic changes and dysregulation of their proliferation and differentiation programming. We
also established the high likelihood of cell–cell interaction between OPCs and microglia in neuroin-
flammatory conditions, with OPCs able to produce chemokines that can recruit and activate microglia.
Importantly, we showed that these functions are exacerbated when TNFR2 is ablated. Together, our
data indicate that neuroinflammation leads OPCs to shift towards an immunomodulatory phenotype
while diminishing their capacity to proliferate and differentiate, thus impairing their repair function.
Furthermore, we demonstrated that TNFR2 plays a key role in this process, suggesting that boosting
TNFR2 activation or its downstream signals could be an effective strategy to restore OPC reparative
capacity in demyelinating disease.
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1. Introduction

Multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disorder, is the
leading cause of neurological disability in young adults [1]. One of the hallmarks of MS
is oligodendrocyte death that results in the formation of demyelinating lesions within
the CNS, both in the white and gray matter [2]. Active lesions, which are prevalent in
the acute phase of relapsing-remitting MS (RRMS), are characterized by the presence of
immune cell infiltrates and high levels of inflammatory factors, including cytokines and
chemokines [3,4]. The efficacy of approved disease modifying therapies (DMT) for RRMS is
in fact due, predominantly, to their ability to reduce this immune-inflammatory burden [5].
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DMTs, however, do not promote remyelination, the key process necessary for lesion repair,
or neuroprotection and, thus, are ineffective in progressive MS forms wherein axonal
damage and neurodegeneration are prominent pathological correlates [6]. Lesion repair
failure has been attributed to the compromised differentiation capacity of oligodendrocyte
precursor cells (OPCs) in individuals with MS [7]. Although this has been suggested to
depend on the neurotoxic lesion environment, the mechanisms that drive OPC fate in MS
and underlie remyelination impairment have yet to be fully understood.

Tumor necrosis factor (TNF) is a pleiotropic cytokine that has been linked to MS
pathophysiology [8]. Indeed, TNF is found at high levels in the serum, cerebrospinal
fluid, and active lesions of individuals with MS [9–12], correlating with lesion severity and
disease progression [10]. TNF exists in two active forms: a native transmembrane form,
tmTNF, which functions via cell-to-cell contact, and a soluble form, solTNF, generated via
the enzymatic cleavage of tmTNF [13] by the metalloproteinase ADAM17 [14,15]. SolTNF
preferentially binds to and activates TNFR1, whereas tmTNF, which can bind to both
receptors, is the main activating ligand of TNFR2 [16,17]. Signaling downstream of TNFR1
and TNFR2 often results in opposing effects during disease progression, with TNFR1
typically initiating cell death and chronic inflammatory mechanisms via canonical NF-κB
activation and TNFR2 promoting pro-survival and reparative cascades via the activation of
PI3K/AKT and non-canonical NF-κB signaling [18].

Several reports, including our own, have suggested that activation of TNFR2 signaling
in oligodendroglia is beneficial in MS. A seminal study by Arnett et al. using germline
TNFR2 knockout mice in the cuprizone model of demyelination demonstrated that TNFR2
is essential for oligodendrocyte differentiation and remyelination [19]. At our end, using
a conditional knockout model where TNFR2 was specifically ablated throughout the
oligodendrocyte lineage (CNPcre:TNFR2fl/fl mice), we showed that TNFR2 is implicated
not only in the differentiation of oligodendrocytes but also in their immunomodulatory
function [20,21]. Indeed, induced with experimental autoimmune encephalomyelitis (EAE),
CNPcre:TNFR2fl/fl mice showed earlier disease onset and chronic EAE exacerbation, which
correlated with increased axonal damage and impaired remyelination. The early disease
onset was preceded by accelerated immune cell infiltration, expression of proinflammatory
cytokines, and microglial activation in the spinal cord [20]. Together, these findings pointed
at a role for TNFR2 in suppressing the inflammatory and immunomodulatory function of
oligodendroglia during neuroimmune disease. Furthermore, in vitro data suggested that it
is TNFR2 signaling in OPCs, rather than in mature oligodendrocytes (OLs), to be primarily
implicated in these processes [20].

Based on this collective evidence, to better understand the mechanisms underlying
repair failure in MS, we investigated the cellular responses of OPCs to inflammatory activa-
tion and the specific role of TNFR2 in their modulation. Following the treatment of cultured
OPCs with IFNγ, IL1β, and TNF, cytokines that are highly expressed in the MS lesion envi-
ronment, we assessed transcriptional changes by RNA sequencing (RNAseq) and observed
a marked shift towards an immunomodulatory phenotype, as well as metabolic alterations
that could increase vulnerability to cell stressors. We also observed that gene signatures as-
sociated with proliferation and differentiation were affected in OPCs, pointing at a potential
reduction in their repair capacity. Through bioinformatics, we mapped putative ligand–
receptor interactions between OPCs and microglia, indicating the high likelihood that
OPC-produced chemokines act on microglia, enhancing their activation state and migra-
tion. Notably, these outcomes were exacerbated in OPCs lacking TNFR2, which exhibited
further metabolic dysregulation and upregulation of inflammatory processes, specifically
of molecules known to promote microglia proliferation and immune-cell migration.

In summary, we showed that OPCs shift towards an immunomodulatory pheno-
type when exposed to a neuroinflammatory environment and TNFR2 is implicated in
the regulation of this process. Our data indicate that the activation of TNFR2 signaling
may redirect OPCs towards proliferation, differentiation, and repair by suppressing their
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immunomodulatory and inflammatory function, underscoring the relevance of TNFR2 as
a target for CNS repair.

2. Materials and Methods
2.1. Mice

Germline TNFR2−/− (stock #002620) and WT C57BL/6J mice were obtained from the
Jackson Laboratory and used to generate primary cell cultures. All mice were group-housed
(maximum 5 mice/cage) in the Animal Core Facility of The Miami Project to Cure Paralysis
in a virus-/antigen-free, temperature and humidity controlled room with a 12 h light/dark
cycle and free access to water and food. All experiments were performed according to
protocols and guidelines approved by the Institutional Animal Care and Use Committee of
the University of Miami.

2.2. Primary Oligodendrocyte Cultures and Cytokine Stimulation

Cortices from postnatal day 3–5 pups were dissected out and dissociated into single
cell suspensions with the Papain Neural Tissue Dissociation Kit (Miltenyi Biotec). Oligo-
dendrocyte precursor cells (OPCs) were isolated by MACS separation using LS columns
(Miltenyi Biotec) after incubation with anti-PDGFRα conjugated magnetic microbeads
(Miltenyi Biotec). PDGFRα+ cells were seeded on poly-d-lysine/laminin coated 24-well
plates (40,000 cells/well) and maintained in OPC medium consisting of DMEM/F12 supple-
mented with 1% N2, 2% B27, 0.01% BSA, 1% penicillin/streptomycin, 10 ng/mL PDGF-AA,
and 10 ng/mL FGF2. Cells were cultured for 3 days, with medium replacement (half
the volume) every other day. After 3 days in vitro (DIV), OPCs were stimulated with a
cytokine cocktail of recombinant mouse TNF, IFNγ, and IL1β (all at a concentration of
25 ng/mL, BioLegend) or exposed to the PBS vehicle, then assessed for: (1) intracellular
signaling activation: OPCs stimulated for 10 and 20 min, then collected for western blot;
(2) differential gene expression: OPCs stimulated for 3 h, then collected for RNA sequenc-
ing (RNAseq). In select experiments, OPCs were stimulated with a cytokine cocktail or
PBS for 3 h then switched to oligodendrocyte (OL) differentiation medium consisting of
DMEM/F12 supplemented with 1% N2, 2% B27, 0.01% BSA, 1% penicillin/streptomycin,
10 ng/mL CNTF, and 40 ng/mL T3. Cells were differentiated to pre-myelinating OLs for
4 days, with medium replacement (half the volume) every other day, then fixed.

2.3. Immunocytochemistry

Cells were fixed with 4% paraformaldehyde (PFA), blocked with 5% normal goat
serum, and incubated with antibodies against PDGFRα (rat, 1:200; #558774, BD Pharmin-
gen), Olig2 (rabbit, 1:500; #AB9610, Millipore), and MBP (rat, 1:500; #MAB386, Millipore).
For the immunolabeling of O4+ OLs, live cells were incubated with O4 hybridoma cell
supernatant (kindly provided by Dr. Paula Monje) prior to fixation. Immunoreactivity was
visualized with secondary species-specific fluorescent antibodies (1:750; Alexa Fluor-594
and Alexa Fluor-488, Invitrogen). Representative images were taken with a Zeiss Axiovert
A1 fluorescence microscope. Cells stained with Olig2, O4, and MBP were analyzed (cell
numbers and morphology) in an unbiased manner from 9 randomly selected fields of
view per biological replicate at 10× magnification using the Cellomics ArrayScan VTI
high-content analysis system (ThermoScientific, Waltham, MA, USA).

2.4. Flow Cytometry

OPCs were isolated, cultured, and stimulated as described above, then switched to a
cytokine-free medium overnight (approximately 18 h). Cell were then collected after 5 min
incubation with accutase, spun down and resuspended in live/dead staining solution
(GhostDye Vio540, Tonbo Biosciences). After 30 min at 4 ◦C, cells were resuspended in
100 µL flow cytometry buffer (FACS buffer, eBioscience), blocked with anti-CD16/32 (FCR
block, eBioscience) for 5 min at RT, and stained for TNFR1 (APC; Biolegend, #113005) and
MHC I (FITC; Biolegend, #116506) for 30 min at 4 ◦C. Cells were then fixed with 1% PFA for
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1 h at 4 ◦C and resuspended in FACS buffer for analysis with a CytoFLEX flow cytometer
(Beckman-Coulter). Data were analyzed using the CytExpert software (Beckman-Coulter).

2.5. Next Generation RNAseq

OPCs. RNAseq was performed on primary mouse WT and TNFR2−/− OPCs exposed
to a cytokine cocktail or PBS vehicle (GEO # pending). After extraction with Arcturus
PicoPure RNA Isolation Kit (Cat# KIT0204, Applied Biosystems), RNA was further purified
of residual genomic DNA by on-column digestion with RNase-free DNase (Cat# 79254,
Qiagen). Library preparation and sequencing were performed at the Beijing Genomics
Institute (BGI) on a BGISeq-500 platform, and 30 million, paired-end 100 base pair reads
were generated. Reads were trimmed using Trim Galore v0.6.4 and aligned to the mouse
genome with the Ensembl version 81 of GRCm38 as reference for annotation. The number
of read pairs aligned to each gene was calculated using STAR, with read-pair alignment
rates resulting between 90 and 92 percent. Differential gene expression analysis was
performed using EdgeR, with normalized gene expression levels represented as fragments
per kilobase per million mapped reads (FPKM) [22]. Differentially expressed genes were
determined to have an adjusted p-value less than or equal to 0.05. For DAVID pathway
analysis, Cytoscape network analysis, heatmap, and UpSet plot generation, only genes
with log2CPM ≥ 1 and log2|FC| ≥ 0.585 were included.

Microglia. RNAseq was performed on microglia FACS-sorted from mouse spinal
cords of naïve mice (GEO # pending) or mice induced with experimental autoimmune en-
cephalomyelitis (EAE) and collected at 17 days post-induction (dpi) (previously published,
GEO: GSE78082 [23]). Cells were sorted with a FACSAria instrument (BD Biosciences)
based on CD45lowCD11b+ labeling, collected in lysis buffer, and processed for RNA ex-
traction using the SMART-Seq V4 UltraTM Low Input RNA Kit (Clontech Laboratories),
according to the manufacturer’s protocol. Library preparation and RNA sequencing
were performed at the John P. Hussman Institute for Human Genomics (Miller School
of Medicine, University of Miami) using an Illumina HiSeq 2500 ultra-high throughput
sequencing system. Paired-end, 125 base pairs were generated and analyzed as previ-
ously published [23].

2.6. Ligand–Receptor Interaction Analysis

To infer potential interactions between ligand-bearing OPCs and receptor-bearing
microglia, we analyzed OPC versus microglia RNAseq datasets using a bioinformatics
method adapted from CellPhoneDB [24] and a published reference list of ligand–receptor
pairs [25]. We measured cell–cell interaction by defining a ligand–receptor score as the
mean of the average log-FPKM of the receptor gene and the ligand gene in microglia/OPCs
(n = 3–4 per cell type/condition). p values were calculated by comparing the actual
interaction scores to the null distribution scores (determined by a permutation test for each
ligand–receptor pair).

2.7. Real-Time RT-PCR

Reverse transcription of RNA samples was performed using the High-Capacity cDNA
Reverse Transcription Kit (Cat# 4368814, Applied Biosystems), according to the manufac-
turer’s protocol. Complementary DNA equal to 2–5 ng of initial total RNA was used as a
template in each PCR reaction. Real-time PCR was performed in the QuantStudio 6 Flex
Real Time PCR system (Applied Biosystems) with PowerUP SYBR Green PCR MasterMix
(Applied Biosystems). Relative gene expression was calculated with the comparative Ct
(∆∆Ct) method [26] after normalization to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene expression. Primers for gene amplification are listed in Table S1.

2.8. Western Blot

Proteins were resolved by SDS-PAGE on 4–20% TGX stain-free gradient gels (Bio-
Rad) then transferred onto nitrocellulose membranes. After blocking in TBS + 5% milk,
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membranes were probed with antibodies against pAKT (rabbit, #4060S, Cell Signaling
Technologies), AKT (rabbit, 4691S, Cell Signaling Technologies), p-p65 (rabbit, #3033S, Cell
Signaling Technologies), and p65 (mouse, #6956S, Cell Signaling Technologies) overnight
at 4 ◦C. After 3 washes with PBS + 0.05% Tween (PBS-T), membranes were incubated
with horseradish peroxidase (HRP)-conjugated secondary antibodies (1 h, room tempera-
ture, 1:2000, Amersham), washed 3 times with PBS-T, and incubated in Femto Maximum
Sensitivity Substrate (ThermoScientific). Membranes were imaged with a ChemiDoc sys-
tem (Bio-Rad), and densitometric quantification of protein expression was performed
with ImageLab software (Bio-Rad). Data were normalized to β-actin and expressed as
percentage ± SEM of a reference condition.

2.9. Cytokine Array

WT and TNFR2−/− OPCs were cultured for 3DIV in 24-well plates, exposed to a
cytokine cocktail for 3 h, then switched to a cytokine-free medium. After overnight incu-
bation, the OPC medium containing released factors was collected, spun down at 300× g
for 5 min to remove cell debris, and frozen at −80 ◦C until further analysis. The experi-
ment was run on three biological replicates (three separate OPC primary cultures), each
with two technical replicates/condition. The collected OPC medium (500 µL)/sample)
was analyzed for cytokine content using the Proteome Profiler Mouse XL Cytokine Array
(#ARY028, R&D Systems), following the manufacturer’s protocol. After overnight incu-
bation at 4 ◦C, membranes were washed and exposed to biotinylated detection antibody
followed by incubation with streptavidin-HRP and Femto Maximum Sensitivity Substrate
(ThermoScientific). Finally, membranes were imaged with a ChemiDoc system (Bio-Rad)
and densitometric quantification of protein expression was performed with HLImage++
software (https://www.wvision.com/QuickSpots.html, accessed on 30 April 2021) after
normalization to preloaded controls.

2.10. Statistical Analysis

Statistical analyses were carried out with GraphPad Prism software. Details of sample
size for each experiment are included in the figure legends. Western blot, RNAseq, cell
counting, and real-time RT-PCR data were analyzed by two-way ANOVA followed by Sidak
or Tukey tests for multiple comparisons. Cytokine array data were tested for normality
with the D’Agostino & Pearson test, and then compared with Mann–Whitney or Student’s
t tests. Data are expressed as mean ± SEM, and p-values equal or less than 0.05 were
considered statistically significant.

3. Results
3.1. OPCs Upregulate and Activate TNF Receptors Following Inflammatory Stimulation

We recently demonstrated that oligodendrocyte lineage cells directly participate in the
neuroinflammatory response associated with experimental autoimmune encephalomyelitis
(EAE), a model of MS, by releasing immunomodulatory factors [20]. Furthermore, we
showed that TNFR2 acts as a suppressor of oligodendroglia-driven neuroinflammation,
conferring protection in EAE.

To parse out the specific contribution of OPCs in this process, we established pri-
mary cultures of OPCs from WT and TNFR2−/− mice and assessed their response to an
inflammatory environment by exposing them to a combination of Th1 cytokines (TNF,
IL1β, and IFNγ) known to be highly upregulated in the CNS following EAE and MS
(Figure 1A) [27,28]. In naïve conditions, WT OPCs expressed low levels of Tnfrsf1b (gene
name for TNFR2) and, in comparison, markedly higher levels of Tnfrsf1a (gene name for
TNFR1) (Figure 1B, 1.0 ± 0.2 versus 957.3 ± 109.8). Interestingly, Tnfrsf1a expression was
significantly higher in TNFR2−/− cells compared to WT (Figure 1B), possibly indicating
a compensatory mechanism to maintain active TNF signaling in the absence of TNFR2.
In order to verify that TNFR2-dependent intracellular signaling was inhibited as a result
of TNFR2 ablation, we measured the activation of the PI3K/AKT pathway, one of the

https://www.wvision.com/QuickSpots.html
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main pathways downstream of TNFR2 [8,29], by quantifying AKT phosphorylation after
cytokine stimulation. In WT OPCs, phosphorylated AKT (pAKT) was significantly elevated
after a 10 min stimulation and returned to basal levels at 20 min (Figure 1C). On the other
hand, in TNFR2−/− OPCs pAKT did not increase. In fact, it was downregulated below
basal levels after both 10 and 20 min stimulation (Figure 1C). In parallel, the activation of
the NF-kB canonical pathway, one of the main pathways downstream of TNFR1 [30], was
measured by assessing phosphorylated p65 (p-p65). NF-κB was activated in both WT and
TNFR2−/− OPCs after 10 min stimulation and returned to baseline at 20 min. The increase
in p-p65 was significantly higher in TNFR2−/− compared to WT cells (Figure 1D). Notably,
prolonged inflammatory stimulation (3 h with cytokines) resulted in the increase of both
Tnfrsf1a and Tnfrsf1b gene expression (Figure S1A). Similar to naïve conditions, TNFR2−/−

cells further upregulated Tnfrsf1a compared to WT OPCs (Figure S1A). However, TNFR1
protein expression was not altered in a TNFR2-dependent manner when assessed by flow
cytometry 18 h after stimulation (Figure S1B–D). Both the percentage of OPCs expressing
TNFR1 and the mean fluorescent intensity of expression did not change due to stimulation
or TNFR2 ablation (Figure S1B–D). This indicates that there is no compensatory upreg-
ulation of TNFR1 at the protein level when TNFR2 signaling is ablated and the effects
observed in TNFR2−/− cells cannot be attributed to enhanced TNFR1 activity.
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Figure 1. OPCs upregulate and activate TNF receptors following inflammatory stimulation. (A) Ex-
perimental workflow for assessing intracellular signaling activation in WT and TNFR2−/− OPCs
(co-expressing Olig2 and PDGFRα) following stimulation with cytokine cocktail (TNF/IFNγ/IL1β,
25 ng/mL each) at 3 days in vitro (DIV); scale bar: 20 µm. (B) Quantification of TNF receptor gene
expression (Tnfrsf1b and Tnfrsf1a) in WT and TNFR2−/− OPCs at 3DIV in non-stimulated conditions;
n = 3, * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001, two-way ANOVA, Holms–Sidak multiple comparison
test. (C) Western blot analysis of PI3K/AKT signaling activation in WT and TNFR2−/− OPCs at
3DIV after 10 and 20 min of cytokine stimulation; active phosphorylated AKT (pAKT) normalized
to total AKT is plotted as fold of non-stimulated (NS) WT OPCs. Results represent mean ± SEM
of 3 independent experiments run in duplicate, * p ≤ 0.05, *** p ≤ 0.001, two-way ANOVA, Holms–
Sidak multiple comparison test. (D) Western blot analysis of canonical NF-κB signaling activation
PI3K/AKT signaling activation in WT and TNFR2−/− OPCs at 3DIV after 10 and 20 min of cytokine
stimulation; active phosphorylated p65 (p-p65) normalized to total p65 is plotted as fold of non-
stimulated (NS) WT OPCs. Results represent mean ± SEM of 3 independent experiments run in
duplicate, ** p ≤ 0.01, two-way ANOVA, Holms–Sidak multiple comparison test.
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Collectively, these data indicate that OPCs mount an innate cellular response to deal
with sustained inflammation, and that TNFR2 modulates this function.

3.2. TNFR2 Participates in the Response of OPCs to Inflammatory Conditions

To determine the mechanisms by which TNFR2 signaling in OPCs regulates their
response to inflammation, we analyzed by bulk RNAseq the transcriptional profile of WT
and TNFR2−/− OPCs in naïve conditions and after cytokine stimulation. At 3DIV, OPCs
were exposed for 3 h to either a TNF/IFNγ/IL1β cocktail or vehicle, and their RNA was
extracted and sequenced. Differential gene expression analysis identified several hundred
upregulated and downregulated genes in each comparison. In naïve OPCs, 660 upregu-
lated and 355 downregulated genes were found in TNFR2−/− versus WT cells (Figure 2A).
Gene ontology (GO) enrichment analysis showed most alterations were in genes involved
in transcriptional regulation and cell metabolism (Figure 2B). Furthermore, KEGG path-
way analysis determined that the downregulated genes were highly associated with the
MAPK and TNF pathways, while upregulated genes were involved in metabolic functions,
mainly lipid metabolism, underscoring the essential role of TNFR2 in the maintenance of
OPC homeostasis (Figure S2A). As anticipated, the stimulation of OPCs resulted in large
transcriptional changes compared to basal conditions. In WT OPCs, 858 upregulated and
666 downregulated genes were identified after exposure to cytokines, with transcriptional
regulation and cell differentiation as the most downregulated biological processes and
inflammatory response, innate immunity, and apoptosis among the most upregulated ones
(Figure 2C,D). KEGG pathway analysis revealed that downregulated genes were associated
with cell survival and proliferation (e.g., PI3K/AKT and cAMP signaling), while upregu-
lated genes with inflammatory responses (e.g., TNF signaling, cytokine–cytokine receptor
interaction), suggesting a shift of OPCs towards immunomodulatory function (Figure S2B).
After cytokine stimulation, TNFR2−/− OPCs showed upregulation of 965 genes and down-
regulation of 1000 genes compared to non-stimulated TNFR2−/− OPCs (Figure 2E). Similar
to WT cells, the stimulation of TNFR2−/− OPCs resulted in downregulation of pathways
and biological processes associated with cell survival (e.g., PI3K/AKT) and upregulation
of those associated with inflammation (Figure 2F, Figure S2C). In the most significant com-
parison to dissect out TNFR2 function in inflammatory conditions (stim TNFR2−/− versus
stim WT), stimulated TNFR2−/− OPCs showed 564 upregulated and 314 downregulated
genes compared to stimulated WT cells (Figure 2G). Most of the downregulated genes
were associated with cell cycle/survival (e.g., PI3K/AKT) and adhesion pathways, while
the upregulated genes were associated with metabolism, immunity, and inflammation (e.g.,
cytokine–cytokine receptor interaction, toll like receptor signaling) (Figure 2H, Figure S2D).

To isolate genes that changed in each comparison and identify those that were depen-
dent on TNFR2, we generated UpSet plots of upregulated (Figure 3A) and downregulated
(Figure 3B) genes. This analysis showed that the inflammatory stimulation of OPCs resulted
in upregulation of a set of 152 shared genes mostly associated with immune regulation (Fig-
ure 3A, red column; Figure 3C), and that 91 genes were uniquely upregulated in stimulated
TNFR2−/− OPCs compared to WT (Figure 3A, pink column). GO enrichment analysis es-
tablished that the genes selectively upregulated in TNFR2−/− versus WT stimulated OPCs
were involved in signal transduction and redox processes, whereas those downregulated
were associated with mitosis, cell division, and the cell cycle (Figure 3C,D). This suggests
that TNFR2 signaling is important for maintaining OPC proliferation, a function that is
challenged by inflammatory stimulation.

Collectively, these data underscore that TNFR2 signaling in OPCs modulate three
major processes: metabolism, cell cycle, and immune-inflammatory response.
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genes and processes; NS = non-stimulated; St = stimulated.
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Figure 3. Overlap analysis of RNAseq comparisons identifies key biological processes modulated by TNFR2 signaling.
(A,B) UpSet plots depicting number (horizontal black bars) and overlap (vertical bars) of (A) upregulated and (B) downreg-
ulated genes between each paired comparison; blue = differentially expressed (DE) in TNFR2−/− NS versus. WT NS only;
pink = DE in TNFR2−/− St versus WT St only; orange = DE in TNFR2−/− St versus TNFR2−/− NS only; gray = DE in WT
St versus WT NS only; red = DE in TNFR2−/− St versus TNFR2−/− NS, WT St versus WT NS, and TNFR2−/− St versus
WT St. (C) Top GO terms of upregulated genes differentially expressed in each intersection of interest. (D) Top GO terms of
downregulated genes differentially expressed in each intersection of interest. NS = non-stimulated; St = stimulated.

3.3. TNFR2 Ablation Exacerbates Inflammation-Induced Dysregulation of the Cellular Machinery
That Sustains OPC Proliferation and Differentiation

Since cell division and the cell cycle were identified as dysregulated processes when
TNFR2 is ablated, we took a closer look at genes involved in OPC proliferation and
differentiation in naïve and stimulated conditions. The positive regulator of differentiation
Olig2 was downregulated in both genotypes following stimulation (Figure 4A), and so
were the negative regulators of differentiation Lingo1 and Hes1 (Figure 4B,C). In TNFR2-
ablated cells, the expression of Lingo1 and Hes1 was reduced further, implicating TNFR2
in their transcriptional regulation, at least in part. Interestingly, the negative regulator of
differentiation Id2, which was reduced in WT OPCs after stimulation, did not change in
TNFR2−/− OPCs, suggesting that, physiologically, TNFR2 may be contributing to OPC
differentiation by suppressing Id2 (Figure 4D, Figure S4A). As far as genes associated
with OPC proliferation, we found Pdgfrα to be downregulated in TNFR2−/− versus WT
OPCs (Figure 4E), whereas Cspg4 was equally reduced in cells with or without TNFR2
(Figure 4F). Collectively, these data indicate that inflammatory stimulation alters those
signals important in directing OPCs towards maturation and that TNFR2 participates
in their regulation. In addition, lack of TNFR2 signaling altered the expression of genes
associated with cell metabolism, including the tricarboxylic acid (TCA) cycle (Figure S3A,B).
In basal conditions, lack of TNFR2 lead to the upregulation of most genes involved in the
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TCA cycle, and several of those continued to be expressed at higher levels in TNFR2−/−

OPCs following stimulation. This suggests a role of TNFR2 in maintaining proper OPC
metabolic function, which is essential for their proliferation and differentiation capacity.
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regulating oligodendrocyte (OL) differentiation and/or proliferation in WT and TNFR2−/− OPCs
following cytokine stimulation. Data, extrapolated from the RNAseq set, are expressed as frag-
ments per kilobase per million mapped reads (FPKM). (G) Workflow for the OL differentiation assay.
(H,I) Quantification, by high-content analysis (HCA), of differentiated O4+ OLs (H) and MBP+ OLs
(I) at 7DIV. Results are expressed as a percentage of the total Olig2+ population. (J) Representative
images of WT and TNFR2−/− differentiated OLs at 7DIV either with or without prior stimulation
with cytokines. Scale bar = 20 µm. (K–M) Quantification by HCA of (K) average cell area, (L) av-
erage process length, and (M) total process length of WT and TNFR2−/− OLs. Results represent
mean ± SEM of 3 independent experiments; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001,
two-way ANOVA; Holm–Sidak multiple comparison test. NS = non-stimulated; St = stimulated.
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To validate the RNAseq data from a functional standpoint and directly assess if TNFR2
is implicated in OPC differentiation into mature oligodendrocytes (OLs), we cultured WT
and TNFR2−/− OPCs, stimulated them at 3DIV with TNF/IFNγ/IL1β or vehicle, switched
them to differentiating conditions and measured maturation by counting the number of
O4+ OLs and MBP+ OLs (Figure 4G). Inflammatory stimulation did not affect the number
of O4+ OLs (Figure 4H) in both genotypes but significantly reduced the number of MBP+

OLs in TNFR2−/− cells (Figure 4I), suggesting that TNFR2 may play a role in the terminal
stage of OL maturation into myelin-forming cells in conditions of CNS inflammatory stress.
Notably, the number of O4+ OLs was reduced in TNFR2−/− compared to WT cells without
cytokine stimulation (Figure 4H), suggesting that TNFR2 may be involved in directing OPC
towards differentiation during development. Morphologically, TNFR2−/− OLs showed
clear differences compared to WT OLs (Figure 4J). In non-stimulated conditions, TNFR2−/−

OLs had a more ramified appearance with less extensive MBP+ networks compared to
WT cells. After stimulation, both TNFR2−/− and WT OLs showed a dramatic reduction
in the formation of MBP+ networks, but with TNFR2−/− OLs displaying thinner, longer
processes than WT cells, which featured a more compact structure with shorter bushy
processes (Figure 4J). Quantification of these morphological features by high-content
analysis showed a significant reduction in cell area in the TNFR2−/− OLs (Figure 4K). In
addition, TNFR2−/− OLs showed trends towards reduced average and total process length
(Figure 4L,M). This aligns with the idea that TNFR2−/− cells have impaired myelin-forming
capacity and repair ability in conditions of inflammatory CNS stress.

3.4. TNFR2 Ablation Enhances the Immunomodulatory and Inflammatory Function of OPCs in
Response to Inflammatory Stimulation

To better understand the mechanisms by which OPCs participate in immunomodula-
tion and the role played by TNFR2 signaling in this function, we interrogated our RNAseq
data sets for genes known to be implicated in various aspects of immune cell function,
including antigen presentation, immune cell migration, and activation (Figure 5A). Genes
important for antigen presentation by MHC-I molecules were markedly upregulated fol-
lowing cytokine stimulation, and several of those were further increased as a result of
TNFR2 ablation, specifically B2m, H2-D1, H2-K1, H2-T23, Erap1, and Tapbp (Figure 5B,C).
Components of the immunoproteasome, also involved in MHC-I-dependent antigen pre-
sentation, were upregulated (Figure 5F) as well, with Psme2, Psmb9, and Psmb10 showing
mild differential changes due to TNFR2 ablation (Figure 5D). Notably, subunits of the
constitutive proteasome did not change in WT OPCs after cytokine stimulation (Figure 5D).
In TNFR2−/− cells, however, the Psmb5 subunit was significantly downregulated and
others (Psmb6 and Psmb7) showed a downward trend (Figure 5D). Molecules associated
with MHC-II-dependent antigen presentation were only minimally expressed in both WT
and TNFR2−/− OPCs, with no significant upregulation after cytokine stimulation with
the exception of the MHC-II activator Ciita, which significantly increased in TNFR2−/−

cells (Figure 5E). Assessment of MHC-I expression in OPCs by flow cytometry showed an
increase in the percent of MHC-I+ cells in both WT and TNFR2−/− OPCs after stimulation
(Figure 5G,H). However, this increase was not TNFR2-dependent at this timepoint.

Numerous members of the chemokine group of molecules, which are responsible for
the trafficking of immune cells across the blood–brain barrier (BBB), as well as microglia
migration, were significantly upregulated in both WT and TNFR2−/− OPCs following
cytokine stimulation (Figure 6A–K, Figure S4B). Specifically, Ccl2, Ccl7, Ccl11, Cxcl10, and
Cxcl12 were significantly more elevated in TNFR2−/− compared to WT OPCs, and Cxcl9
and Cxcl11 were significantly increased only in TNFR2−/− OPCs, indicating that TNFR2
signaling plays a role in their regulation. Notably, Csf1, a growth factor essential for
microglia survival and proliferation, was markedly increased in OPCs of both genotypes
exposed to cytokines (Figure 6L).
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Figure 5. TNFR2 ablation enhances the antigen presenting function of OPCs in response to inflammatory stimulation.
(A) Heatmap of genes related to antigen presentation expressed by WT and TNFR2−/− OPCs in vitro with or without
cytokine stimulation. (B–F) Expression profiles of genes regulating MHC-I molecules (B), MHC-I peptide processing
(C,D) constitutive proteasome, (D) MHC-II molecules and activators, (E) and immunoproteasome (F). Data, extrapolated
from the RNAseq set, are expressed as FPKM. (G) Flow cytometric quantification of MHC-I-expressing OPCs (MHC-I+

cells in the PDGFRα+ population) assessed 18 h after cells were exposed to cytokines for 3 h. (H) Representative flow
cytometry plots of MHC-I expression in OPCs. Results represent average ± SEM of 3 independent experiments, * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, two-way ANOVA; Holm–Sidak multiple comparison test. NS = non-stimulated; St
or Stim = stimulated.

To further investigate whether the chemotactic and growth factors expressed by OPCs
could potentially participate in modulating the microglial response to inflammation, we
took a bioinformatics approach and conducted a ligand–receptor interaction analysis
comparing ligands found in our OPC RNAseq datasets with gene expression data of the
corresponding receptors found in microglia. We analyzed all the validated ligand–receptor
pairs published by Ramilowski et al. [25]. The microglia datasets were obtained by bulk
RNAseq of FACS-sorted microglia from the spinal cord of naïve and acute EAE (17 days
post-induction) C67BL/6 mice, as previously described [23]. We generated interaction
scores predictive of the putative interaction between ligandOPC-receptormicroglia pairs,
as previously described [25] (Figure 6M). Almost all chemokines expressed by OPCs
were predicted to significantly interact with chemokine receptors expressed by naïve
microglia, with the strongest interaction being Ccl2OPC-Ccr5microglia. These interactions
were determined to have higher significance (lower p value shown as bigger size circle)
for ligands expressed by stimulated TNFR2−/− OPCs compared to stimulated WT OPCs,
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suggesting that the likelihood of interaction is also higher. Csf1 and Cx3cl1, which are
implicated in microglia survival and proliferation, showed significant interaction with
the corresponding microglial receptors independently of TNFR2, and not only in OPCs
exposed to cytokines but also in naïve OPCs as well, suggesting a role of OPCs in microglia
survival in homeostatic conditions.

Cells 2021, 10, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 6. TNFR2 ablation enhances the inflammatory and immunomodulatory function of OPCs in response to 
inflammatory stimulation. (A–L) Expression profiles of select immunomodulatory and inflammatory genes in WT and 
TNFR2−/− OPCs following cytokine stimulation. Data, extrapolated from the RNAseq set, are expressed as FPKM. (M) Dot 
plot of ligand–receptor interaction scores for immunomodulatory ligands expressed in OPCs and their corresponding 
receptors expressed in microglia in naïve conditions or at acute EAE. (N) Gene expression profiles of select receptors 
expressed in microglia in vivo under naïve conditions or at acute EAE and known to interact with chemokines and 
cytokines found to be expressed in cultured OPCs after cytokine stimulation. Results represent average ± SEM of 3 
independent experiments, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, two-way ANOVA; Holm–Sidak multiple 
comparison test. NS = non-stimulated; St = stimulated. 

Figure 6. TNFR2 ablation enhances the inflammatory and immunomodulatory function of OPCs in response to inflammatory
stimulation. (A–L) Expression profiles of select immunomodulatory and inflammatory genes in WT and TNFR2−/− OPCs
following cytokine stimulation. Data, extrapolated from the RNAseq set, are expressed as FPKM. (M) Dot plot of ligand–
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in microglia in naïve conditions or at acute EAE. (N) Gene expression profiles of select receptors expressed in microglia
in vivo under naïve conditions or at acute EAE and known to interact with chemokines and cytokines found to be expressed
in cultured OPCs after cytokine stimulation. Results represent average ± SEM of 3 independent experiments, * p ≤ 0.05,
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St = stimulated.
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To directly assess the immunomodulatory molecules released by OPCs when exposed
to inflammatory conditions, we analyzed the media collected from cytokine-stimulated WT
and TNFR2−/− OPCs (Figure 7A for experimental workflow) using a membrane-based
antibody array. Stimulated OPCs were found to release a wide range of chemokines and
cytokines, some at especially high levels (CCL2, CCL5, CX3CL1, and CXCL10) (Figure 7B,C;
Table S2). Select molecules were significantly increased in TNFR2−/− OPCs compared
to WT (Acrp30, CD93, CCL6, CCL20, CD40, CD160, chemerin, CXCL11, and CXCL13),
suggesting that TNFR2 signaling plays a role in suppressing inflammation by controlling
these molecules (Figure 7C). Notably, various chemokines that were differentially expressed
in our RNAseq analysis, such as Ccl2 and Cxcl10, were not found to be different in this
assay. This discrepancy could be due to the fact that the culture medium was collected
approximately 1 day after stimulation, which may have led to maximal accumulation of
the factors. It is likely that, to unmask differences in release between WT and TNFR2−/−

OPCs, the analysis needs to be performed at shorter time points after stimulation.
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interest released by stimulated OPCs. Results are expressed as average pixel density ± SEM of 3 independent experiments;
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Overall, our data underscore that OPCs produce immunomodulatory signals, in part
regulated by TNFR2, capable of directly influencing microglia activation and function,
providing insight into specific molecules/pathways targetable for therapeutic purposes.

4. Discussion

The overarching purpose of our study was to elucidate the cellular changes that OPCs
undergo when exposed to inflammatory conditions to gain insight into the mechanisms
that underlie CNS repair failure in MS. Specifically, we sought to investigate the role
played by TNFR2 in this process, based on previous evidence from our group indicating
that TNFR2 acts as a suppressor of oligodendroglia-dependent inflammation and, at least
in vitro, as a signal for oligodendrocyte differentiation [20,21].

We took an in vitro approach, stimulating primary OPC cultures from WT and
TNFR2−/− mice with a cocktail of Th1 cytokines (TNF/IFNγ/IL1β) known to be highly
present in the MS lesion environment, and analyzing their transcriptome by RNAseq. As
anticipated, hundreds of genes were differentially regulated in OPCs as a result of cytokine
exposure. The gene families and processes that changed the most were those related to
inflammation and immunoregulation, with cytokines, chemokines, growth factors, MHC-
I, and some MHC-II components mostly upregulated. In parallel, genes and processes
associated with cell proliferation and differentiation were also altered, indicating that
OPCs divert from their physiological proliferation/differentiation cell programming to
aid and perpetuate the immune-inflammatory response. This is in line with an in vivo
study by Falcão et al. which reported on the transition of oligodendroglia, both OPCs
and OLs, to a disease-associated state at acute EAE, characterized by the expression of
immune-related genes linked to IFNγ response [31]. Our in vitro data largely recapitulate
this observation with respect to the OPC population, demonstrating that our treatment
paradigm with Th1 cytokines models quite accurately the transition that OPCs undergo
in vivo, thus can be useful to address mechanistic questions in a simplified system. Most
importantly, our data directly implicate TNFR2 signaling in the modulation of the OPC
state and fate during neuroinflammation. The exacerbation of OPCs’ inflammatory profile
when TNFR2 is ablated points at a role for TNFR2 in suppressing the inflammatory and
antigen-presenting phenotype of OPCs. This function of TNFR2 is not unique to OPCs
but extends to other glial cells. Indeed, previous work from our laboratory uncovered
that, at acute EAE, TNFR2-ablated microglia develop a proinflammatory phenotype with
the dysregulated expression of homeostatic and host defense genes demonstrating the
immunosuppressive and anti-inflammatory role of microglial TNFR2 [23].

The ability of cytokines such as IFNγ, soluble TNF, and IL17 to inhibit OPC differ-
entiation into OLs has long been known [32–35], but only recently the coupling of this
effect with a shift towards the acquisition of an immunoregulatory and antigen presenting
phenotype has been addressed more in depth. When simultaneously exposed to the differ-
entiating agent T3 and IFNγ in vitro, OPCs upregulate MHC-I molecules, which allow for
antigen processing and presentation to CD8+ T cells, inducing their activation and cytotoxic
function [36]. Furthermore, constant low exposure to IFNγ has been shown to upregulate
antigen presentation genes in OLs differentiated from iPSCs of healthy controls and MS
patients [37]. Our data are in line with these reports as marked upregulation of numerous
MHC-I genes was observed in OPCs following Th1 cytokine stimulation. Importantly,
this effect was exacerbated in cells lacking TNFR2, indicating a direct involvement of
TNFR2 signaling in the antigen-presenting function of OPCs. The upregulation of MHC-I
expression was confirmed at the protein level in both WT and TNFR2−/− OPCs 18 h after
the 3 h cytokine stimulation, although not in a TNFR2 dependent manner. It is plausible
that, by this time, expression in TNFR2−/− OPCs has already peaked, thus warranting
assessment at earlier time points.

The upregulation of MHC-II molecules in OPC subsets has also been reported in some
experimental models [31,36]. Falcão et al. demonstrated that OPCs cultured in the presence
of MOG35–55 peptide and CD4+ T cells expressing the T cell receptor for MOG35–55 were
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able to induce the proliferation of naïve, memory, and activated T cells, indicating that
OPCs can execute antigen presentation via MHC-II, a process especially relevant in the
context of MS. In our model, MHC-II-related molecules did not significantly change after
Th1 stimulation, with the only exception of the MHC-II activator Ciita that was upregulated
specifically in TNFR2−/− OPCs, once again underscoring the role of TNFR2 in regulating
the antigen-presenting function of OPCs.

Our findings demonstrate that OPC-dependent immunomodulation in inflammatory
conditions is not only ascribed to the antigen-presenting role acquired by OPCs [36] but also
to their expression and release of chemoattractant factors known to recruit immune cells
(lymphocytes, macrophages, microglia) into the CNS and at demyelinating lesion sites in
MS and MS models [38–40]. These include CCL2, which was identified by ligand–receptor
interaction analysis to be the chemokine released by OPCs with the highest probability to
bind to CCR5-expressing microglial cells, thus promoting their migration. Importantly, this
interaction reached the highest significance between stimulated OPCs lacking TNFR2 and
microglia. Furthermore, since CCR5 is also highly expressed by T cells found in active MS
lesions [3,41–44], it is plausible that OPC-released CCL2 may contribute to their trafficking
as well. In addition to migration, TNFR2 signaling in OPCs may regulate the activation
state of T cells via the co-stimulatory receptors CD40 and CD160, both of which were
found to be released at higher levels by TNFR2−/− OPCs compared to WT after cytokine
stimulation. Indeed, CD40, a member of the TNF receptor superfamily, is known to bind
to CD40ligand on T helper cells, leading to T cell activation and the exacerbation of their
inflammatory properties [45–47], and CD160 binds to MHC-I molecules and promotes
IFNγ release [48].

As OPCs transition to an immunomodulatory phenotype after inflammatory exposure,
they dysregulate their cell proliferation and differentiation machinery, with consequent im-
pairment of their ability to efficiently progress towards more mature states. Lack of TNFR2
worsens this outcome, as it reduces differentiation into O4+ cells in basal conditions and
into myelin-forming MBP+ OLs after cytokine stimulation. This latter effect is accompanied
by measurable phenotypic alterations (reduced cell area). This observation correlates with
the GO enrichment analysis that shows the downregulation of genes belonging to lipid
metabolic processes in stimulated TNFR2−/− versus WT cells after stimulation.

Notably, we found that several hundred genes were differentially regulated in OPCs
without inflammatory stimulation and only in association with TNFR2 deletion. Consid-
ering that, by ours and others’ accounts, TNFR2 baseline expression in OPCs is low [49],
this demonstrates the key role that the TNFR2 signaling pathway plays in regulating
OPC function in normal physiology. Indeed, lack of this minimal TNFR2 expression is
sufficient to disrupt OPCs, which behave as if they are in a status of enhanced stress. Cell
metabolism is affected, as shown by the upregulation of virtually all TCA cycle genes,
among other metabolic pathways. This response is typically observed in stress conditions,
where the cell is pushed towards potentiating ATP production to meet injury-induced
energy demands [50–52]. Although meant to be protective, this mechanism also leads to
the accumulation of reactive oxygen species that may instead exacerbate damage [51,53,54].

The specific intracellular signaling cascades through which TNFR2 in OPCs exerts
its protective functions are yet to be elucidated, but the PI3K/AKT pathway is likely to
be involved, given it is one of the main signals downstream of TNFR2, and we show it
to be inhibited in our TNFR2−/− OPCs. That TNFR2 could be protective by balancing
detrimental TNFR1 seems unlikely, since the ablation of TNFR2 does not alter TNFR1
protein levels at the membrane surface, despite upregulating its gene expression.

More broadly, our study contributes to elucidating the role of TNF signaling in neu-
roinflammatory and demyelinating disease, which has been controversial mainly in light
of the failure of anti-TNF drugs in MS therapy. Indeed, the only clinical trial with a non-
selective TNF inhibitor, Lenercept, had to be terminated due to worsening of the disease,
with increased frequency and severity of attacks and demyelinating lesions [55]. This could
be explained after later studies uncovered the dichotomous function of the two forms
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of solTNF and tmTNF, the first promoting neurotoxic effects, the latter neuroprotective.
This underscored how pan-TNF inhibition is not a viable therapeutic option, but selective
targeting of solTNF-TNFR1 signaling (inhibition) and tmTNF-TNFR2 signaling (activation)
should be pursued. Our study supports the idea that promoting TNFR2 signaling in the
CNS has therapeutic potential. Indeed, we show that activation of this pathway in OPCs
during neuroinflammation can redirect OPCs towards normal homeostasis, suppressing
their pro-inflammatory shift.

5. Conclusions

The picture that emerges from our studies is that OPCs respond to stress by diverting
their physiological functions towards inflammatory activation and immunomodulation,
becoming less equipped to perform reparative functions such as remyelination. Most
importantly, we demonstrate that TNFR2 plays a key beneficial role in keeping OPCs from
straying from their normal physiology, as demonstrated by the fact that, in naïve conditions,
TNFR2 absence alone causes enhanced cell stress. TNFR2 is even more important when
OPCs are exposed to inflammatory cues, as in MS or other neuroinflammatory conditions,
because its activation serves to counteract the environmental pull towards detrimental
immune-inflammatory activation and to maintain OPC repair capacity. This would imply
that areas where OPCs express higher levels of TNFR2 should be associated with reduced
damage in neuroinflammatory diseases. This concept is indeed supported by evidence in
MS brain tissue wherein higher expression of TNFR2 correlated with less severe pathology
and the absence of meningeal inflammation [56].

Ultimately, besides confirming the beneficial function of TNFR2 in OPCs, our tran-
scriptomic analysis provides an invaluable resource for the identification of molecules
downstream of TNFR2 that could be targeted to promote CNS repair, which, to this day,
remains a largely unmet need.
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