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A B S T R A C T   

As a non-invasive hybrid biomedical imaging technology, photoacoustic tomography combines high contrast of 
optical imaging and high penetration of acoustic imaging. However, the conventional standard reconstruction 
under sparse view could result in low-quality image in photoacoustic tomography. Here, a novel model-based 
sparse reconstruction method for photoacoustic tomography via diffusion model was proposed. A score-based 
diffusion model is designed for learning the prior information of the data distribution. The learned prior in-
formation is utilized as a constraint for the data consistency term of an optimization problem based on the least- 
square method in the model-based iterative reconstruction, aiming to achieve the optimal solution. Blood vessels 
simulation data and the animal in vivo experimental data were used to evaluate the performance of the proposed 
method. The results demonstrate that the proposed method achieves higher-quality sparse reconstruction 
compared with conventional reconstruction methods and U-Net. In particular, under the extreme sparse pro-
jection (e.g., 32 projections), the proposed method achieves an improvement of ~ 260 % in structural similarity 
and ~ 30 % in peak signal-to-noise ratio for in vivo data, compared with the conventional delay-and-sum 
method. This method has the potential to reduce the acquisition time and cost of photoacoustic tomography, 
which will further expand the application range.   

1. Introduction 

Photoacoustic tomography (PAT) is a hybrid non-invasive imaging 
technique based on the photoacoustic effect, which combines the high 
contrast of optical imaging with the high penetration depth of ultra-
sound imaging [1–4]. PAT has been widely applied in tissue imaging [5, 
6], cancer detection [7,8], cardiovascular disease detection [9], 
image-guided surgery [10,11] and other fields. It has gradually become 
an important tool in preclinical and clinical research [12]. In PAT, a 
nanosecond-level pulsed laser beam is used to irradiate the tissue, and 
the tissue absorbs the light energy. An instantaneous temperature rise 
occurs after the tissue absorbs light energy, which results in a 
time-varying thermal expansion–relaxation process. Thus, the initial 
pressure (photoacoustic signal) is generated and propagated around. 
The photoacoustic waves are then collected by the ultrasonic transducer 
placed around the tissue. The absorption distribution of the tissue is 
ultimately reconstructed using a reconstruction algorithm [13]. The 

conventional reconstruction methods are based on analytical algo-
rithms, such as filtered back-projection, delay-and-sum (DAS), and 
time-reversal methods [14–16]. However, in an actual imaging system, 
it is difficult to obtain a complete photoacoustic signal due to limitations 
in the bandwidth and number of ultrasonic transducers. Sparse-view 
data can lead to severe artifacts in reconstructed images. Hence, 
high-quality reconstruction under sparse sampling is a challenging task 
to be solved. 

Hardware-based and algorithm-based methods have been proposed 
to address this issue. From the hardware perspective, it is a common 
practice to capture photoacoustic signals from more views by utilizing 
ultrasonic transducer array, such as full-ring 512-element ultrasonic 
transducer array [17,18]. Arrays of other shapes have also been used to 
improve the reconstruction quality, such as spherical [19,20], cylin-
drical [21,22], and planar [23] detector array. However, these methods 
can lead to increased complexity and cost of the system, making it 
challenging to achieve widespread application. Improved algorithms 
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can be a potential solution for achieving high-quality reconstruction. 
Since sparse sampling can make the reconstruction an ill-posed problem, 
a series of model-based improvement methods have been proposed 
[24–28]. The model-based method is to build a forward model from the 
initial sound pressure to the measured signal, and iteratively reconstruct 
the image under some optimization conditions [24–26]. Paltauf et al. 
designed a model-based iterative reconstruction algorithm to minimize 
the difference between the detected photoacoustic signal and the pho-
toacoustic signal calculated from the image to obtain a better recon-
struction [24]. Variational methods are also commonly used in 
model-based methods [27–30]. This approach involves solving an 
optimization problem with a regularization term to facilitate sparse 
reconstruction, utilizing prior information of the image to accelerate and 
constrain the reconstruction process. Compressed sensing [28,31,32] 
and iterative back-projection [33] were also employed to achieve 
high-quality reconstruction. However, these improved methods require 
accurate prior information, which is difficult to obtain in experiments. 

In recent years, deep learning-based methods have gained wide-
spread adoption in biomedical image processing [34,35], including PAT 
reconstruction. PAT reconstruction based on deep learning mainly in-
cludes post-processing methods, which use a network to eliminate ar-
tifacts in the images reconstructed by conventional analytical methods. 
Currently, most of the post-processing methods are based on the U-Net 
network for artifact removal [36–43]. Davoudi et al. used U-Net network 
to reduce artifacts in photoacoustic images and enhance their anatom-
ical contrast and image quantification capacities [36]. Shahid et al. 
combined inverse compressed sensing and ResU-Net network to process 
photoacoustic data and restore high-quality images [38]. Guan et al. 
proposed a fully dense U-Net (FD-UNet) network for removing artifacts 
[39]. Direct reconstruction [44–46] is also a commonly employed 
method, which directly maps the detected signal to photoacoustic image 
through network. Tong et al. proposed the FPU-Net and utilized 
data-driven learning for signal-to-image transformation [44]. Kim et al. 
converted the raw channel data into a multi-channel array in pre-
processing, and proposed the upgU-Net network to reconstruct photo-
acoustic images [46]. The above work is based on end-to-end network, 
which can achieve effective denoising and imaging. However, the net-
works are data-driven and require a significant amount of labeled and 
ground truth data for training, and obtaining such paired data in prac-
tice can be challenging. The third common method is the model-based 
learning method, which combines the physical model of PAT with the 
deep learning network, the prior information learned by deep network 
for constraints is added to the model-based iteration. Wang et al. applied 
a learned regularization to model-based deep learning networks to speed 
up the iterative reconstruction [47]. Hauptmann et al. proposed an 
iterative learning strategy called deep gradient descent (DGD) for PAT 
reconstruction based on a variational approach [48]. 

With the development of generative models, various deep generative 
models, such as generative adversarial network (GAN) [49,50], autor-
egressive model [51,52], flow [53], variational autoencoder (VAE) [54, 
55], denoising diffusion probabilistic model (DDPM) [56] and 
score-based generative model [57] show great advantages in 
high-quality sample generation. Among them, the score-based genera-
tive model adopts a more efficient sampling method to further expand 
the generative ability. The probability model is obtained by learning the 
probability distribution of the given sample, and the target image is 
generated by fitting the sample through the model. The generative 
model can learn prior information during the learning process of fitting 
parameters. Inspired by this, this study proposed a sparse reconstruction 
strategy that combines score-based generative model and model-based 
iterative reconstruction method. A score-based generative model 
(diffusion model) is designed for learning the prior information of the 
data distribution. The learned prior information is utilized as a 

constraint for the data consistency term of an optimization problem 
based on the least-square method in the model-based iterative recon-
struction, aiming to achieve the optimal solution. Blood vessels simu-
lation data and the animal in vivo experimental data were used to 
evaluate the performance of the proposed method. The results demon-
strate that the proposed method can perform high-quality reconstruc-
tion under extreme sparse conditions. 

2. Principles and methods 

2.1. Photoacoustic tomography 

In PAT, ultrasonic transducers placed around the tissue are used for 
the detection of the ultrasonic waves [2]. The amplitude of the photo-
acoustic signal is related to the absorption coefficient of biological tissue 
and the optical flux density. The initial pressure distributionp0 can be 
reconstructed with the detected photoacoustic signal, which can be 
expressed by Eq. (1): 

p0 = Γηthμaϕ, (1)  

whereΓis the Gruneisen coefficient, ηthrepresents the thermal conversion 
efficiency, μais the absorption coefficient, and ϕ represents the optical 
flux. In PAT, if laser excitation satisfies both thermal and stress con-
finements, the heat conduction and fractional volume expansion are 
negligible [2]. The initial pressure will propagate in the medium, as 
expressed by the spatiotemporal equation Eq. (2): 
(
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Where c represents the speed of sound, β represents the coefficient of 
thermos-elastic expansion, and cp is the specific heat capacity, p(r, t)
represents the pressure field at position r and time t, p(r, t) can be solved 
by the Green’s function method, as shown in Eq. (3)： 
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Eq. (3) describes the forward process of photoacoustic imaging, 
which can be equivalent to the linear process shown in Eq. (4): 

y = Ax (4)  

where y represents the sparse-view time series photoacoustic signal 
measured by the ultrasonic transducerp(r, t), x represents the initial 
pressurep0. The linear operator A represents the forward process, which 
can be realized through k-Wave toolbox [58]. The reconstruction 
problem (inverse problem) in PAT is to reconstruct the initial pressure x 
from the measured time series photoacoustic signal y through optimi-
zation algorithms. 

2.2. Principle of sparse reconstruction based on the diffusion model 

2.2.1. Diffusion model 
Generative models have achieved great success in generating real-

istic and diverse data. Common deep generative models can be divided 
into two categories: explicit generative models and implicit generative 
models [59]. GAN [60] is a well-known implicit probabilistic generative 
model that generates high-quality images by optimizing the generator 
and discriminator. However, GAN suffer from mode collapse when the 
network training is unstable. Explicit generative models, which use 
probability density functions and probability mass functions to describe 
the data distribution, provide an explicit parameter specification for the 
data distribution. Common explicit generative models include 
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autoencoders (AE) [61,62], flow-based generative models [53,63], and 
deep Boltzmann machines [64]. In generative models, each data in the 
training datasets is an independent and identically distributed random 
sample that conforming to the probability distribution [57]. The prob-
ability distribution is usually represented by a score function, where the 
score function is the gradient of the log-probability density function. 
Generative model based on score matching (diffusion model) is used to 
estimate the score function of the data distribution by optimizing a score 
network. The key to score matching-based generative models lies in 
perturbing the data with multi-scale noises. 

The diffusion model includes a forward diffusion process (stochastic 
differential equation, SDE) and a corresponding reverse SDE, as shown 
in Fig. 1. The data distribution is perturbed by adding Gaussian noise in 
forward SDE to obtain prior distribution. And in reverse SDE, the prior 
distribution is transformed into the data by slowly removing the noise to 
achieve the purpose of sampling from the data distribution. (xt)

T
t=0 is 

assumed to be a continuous diffusion process with xt ∈ ℝ, where t ∈
[0,T] is a continuous-time variable. x0 ∼ pdata, pdata is the data distribu-
tion of target image. xT ∼ pT (pTis the prior distribution containing pdata 

information) is the target-related prior information learned in the for-
ward SDE process. The forward diffusion process is described by Eq. (5): 

dx = f (x, t)dt+ g(t)dw, (5)  

where f(x, t) ∈ ℝ and g(t) ∈ ℝ are the drift and diffusion coefficients of 
xt , respectively, w ∈ ℝ induces Brownian motion. To sample from a data 
distribution, a neural network can be trained to estimate the gradient of 
the logarithmic data distribution∇x log pt(x)(score function), and this 
gradient can be used to solve the reverse-time SDE to realize data gen-
eration from noise. 

The above inverse process is also a diffusion process, which can be 
expressed as the reverse-time SDE shown in Eq. (6): 

dx =
[
f
(
x, t

)
− g(t)2

∇x log pt(x)
]
dt + g(t)dw, (6)  

where dt is an infinitesimal negative time step, w is the inverse Brownian 
motion. Different SDEs can be constructed by choosing different f(x, t)
and g(t). Since variance exploding (VE) SDEs can generate higher- 
quality samples, VE-SDE was adopted in this work, as illustrated in 

Fig.1. Forward and reverse processes of diffusion model.  

Fig. 2. Sparse reconstruction flowchart of PAT. Top: Training process to learn the gradient distribution using denoising score matching. Bottom: Reconstruction 
process, iteration between numerical SDE solver and gradient descent to achieve sparse reconstruction. GD, gradient descent; DC, data consistency. 
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Eq. (7): 

f (x, t ) = 0, g(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d[σ2(t)]/dt

√
, (7)  

where σ(t) > 0 is a monotonically increasing function in noise scale. 
The training process of the sparse reconstruction of PAT proposed in 

this paper is shown in the upper part of Fig. 2. In the training process, to 
solve Eq. (6), the score function ∇x log pt(x) needs to be known for all 
time steps. However, the true ∇x log pt(x) is unknown, it can be esti-
mated by training a scoring network Sθ(xt , t). The unknown 
∇x log pt(x)can be replaced with ∇x log pt(xt |x0) using the denoising 
score matching [65], where∇x log pt(xt |x0) is the gradient of the 
Gaussian perturbation kernel centered at x0. During the denoising score 
matching training, the parameters of the score network Sθ(xt , t)are 
optimized according to Eq. (8): 

θ∗ = arg min
θ

Et

{
λ(t)Ex0 Ext |x0

[
‖Sθ(xt, t) − ∇xt log pt(xt|x0)‖

2
2

]}
, (8)  

where Et{λ(t)Ex0 Ext |x0 [‖Sθ(xt , t) − ∇xt log pt(xt |x0)‖
2
2]} can be regarded as 

the loss function. Once the score network is trained by Eq. (8), sparse 
reconstruction in PAT can be achieved by solving the reverse SDE using 
approximate conditionsSθ(xt , t) ≃ ∇x log pt(xt). Therefore, the reverse 
SDE shown in Eq. (6) can be rewritten to Eq. (9): 

dx = − d [σ2(t) ]Sθ (xt, t ) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d[σ2(t)]

dt

√

dw, (9)  

2.2.2. Sparse reconstruction of PAT based on diffusion model 
The forward process of photoacoustic imaging can be expressed by 

Eq. (4). The reconstruction of PAT is to use sparse-view PA data y to 
reconstruct the initial pressure x through an optimization algorithm. 
Hence, the reconstruction of PAT can be transformed into an optimi-
zation problem based on the least-square method shown in Eq. (10): 

x = argmin
x
‖Ax − y‖2

2, (10)  

where ‖Ax − y‖2
2 is the data consistency term. The gradient descent (GD) 

method can be used for iterative solution, as shown in Eq. (11): 

xi− 1 = xi − αA∗(Axi − y), (11)  

whereαis the iterative step size, A∗is the adjoint operator of A, and 
A∗(Axi − y)is the gradient of the data consistency term. It is worth 
noting that as the number of iterations increases, the subscript i varies in 
the direction of decreasing since the step t in the reconstruction part of 
the diffusion model is from T to 0, as shown in Fig. 2. To reduce the ill- 
posed problem and achieve the optimal solution, a regularization term 
can be introduced as a constraint, then the optimization problem (Eq. 
(10)) can be transformed to Eq. (12): 

x = argmin
x
‖Ax − y‖2

2 + λR(x), (12)  

whereR(x)is the regularization term that contains the prior information 

of the target image, λ is the regularization parameter. A well-designed 
regularization method can lead to high-quality reconstruction. There-
fore, by incorporating a differentiable regularization term, the iterative 
solution for Eq. (12) can be expressed as Eq. (13). 

xi− 1 = xi − α
[

A∗

(

Axi − y
)

+ λ
∂R(xi)

∂x

]

, (13) 

Common regularization methods include Tikhonov regularization 
[27] and TV regularization [28]. Here, learned regularization was 
adopted in this work, the regularization term R(x) can be expressed as 
the probability density function log pt(x), and the new regularization 
part was included in the output of the diffusion model network (the 
regularization coefficient λ is implicit). For the reconstruction problem 
in PAT, an alternating optimization algorithm is used for the minimi-
zation of the decoupling of the prior information term and the data 
consistency term. The details for the alternating optimization algorithm 
are further given by Eq. (14), which is an approximate expression of Eq. 
(13), the reconstruction problem in PAT can be converted to an opti-
mization problem that two sub-problems are alternately updated. 
{

x̂i = xi − λαSθ
xi− 1 = x̂i − αA∗(Ax̂i − y) (14) 

The first equation of Eq. (14) is used for data generation based on 
reverse SDE (Sθ ≃ ∇x log pt(x)) that includes the regularization part in 
the process of iterative generation. The second equation of Eq. (14) is an 
iterative equation, which is obtained by solving the data consistency 
term through gradient descent method. In the first term, the generative 
model is responsible for estimating the complex prior data distribution 
from the target image dataset. For the solution of the reverse SDE (Eq. 
(9)) in the first term, the Euler discretization method [57] can be 
employed. According to the prediction-correction (PC) concept, a PC 
sampler is introduced to rectify errors in the evolution of the reverse 
SDE. In the diffusion model, the preliminary prediction is obtained by 
numerically solving the reverse SDE, and then the direction of gradient 
ascent is corrected using the Langevin Markov Chain Monte Carlo al-
gorithm [66]. After each PC sampling update, a data consistency is 
necessary. Further elaborate on the above process, the iterative recon-
struction in PAT based on the diffusion model consists of two steps: 
prediction and correction, as depicted in the lower part of Fig. 2: 

Step 1: In the prediction step, Eq. (15) is used for data prediction, the 
target image x̃iis generated from the prior distribution learned. 

x̃i = xi +

(

σ2
i+1 − σ2

i

)

Sθ

(

xi, σi+1

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
i+1 − σ2

i

√

z, (15)  

whereσiis the noise scale, i = N − 1,⋅⋅⋅, 1, 0 is the number of dis-
cretization steps for the reverse SDE (i.e., the number of iterations), 
andz ∼ ℕ(0, 1)is Gaussian white noise with zero mean (standard 
normal). 

Step 2: In the correction step, the correction algorithm shown in Eq. 
(16) is used to correct the gradient rising direction. 

x̂i = x̃i + εiSθ

(
x̃i, σi+1

)
+

̅̅̅̅̅̅
2εi

√
z, (16) 

Fig.3. Overall flow chart for the generation of simulation dataset using a virtual PAT.  
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After the prediction and correction, the gradient descent method of 
Eq. (17) is used to constrain the result. Eq. (17) is called the data con-
sistency step, which can effectively enhance the consistency of data. 

xi− 1 = x̂i − αA∗(Ax̂i − y) (17) 

During the reconstruction phase, high-quality sparse reconstruction 
of PAT is achieved by using the input noise and the sparse-view pho-
toacoustic signal detected by the ultrasonic transducer, and iterative 
updates is performed under the constraints of the data consistency term. 

The pseudo-code of the reconstruction algorithm in this paper is 
shown in Algorithm 1, and the algorithm contains two loops: (1) In the 
outer loop, the sparse-view PA data is fed into network to achieve a 
prediction of data distribution, The number of iterations N of the outer 
loop is determined by the number of discrete steps of the reverse SDE. 
(2) The inner loop is corrected by annealing Langevin iteration. During 
the whole iteration process, the data prior term (regularization term) of 
the PC process and data consistency term are updated. 

Algorithm 1. Training for prior learning. 

2.3. Dataset acquisition and network parameter setting 

The datasets include simulation dataset and experimental dataset. 
(1) Simulation dataset: To obtain a sufficient number of photoacoustic 
images under full-view sampling, a virtual PAT was constructed based 
on k-Wave [58], as illustrated in Fig. 3. The platform realizes the for-
ward process and reverse reconstruction of PAT under any detection 
view. The size of the entire computational area is set to 50 mm × 50 mm 
with grid of 440 × 440 pixels. Ultrasonic transducers with a BW of 66 % 
having a central frequency of 2.25 MHz are placed at different views in a 
circularly equidistant manner at a radius of 21.6 mm (the number of 
ultrasonic transducers is determined by the experimental requirements, 
for the acquisition of ground truth, it is set to 512). The sound velocity is 
set to 1500 m/s, and the surrounding medium is water with a density of 
1000 kg/m3. The public retinal vessel datasets RAVIR and DRIVE [67] 
are augmented by cropping and rotating transformation. As shown in 

Fig. 3, the augmented data is imported into the computational region of 
the virtual PAT. The DAS algorithm is used to reconstruct artifact-free 
simulation data at full view required for training. The training set con-
sists of 1200 images and the test set consists of 300 images. (2) Exper-
imental dataset: The experimental dataset consists of a phantom dataset 
and animal in vivo data. 1) Phantom dataset: The phantom dataset is a 
circular phantom dataset [36], which contains 469 reconstructed im-
ages under full-view scanning (512 projections) and other projections 
(8, 16, 32, 64 and 128 projections), respectively. 2) The in vivo exper-
imental data of mice’s abdomens is from the public dataset 
MOST-Abdomen [36], which contains 274 reconstructed images under 
full-view scanning (512 projections) and other projections (8, 16, 32, 64 
and 128 projections), respectively. 

The training of the model utilizes the Adaptive Moment Estimation 
(Adam) optimization method with a learning rate of 2 × 10− 4. During 
the reconstruction stage, the number of iterations is set to 1000. The 
image size is set to 256 × 256, and the pixel values are normalized. The 
data distribution is perturbed using Gaussian noise with a noise value in 
the range of 0.01–300. The implementation of proposed method is based 

on the PyTorch framework and primarily implemented in the Python 
environment. In this work, the computation is performed on a graphical 
processing unit (GPU; GeForce RTX 2080Ti). 

3. Results 

3.1. Blood vessels simulation data 

During the test phase, the simulated dataset is imported into the 
virtual PAT depicted in Fig. 3, and the sparse-view photoacoustic signal 
is used as the input (data fidelity) of the network. The reconstruction 
results using conventional DAS method, compressed sensing method, U- 
Net method, and the proposed diffusion model-based method were 
compared. Fig. 4(a) and (b) show the process of reconstruction of the 
simulated blood vessel using the proposed method and GD method, 
respectively, under 32 projections. The reconstruction iterates from a 
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noise image, and the blood vessels begin to emerge from the noise at the 
first iteration, the general outline of the blood vessels becomes visible. 
With the iterations increase, the noise is gradually eliminated, and the 
blood vessels exhibit improved definition at the 10th iteration compared 
with earlier iterations. The result of the proposed method is slightly 
better that of the GD method. At the 600th iteration, it can be observed 
that the blood vessels have been essentially reconstructed using the 
diffusion model-based method, and the image quality has been further 
improved. However, the reconstruction result of the GD method still has 
severe artifacts. Fig. 4(c) and (d) show the variation of PSNR and SSIM 
with the iteration. For the proposed method, the PSNR and SSIM rise 
rapidly when the number of iterations is around 0–600. At the 600th 
iteration, the PSNR and SSIM are improved to 36.69 dB and 0.96, 
respectively (indicated by the yellow arrows in Fig. 4(c) and (d)). As the 
number of iterations increases further, the PSNR and SSIM tend to be 
stable (the PSNR tends to 39 dB, the SSIM tends to 0.98). However, for 
the GD method, the PSNR and SSIM increase slowly with the number of 
iterations, and remain at a low value (the PSNR tends to 8.36 dB, the 
SSIM tends to 0.22) after about 400 iterations indicated by the red ar-
rows in Fig. 4(c) and (d). The results show that the proposed method 
based on diffusion model has good performance in sparse-view 
reconstruction. 

Fig. 5 shows the reconstruction results of different methods for 
simulated blood vessels under different projection. Fig. 5(a)–(c) are the 
reconstruction results using DAS method under 128, 64 and 32 pro-
jections, respectively. It can be observed that the reconstruction results 
by the DAS method exhibit noticeable artifacts under different pro-
jections. As the number of projections decreases, the artifacts become 
more pronounced, resulting in a significant degradation of the recon-
struction. Fig. 5(d) is the corresponding ground truth. Fig. 5(e)–(g) in the 
second row are the reconstruction results using compressed sensing 
method [68–70]. The compressed sensing method is achieved by k-Wave 
(the configuration of the compressed sensing simulation model is the 
same as the virtual PAT). The measurement matrix in the simulation was 
set as the Hadamard matrix [68], and the reconstruction algorithm is 
OMP algorithm [69,70]. The number of measurements (i.e., the number 
of projections) is set to 32, 64 and 128, respectively. It can be seen that 
under 128 measurements, the reconstruction quality of compressed 

sensing method is improved compared with DAS method, and the arti-
facts can be removed significantly. As the number of measurements 
decreases, the blood vessels cannot be completely reconstructed under 
64 measurements (indicated by the yellow arrows in the Fig. 5). Under 
extreme sparse projection conditions (e.g., 32 measurements), the blood 
vessels can hardly be reconstructed. Fig. 5(i)–(k) in the third row are the 
reconstruction results using U-Net method under 128, 64 and 32 pro-
jections, respectively. Fig. 5(l) is the corresponding ground truth. The 
image quality of the reconstruction results using U-Net has been greatly 
improved compared with that of DAS and compressed sensing method. 
U-Net has a better performance under 128 projections and 64 pro-
jections, and the reconstruction results have almost no artifacts, as 
shown in Fig. 5(i) and (j). However, artifacts still exist under extremely 
sparse conditions (e.g., 32 projections), as shown in Fig. 5(k). Figs. 5 
(m)–(o) show the reconstruction results of the diffusion model-based 
method under 128, 64 and 32 projections, respectively. Fig. 5(p) is the 
corresponding ground truth. It can be observed that the proposed 
method performs remarkably performance under different projections. 
Compared with the U-Net, the reconstructed image obtained by the 
diffusion model-based method has fewer artifacts and higher recon-
struction quality. Fig. 5(q) and (r) are the close-up images indicated by 
the white dashed rectangles 1 and 2, respectively. It can be seen that the 
reconstruction results using the diffusion model method have no sig-
nificant artifacts (indicated by the white arrows) compared with DAS. 
And more details are contained than the reconstruction results using 
U-Net and compressed sensing method. Fig. 5(s)–(x) show the signal 
distribution indicated by the white dashed lines in Fig. 5(q) and (r) 
under 128, 64 and 32 projections, respectively. It can be observed that 
the signal distribution of the method based on the diffusion model is 
closer to the ground truth, which verifies the superiority of the proposed 
method in the sparse reconstruction of PAT. Quantitatively, the pro-
posed method achieves a PSNR of 45.09 dB and an SSIM of 0.99 under 
128 projections, with an improvement of 9 dB in PSNR and 0.03 in SSIM 
compared with U-Net. Under 64 projections, the proposed method can 
reach 41.10 dB and 0.98 in PSNR and SSIM, respectively, with an 
improvement of 8.7 dB and 0.04 compared with U-Net, which suggests 
that the proposed method outperforms U-Net under sparse views. When 
the projection is further reduced to 32 projections, the proposed method 

Fig.4. The process of reconstruction of the simulated blood vessels using the proposed method under 32 projections. (a) and (b) Reconstruction results under 
different iterations using the proposed method and GD method, respectively. (c) and (d) The variation of PSNR and SSIM with the iteration, respectively. DM, 
diffusion model; GD, gradient descent; PA, photoacoustic amplitude. 
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still achieves a PSNR of 38.50 dB and an SSIM of 0.97, which shows a 
remarkable improvement of 14.1 dB and 0.09 in PSNR and SSIM, 
respectively, compared with U-Net. These results demonstrate the pro-
posed method can achieve higher-quality reconstruction even under 
extreme sparse projection (e.g., 32 projections). 

3.2. Phantom experiment 

To validate the effectiveness of the proposed method in the experi-
mental data, circular phantom was selected for the performance test. 
The results are shown in Fig. 6, and Fig. 6(a)–(c) are the reconstruction 
results using the DAS method under 128, 64 and 32 projections, 
respectively. As the number of projections increases, the outline of the 

Fig.5. The reconstruction results of different methods for simulated blood vessels under different projection. (a)-(c) are the reconstruction results using DAS under 
128, 64 and 32 projections, respectively. (d) is the ground truth. (e)-(g) the reconstruction results using compressed sensing method under 128, 64 and 32 mea-
surements, respectively. (h) is the ground truth. The yellow arrows in (f) and (g) denote the vessels which cannot be completely reconstructed. (i)-(k) the recon-
struction results using U-Net under 128, 64 and 32 projections, respectively. (l) is the ground truth. (m)-(o) are the reconstruction results using proposed method 
under 128, 64 and 32 projections, respectively. The white numbers below the images represent the PSNR, and the yellow numbers represent the SSIM. (l) is the 
ground truth. (q) and (r) are the close-up images indicated by the white dashed rectangles 1 and 2, respectively. (s)-(x) are the signal distribution indicated by the 
white dashed lines in the (q) and (r) under 128, 64 and 32 projections, respectively. CS, compressed sensing; DM, diffusion model; GT, ground truth; PA, photo-
acoustic amplitude. 
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Fig.6. The reconstruction results of the circular phantom. (a)-(c) are the reconstruction results of DAS method under 128, 64 and 32 projections, respectively. (e)-(g) 
are the results of the U-Net method under 128, 64 and 32 projections, respectively. (i)-(k) are the reconstruction results of the proposed method under 128, 64 and 32 
projections, respectively. The bottom right corner shows the error maps corresponding to each reconstruction result. The white numbers below the images represent 
the PSNR, and the yellow numbers represent the SSIM. (d), (h) and (l) represent the same ground truth. (m) and (n) are the close-up images indicated by the white 
dashed rectangles 1 and 2, respectively. (o)-(r) are the signal distribution along the dashed lines in (m) and (n), respectively. 
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Fig.7. The reconstruction results of in vivo 
mouse abdomen. (a)-(c) are the reconstruction 
results of DAS under 128, 64 and 32 pro-
jections, respectively. (d)-(f) are the de-artifact 
images of U-Net under 128, 64 and 32 pro-
jections, respectively. (g)-(i) are the recon-
structed images of the proposed method under 
128, 64 and 32 projections, respectively. (j)-(l) 
are the same ground truths. The white numbers 
in the bottom left corner represent PSNR, and 
the yellow numbers represent SSIM. (m) and 
(n) are the close-up images indicated by the 
white dashed rectangles 1 and 2, respectively. 
(a1)-(i1) are the error maps corresponding to 
(a)-(i), respectively. (o) and (p) are the signal 
distribution along the white dashed lines in (m) 
and (n) under 32 projections, respectively.   
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circular phantom becomes clearer, however, there are still serious arti-
facts in the reconstructed image. The lower right corner of the figures 
show the error maps between the ground truth image and the recon-
struction results of the DAS under different projection, which shows that 
the reconstruction results are quite different from the ground truth. 
Fig. 6(d) is the ground truth, which is obtained under the full view (512 
projections). Fig. 6(e)–(g) show the artifact-reduced images using the U- 
Net method under 128, 64 and 32 projections, respectively. Fig. 6(h) is 
the ground truth. The results show that the U-Net method can effectively 
remove most of the artifacts. However, the corresponding error map 
shows that there are still some artifacts around the circular phantom 
(indicated by the yellow arrows in Fig. 6(e)–(g)). Fig. 6(i)–(k) are the 
reconstructed images using the proposed method under 128, 64 and 32 
projections, respectively. The proposed method can effectively remove 
the artifacts in the image. Even under sparse conditions (e.g., 32 pro-
jections), the proposed method achieves superior performance and 
produces higher-quality reconstructions compared with the other two 
methods. Moreover, as the number of projections increases, the imaging 
performance can be further improved. Figs. 6(m) and (n) show the close- 
up images indicated by the white dashed rectangles 1 and 2, respec-
tively. The images reconstructed by the diffusion model exhibit more 
accurate details compared with the other two methods. It can be 
observed that in the region indicated by the white arrow in Fig. 6(n), the 
proposed method is able to reconstruct more details. Fig. 6(o)–(r) show 
the signal distribution along the dashed lines in Fig. 6(m) and (n), which 
shows that the signal distribution of the reconstructed result by the 
proposed method is closer to the ground truth. Under extremely sparse 
condition (32 projections), the signal distribution of the proposed 
method is still closer to the ground truth. Quantitative analysis was 
carried out to demonstrates the superiority of the proposed method over 
the U-Net. Under 64 projections, the PSNR and SSIM of the proposed 
method rise to 33.75 dB and 0.98, respectively, and the PSNR and SSIM 
are increased by 3.5 dB and 0.05, respectively, compared with U-Net. 
Additionally, the proposed method performed better even under 
extremely sparse conditions. Under 32 projections, the PSNR and SSIM 
are 33.80 dB and 0.97, respectively, with an improvement of 4 dB and 
0.06 compared with U-Net. Experimental results demonstrate the 
effectiveness of the proposed method in sparse reconstruction of 
experimental data. 

3.3. In vivo experimental data 

To further verify the effectiveness of the proposed method in in vivo 
data, the reconstruction of mice’s abdomens using the conventional 
method, the U-Net method and the proposed method were compared, 
respectively, as shown in Fig. 7. Fig. 7(a)–(c) are the reconstructed im-
ages of DAS method under 128, 64 and 32 projections, respectively. 
Fig. 7(d)–(f) are the de-artifact images of U-Net under 128, 64 and 32 
projections, respectively. Fig. 7(g)–(i) are the reconstructed images of 
the proposed method under 128, 64 and 32 projections, respectively. 
Fig. 7(j)–(l) are the same ground truths. It is evident that the image 
reconstructed by the DAS method contains significant artifacts, while 
the image reconstructed by the U-Net method under the sparse 32 
projections suffers from substantial loss of intricate details (Fig. 7(f)). 
These results can also be observed in the close-up images indicated by 
the white dashed boxes 1 and 2 in Fig. 7(j), as shown in Fig. 7(m) and 
(n). The positions indicated by the white arrows in Fig. 7(m) show that 
the reconstruction using DAS has more serious artifacts, the details of 
the reconstruction results based on U-Net are lost to a certain extent, 
while the diffusion model method could reconstruct a completer and 
more accurate signal. Fig. 7(a1)–7(i1) are the error maps corresponding 
to Fig. 7(a)–7(i), which show that the reconstruction of the proposed 
method is closer to the ground truth. Particularly. 

in the error maps obtained under 32 projections, compared with U- 
Net, the proposed method show less deviation from the ground truth. 
Fig. 7(o) and 7(p) are the signal distribution along the white dashed lines 

in Fig. 7(m) and 7(n) under 32 projections, respectively. The signal 
reconstructed by the proposed method is closer to the signal of the 
ground truth. Quantitative analysis shows that the proposed method 
achieves a PSNR of 27.52 dB and an SSIM of 0.93 under 64 projections. 
Compared with U-Net, the PSNR and SSIM are increased by 1.5 dB and 
0.21, respectively. Under the extreme sparse condition of 32 projections, 
the proposed method achieves a PSNR of 22.35 dB and an SSIM of 0.90 
(while the PSNR and SSIM using the DAS method are 17.26 dB and 0.25, 
respectively), with an improvement of 1.17 dB and 0.21 over the U-Net. 
These results demonstrate that the proposed method can perform high- 
quality reconstruction under extreme sparse conditions, which further 
verify the validity and superiority of the reconstruction method based on 
the diffusion model. 

4. Conclusion and discussion 

In conclusion, a novel model-based sparse reconstruction method for 
PAT via diffusion model was proposed to address the low-quality recon-
struction in conventional standard reconstruction of PAT under sparse 
view. The sparse reconstruction strategy combines score-based generative 
model and model-based iterative reconstruction method. A score-based 
diffusion model is designed for learning the prior information of the 
data distribution. The learned prior information is utilized as a constraint 
for the data consistency term of an optimization problem based on the 
least-square method in the model-based iterative reconstruction, aiming 
to achieve the optimal solution. Blood vessels simulation data and the 
animal in vivo experimental data were used to evaluate the performance 
of the proposed method. Quantitative analysis was carried out to dem-
onstrates the superiority of the proposed method. For the in vivo experi-
mental data, under 64 projections, the SSIM and PSNR of the proposed 
method rise to 0.93 and 27.52 dB, respectively, and the SSIM and PSNR 
are increased by 0.2 and 1.5 dB, respectively compared with U-Net 
method. Additionally, the proposed method performed better under 
extremely sparse conditions. Under 32 projections, the SSIM and PSNR are 
0.90 and 22.35 dB, respectively, with an improvement of 0.21 and 1.2 dB 
compared with U-Net. Compared with the conventional delay-and-sum 
method, the proposed method achieves an improvement of 0.65 (~ 260 
%) in SSIM and 5.1 dB (~ 30 %) in PSNR. These results demonstrate the 
proposed method can achieve higher-quality reconstruction even under 
extreme sparse projection (e.g., 32 projections). 

The training process of the diffusion model is to estimate the un-
known score function by training the score network. In the training 
process, it is necessary to continuously add noise to the data in the 
training set and learn the data distribution, which takes a lot of time. The 
training time of the proposed method is mainly related to the configu-
ration of the graphical processing unit used in the experiment, the 
number and size of the training dataset. During the training phase, one 
checkpoint is saved for every 10,000 epochs completed, which takes 
about 50 min. Ten checkpoints were obtained in the experiment and the 
best training model (i.e., the score network) was selected. Therefore, the 
required time for training is about 8 h. The reconstruction is an iterative 
process, the reconstruction time is associated with the number of iter-
ations. It can be seen from Figs. 4(c) and 4(d), PSNR and SSIM reach a 
stable state at about the 600th iteration. Therefore, the reconstruction 
time is about 1 h (the time required for each iteration is about 6 s). In 
terms of efficiency, the speed and quality of reconstruction need to be 
considered. The DAS method is a conventional analytical algorithm 
without training and iteration. For the U-Net method, the network is a 
data-driven end-to-end network, which can directly use the pre-trained 
model to remove artifacts without iteration. Therefore, DAS and U-Net 
method have advantages in terms of reconstruction speed. In terms of 
reconstruction quality, the proposed method has obvious advantages 
over the other two methods, as shown in Figs. 4–7. For the DAS method, 
to achieve comparable reconstruction quality, more projection data 
need to be obtained, which will significantly limit the imaging speed and 
increase the system cost. U-Net method needs more paired datasets to 
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obtain higher-quality reconstruction results, which leads to further in-
crease in training time. 

The noise used in this diffusion model is Gaussian white noise with 
zero mean. For noise that does not satisfy the Gaussian distribution, it 
can be realized by other types of diffusion models [71,72]. For example, 
the cold diffusion [71] proposed by Bansal et al. can work on not only 
Gaussian noise, but also arbitrary noise or even noiseless/cold image 
transforms. Therefore, it’s possible to work on noise that does not follow 
a Gaussian distribution. The implementation of this method has the 
potential to effectively decrease both the imaging time and cost of PAT, 
and holds the potential to significantly expand the application range of 
PAT in the acquisition of physiological and pathological process. 
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[45] D. Waibel, J. Gröhl, F. Isensee, T. Kirchner, K. Maier-Hein, L. Maier-Hein, 
Reconstruction of initial pressure from limited view photoacoustic images using 
deep learning, Proc. SPIE 10494 (2018) 104942S. 

X. Song et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref1
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref1
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref2
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref2
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref3
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref3
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref3
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref3
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref4
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref5
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref5
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref5
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref6
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref6
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref6
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref7
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref7
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref8
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref8
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref8
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref9
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref9
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref10
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref10
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref11
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref11
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref12
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref12
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref13
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref13
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref14
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref14
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref14
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref15
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref15
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref16
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref16
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref16
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref17
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref17
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref17
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref18
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref18
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref18
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref18
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref19
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref19
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref19
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref20
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref20
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref21
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref21
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref21
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref22
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref22
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref22
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref23
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref23
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref23
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref24
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref24
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref25
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref25
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref25
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref26
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref26
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref26
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref27
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref27
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref27
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref28
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref28
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref28
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref29
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref29
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref29
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref30
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref30
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref30
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref31
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref31
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref31
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref32
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref32
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref32
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref33
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref33
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref33
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref34
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref34
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref34
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref34
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref35
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref35
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref35
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref36
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref36
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref37
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref37
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref37
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref38
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref38
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref38
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref39
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref39
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref40
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref40
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref41
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref41
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref41
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref42
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref42
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref42
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref43
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref43
http://refhub.elsevier.com/S2213-5979(23)00111-8/sbref43


Photoacoustics 33 (2023) 100558

12

[46] M.W. Kim, G.S. Jeng, I. Pelivanov, M. O’Donnell, Deep-learning image 
reconstruction for real-time photoacoustic system, IEEE Trans. Med. Imaging 39 
(11) (2020) 3379–3390. 

[47] T. Wang, M. He, K. Shen, W. Liu, C. Tian, Learned regularization for image 
reconstruction in sparse-view photoacoustic tomography, Biomed. Opt. Express 13 
(11) (2022) 5721–5737. 

[48] A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, 
S. Ourselin, S. Arridge, Model-based learning for accelerated, limited-view 3- 
d photoacoustic tomography, IEEE Trans. Med. Imaging 37 (6) (2018) 1382–1393. 

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courvile, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11) 
(2020) 139–144. 

[50] T. Karras, T. Aila, S. Laine, and J. Lehtinen, Progressive growing of gans for 
improved quality, stability, and variation, arXiv, arXiv:1710.10196 (2017). 

[51] F. Moreno-Pino, P.M. Olmos, A. Artés-Rodríguez, Deep autoregressive models with 
spectral attention, Pattern Recognit. 133 (2023), 109014. 

[52] S. Bond-Taylor, A. Leach, Y. Long, C.G. Willcocks, Deep generative modelling: A 
comparative review of vaes, gans, normalizing flows, energy-based and 
autoregressive models, IEEE Trans. Pattern Anal. Mach. Intel. 44 (2021) 
7327–7347. 

[53] D.P. Kingma, P. Dhariwal, Glow: Generative flow with invertible 1×1 
convolutions, J. Inf. Process. Syst. 31 (2018). 

[54] C. Doersch, Tutorial on variational autoencoders. arXiv, arXiv: 1606.05908 (2016). 
[55] D. Rezende and S. Mohamed, Variational inference with normalizing flows, in 

International Conference on Machine Learning (ICML2015), pp. 1530–1538. 
[56] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inf. 

Process. Syst. 33 (2020) 6840–6851. 
[57] Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score- 

based generative modeling through stochastic differential equations, arXiv, arXiv: 
2011.13456 (2020). 

[58] B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and 
reconstruction of photoacoustic wave fields, 021314-021314-12, J. Biomed. Opt. 
15 (2) (2010), 021314-021314-12. 

[59] B. Guan, C. Yang, L. Zhang, S. Niu, M. Zhang, Y. Wang, W. Wu, and Q. Liu, 
Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction, 
arXiv, arXiv:2211.13926 (2022). 

[60] A. Graves, Generating sequences with recurrent neural networks, arXiv, arXiv: 
1308.0850 (2013). 

[61] D.P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv, arXiv: 
1312.6114 (2013). 

[62] K.C. Tezcan, C.F. Baumgartner, R. Luechinger, K.P. Pruessmann, E. Konukoglu, MR 
image reconstruction using deep density priors, IEEE Trans. Med. Imaging 38 (7) 
(2018) 1633–1642. 

[63] T. Taskaya-Temizel, M.C. Casey, A comparative study of autoregressive neural 
network hybrids, Neural Netw. 18 (5–6) (2005) 781–789. 

[64] R. Salakhutdinov and H. Larochelle, Efficient learning of deep Boltzmann 
machines, in Proceedings of the thirteenth international conference on artificial 
intelligence and statistics (AISTATS2010), pp. 693–700. 

[65] P. Vincent, A connection between score matching and denoising autoencoders, 
Neural Comput. 23 (7) (2011) 1661–1674. 

[66] G. Parisi, Correlation functions and computer simulations, Nucl. Phys. 180 (3) 
(1981) 378–384. 
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