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Abstract: The rapidly and constantly evolving coronavirus, SARS-CoV-2, imposes a great threat to
human health causing severe lung disease and significant mortality. Cytoplasmic stress granules
(SGs) exert anti-viral activities due to their involvement in translation inhibition and innate immune
signaling. SARS-CoV-2 sequesters important SG nucleator proteins and impairs SG formation, thus
evading the host response for efficient viral replication. However, the significance of SGs in COVID-
19 infection remains elusive. In this study, we utilize a protein-protein interaction network approach
to systematically dissect the crosstalk of human post-translational regulatory networks governed by
SG proteins due to SARS-CoV-2 infection. We uncovered that 116 human SG proteins directly interact
with SARS-CoV-2 proteins and are involved in 430 different brain disorders including COVID-19.
Further, we performed gene set enrichment analysis to identify the drugs against three important key
SG proteins (DYNC1H1, DCTN1, and LMNA) and also looked for potential microRNAs (miRNAs)
targeting these proteins. We identified bexarotene as a potential drug molecule and miRNAs, hsa-miR-
615-3p, hsa-miR-221-3p, and hsa-miR-124-3p as potential candidates for the treatment of COVID-19
and associated manifestations.
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1. Introduction

The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is an enveloped, single-stranded ~30 kb RNA virus of the family Coronaviri-
dae [1]. Viruses hijack the host translation machinery in favor of their needs and accomplish
virus growth [2,3]. However, to counteract virus growth, host cells have highly specific
stress sensors that trigger antiviral responses by suppressing both host and viral transla-
tion. The assembly of stress granules (SGs) is a crucial part of host cell stress responses in
response to viral infection.

Stress granules (SGs) are membrane-less organelles that store translationally silent
mRNA when the cell undergoes stress to regulate mRNA metabolism [4]. SG assembly
and disassembly are tightly regulated during viral infection, often reflecting cellular trans-
lation status [3,5–7]. Several studies have shown that viral entry can interfere with SG
formation [8] through inhibition of post-translational modifications [9], sequestration of SG
components such as T cell-restricted intracellular antigen 1 (TIA-1), and Ras GTP activating
protein-binding proteins G3BP1/2 [10,11], and formation of stable viral ribonucleoprotein
(RNP) complexes with key SG proteins [12]. In the early phase of many viral infections, the
presence of viral genomic RNAs (gRNAs) activates protein kinase R (PKR), resulting in
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eIF2α phosphorylation, mRNA translation inhibition, and the formation of SGs enriched
with translation initiation factors such as eIF3b. However, in later infection stages, many
viruses instead suppress SG formation or disassemble SGs altogether. The mechanisms
underlying this switch, and its physiological function, remain unclear. Dysregulation of
SG formation and disassembly is involved in viral infection, cancer, and neurodegenera-
tion [13–16].

Coronaviruses such as mouse hepatitis coronavirus and transmissible gastroenteritis
virus were shown to induce SG assembly [17]. It has also been shown that the Zika
virus capsid protein hijacks G3BP1 and CAPRIN-1 and inhibits the SG formation and
thus promotes viral replication [18]. Several recent works also reported that SARS-CoV-2
nucleocapsid (N) protein undergoes RNA-induced liquid–liquid phase separation (LLPS)
for its genome packaging and assembly [19–22]. The SARS-CoV-2 N protein interacts and
sequesters key SG proteins including G3BP which leads to attenuation of SG [23–25]. These
results demonstrate that virus protein can interact with different SG proteins and partition
into liquid phases thus indicating the presence of protein-protein interactions. To date,
several SARS-CoV-2 human interactomes have been created which aid in comprehending
the viral entry, infection, and disease development mechanisms [23,24,26,27]. Analysis of
these networks has revealed commonalities and distinctions based on genes and molecular
pathways associated with viral pathogenicity.

The mechanisms underlying SARS-CoV-2 mediated SG dynamics are crucial to iden-
tifying important targetable events in the viral replication cycle. We here employed a
network-based system biological framework approach as described previously [28–31],
to investigate the molecular interplay between SARS-CoV-2 proteins and human host SG
proteins. We created a brain-specific protein–protein interaction (PPI) network of 116 hu-
man SG genes targeted by SARS-CoV-2 reported from previous SARS-CoV-2 interactome
studies [23–25]. The disease–gene interaction network revealed five key genes linked with
the majority of brain-related disorders. The gene set enrichment analysis (GSEA) was
studied for the identification of drugs affecting the gene expression of selected SG genes.

2. Results
2.1. Interaction Network of SARS-CoV-2 Targeted SG Proteins in the Brain

For identifying the SARS-CoV-2 targeted SG proteins, we first retrieved a list of
809 human proteins targeted by viral proteins from three different SARS-CoV-2 interactome
studies [23–25]. A list of known mammalian SG proteins was retrieved from the MSGP
database. A total of 116 SG proteins showing interaction with SARS-CoV-2 proteins were
identified by comparing the two lists (Figure 1A). We found that these 116 proteins interact
with 22 SARS-CoV-2 proteins with the highest number of interactions to ORF6 (14), N and
NSP6 (13), NSP12, and NSP13 (11), ORF7 (10), and NSP7 (7) protein (Figure 1B).

The PPI network of the brain was retrieved from the TissuevNet2.0 database for
preparing the interaction network of SARS-CoV-2 target SG proteins. Using brain PPI, a
network of 12,968 proteins with 165,241 interactions was prepared. Further, a subnetwork
of 116 identified SG proteins with their direct neighboring protein was made from the
brain PPI network. The subnetwork shows 5548 nodes and 13,546 edges (Figure 2A). The
subnetwork represents how well connected these 116 identified proteins are in the brain PPI
network. The 116 proteins are directly connected with 5432 different proteins in the brain,
so any change in the expression of these proteins may have the ability to manipulate the
functions of the neighboring proteins directly connected to them. The degree distribution
of the network indicated the presence of a scale-free network (Figure 2B). Most of the
real-time network follows scale-free property.
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Figure 1. SARS-CoV-2 human interactome. (A) Protein–protein interaction network of the 116 stress granule proteins
(red) with SARS-CoV-2 proteins (green). (B) The number of SG proteins showing interaction with SARS-CoV-2 proteins is
represented as a pie chart.
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Figure 2. SARS-CoV-2-targeted stress granule genes interaction network in the brain. (A) SARS-CoV-2-targeted SG
gene (yellow) interaction network in the human brain with neighboring genes (in pink). (B) Scatterplot representing the
distribution of degree (k) in the SG genes target network.

2.2. Stress Granules-Related Disease–Gene Interaction Network in the Brain

To understand the role of identified SG genes in the brain-related symptoms in COVID-
19 patients, we prepared a disease–gene interaction network. GeneORGANizer and MalaC-
ards databases were used to retrieve the disease–gene-related information for the above-
identified 116 SG genes. A gene–disease interaction network was made with 453 nodes
and 663 edges (Figure 3A). Four hundred and thirty different brain disorders, including
COVID-19, showed interaction with 116 SG genes. The gene–disease interactions displayed
many of the disorders that were connected to more than one gene in the network such
as seizures (k = 12), intellectual disability (k = 9), microcephaly (k = 9), ataxia (k = 8),
cognitive impairment (k = 8), dementia (k = 7), developmental regression (k = 6), dysarthria
(k = 6), spasticity (k = 6), and cerebral cortical atrophy (k = 4) (Figure 3B). Similarly, the
gene-disease interaction network revealed that many disorders share common genotypes.
The network revealed that the majority of the disorders are linked with DYNC1H1 (k = 91),
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LMNA (k = 86), FMR1 (k = 74), DCTN1 (k = 57), and ALDH18A1 (k = 54) genes and showed
interactions with multiple brain disorders (Figure 3C). These genes are thus considered key
SG genes. The disease–gene interaction represents the role of SARS-CoV-2 targeting SGs in
brain disorders and hence providing a link between COVID-19 and neurological symptoms.
It is widely known that the SARS-CoV-2 virus majorly affects the lungs as compared to
other parts of the host body [32,33]. We have also prepared a lung/respiratory disease–gene
interaction network of the SG genes. The corresponding disease–gene interaction network
showed a total of 40 interactions, in which 36 lung/respiratory-affecting disorders were
connected with 17 SG genes (Supplementary Figure S1A). The respiratory-related disorders
in which the identified SGs play an important role include hypoventilation, respiration
insufficiency, aspiration, central hypoventilation, and perry syndrome along with some
other syndromes. Interestingly, out of five key SG genes that showed a high number of
associations with brain disorders, three genes, namely LMNA (k = 14), DCTN1 (k = 8), and
ALDH18A1 (k = 4), also play important roles in disorders having a major impact on lungs
and respiratory ability of the patients (Supplementary Figure S1B).

Targeting these SG genes thus could play significant role in brain as well as lung/
respiratory-related disorders and will provide a dual benefit in the process of identifying a
potential COVID-19 treatment.
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  Figure 3. SG gene–disease interaction network. (A) Interaction of SG genes and the associated brain diseases. SARS-CoV-2
target SG genes are shown in green, brain-related diseases are represented in pink. (B) Bar plot of maximally connected
diseases along with the number of SG genes connected to the brain in the disease–gene interaction network. (C) Bar plot of
key SG genes having maximum connections to various brain diseases in the network.

2.3. Functional and Pathways Enrichment Analysis of the Selected Genes

For determining the function and mechanism of the identified SG genes associated
with the majority of diseases, a list of these SG genes was submitted to DAVID and Enrichr
databases for GO and KEGG pathway analysis. The GO analysis indicated that the biologi-
cal process was mainly enriched in positive regulation of translation, cell to cell adhesion,
positive regulation of the apoptotic process, response to heat, and response to unfolded
proteins. The cellular components are significantly enriched in the membrane, extracellular
matrix, cell–cell adherens junction, cytosol, and cytoplasm. Molecular functions were
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mainly enriched in RNA-binding, cadherin binding involved in cell–cell adhesion, ATPase
activity, protein binding, ATP binding, and translation initiation factor binding (Figure 4A).
According to KEGG pathway analysis, the SG genes participate in the arrhythmogenic right
ventricular cardiomyopathy (ARVC) pathway, pathways in cancer, amyotrophic lateral
sclerosis pathways, protein processing in the endoplasmic reticulum, and vasopressin-
regulated water absorption pathways along with other pathways (Figure 4B).
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Figure 4. Functional enrichment analysis. (A) Gene ontology analysis of 116 SG genes. (B) KEGG pathways related to 116
SG genes.

2.4. GSEA Based Drug Repurposing

Using the Enrichr web tool, we identified the expression signatures of key SG genes
in COVID-19. GSEA of the COVID-19-related gene sets indicated that three genes namely
DYNC1H1, LMNA, and DCTN1 were downregulated in human bronchial epithelial cells
in COVID-19 after 24hr of infection (GSE17400) (Supplementary Figure S2). Firstly, the
DCTN1 gene is also known as Dynactin-1. It is located on chromosome 2p13 and in
humans and encodes six different isoforms. The dynactin complex acts as a connector of
cargos. It is involved in multiple cellular functions including ER-to-Golgi transport, the
centripetal movement of endosomes and lysosomes, chromosomal movements, spindle
formation, and axonogenesis. The dysregulation of this gene is known to cause ALS, perry
syndrome, neuropathy, distal hereditary motor neuropathy, and other issues related to
motor movements [34,35]. Secondly, the LMNA gene is known as Lamin A/C and is a
protein-coding gene. Nuclear lamins are the crucial component of the intricate protein
mesh that underlies the inner nuclear membrane and confers mainly nuclear and cytosolic
rigidity. Lamin proteins are thought to be involved in nuclear stability, chromatin structure,
and gene expression. Lamin family proteins make up the matrix and are thought to
be evolutionarily conserved. Any dysregulation in the LMNA gene is known to cause
Hutchinson–Gilford progeria syndrome, cardiomyopathy, muscular dystrophy, emery-
derifusss muscular dystrophy, and lipodystrophy [34,36,37]. The third gene was DYNC1H1,
also known as dynein cytoplasmic-1-heavy chain-1. Dyneins are a group of microtubule-
activating ATPases that function as molecular motors. They are involved in intracellular
motility including retrograde axonal transport, protein sorting, organelle movement, and
spindle dynamics. Dysregulation of this gene is known to cause spinal muscular atrophy,
Charcot-Marie-Tooth disease, mental retardation, and spinal muscular atrophy [34].
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Further, the GSEA of the drug perturbations from GEO database records of downreg-
ulated genes revealed bexarotene, also known as targretin, as the top significant enriched
candidates showing interaction with the three downregulated genes in COVID-19 (Sup-
plementary Figure S3A). The search in GEO data sets showed that bexarotene in rats
upregulated the expression of DYNC1H1, DCTN1, and LMNA genes in the liver, lungs,
and mammary glands (Supplementary Figure S3B).

Assuming that bexarotene significantly alters the PPI and would inhibit the virus
growth, we here studied the drug–protein interactions. Out of a total of 809 human
proteins prey of SARS-CoV-2, bexarotene interacts with 36 (i.e., ~4.4%) human proteins
and potentially interferes with 24 of 27 (i.e., 89%) SARS-CoV-2 proteins (Figure 5A). The
36 proteins mostly show at least 1–2 interactions with 24 SARS-CoV-2 proteins, totaling
87 interactions (Figure 5B). This finding suggests that bexarotene could be considered as a
possible drug for drug repurposing against COVID-19.
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human host.

2.5. miRNA Based Drug Repurposing

Apart from chemical-based drug target identification, we also searched for miRNAs
as a potential target for the key SG genes. A total of 502,652 miRNA–gene interactions in
humans were downloaded from the miRTarBase database. For the top five selected key
SG genes, a total of 44 miRNA interactions were identified (Figure 6A). Further, out of the
44 identified miRNAs, we selected miRNAs that have anti-viral properties and identified
that out of five key SG genes, four genes interact with at least one antiviral miRNA.
DYNC1H1 showed interaction with two antiviral miRNAs—namely has-miR-122-5p and
has-miR-382-5p—whereas the other genes LMNA, DCTN1, and ALDH18A1 interacted
with has-miR-9-5p, has-miR-93-5p, and has-miR-20a-5p, respectively. ALDH18A1 gene is
also known as aldehyde dehydrogenase 18A family member A1 and encodes bifunctional
ATP and NADPH mitochondrial enzymes. The protein encoded by this gene reduces
glutamate into delta1-pyrroline-5-carboxylate, a critical step in the biosynthesis of proline,
ornithine, and arginine. The gene is involved in pathways such as the urea cycle, amino
acid synthesis pathways, metabolism pathways, and peptide chain elongation pathways.
Dysregulation in this gene is known to cause hyperammonaemia, hyperornithinaemia,
hyperargininaemia, and is associated with neurodegeneration, cataract, and connective
tissue disease [34,38,39].
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Gene ontology enrichment analysis of the identified antiviral miRNAs revealed that
the biological process is enriched in craniofacial suture morphogenesis, trans-synaptic
signaling by endocannabinoid, embryonic heart tube left/right pattern formation, and
alpha-beta cell proliferation. The cellular components were significantly located in the
endoplasmic reticulum membrane, asymmetric, perinuclear endoplasmic reticulum, PML
body, cyclin B1-CDK1 complex, and nucleosome. The molecular functions were mainly
enriched in RNA binding, mRNA binding, nucleic acid binding, and organic cyclic com-
pound binding (Figure 6B). Moreover, the pathway enrichment analysis revealed the role
of miRNAs in glutathione metabolism, amplification of expansion of oncogenic pathways
as metastatic traits, molybdenum cofactor biosynthesis, IL-6 signaling pathways, pathways
in clear cell renal cell carcinoma (ccRCC), trans-sulfuration pathways, and regulation of
Wnt/B-catenin signaling pathways (Figure 6C).

Pathogens 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

binding (Figure 6B). Moreover, the pathway enrichment analysis revealed the role of miR-
NAs in glutathione metabolism, amplification of expansion of oncogenic pathways as 
metastatic traits, molybdenum cofactor biosynthesis, IL-6 signaling pathways, pathways 
in clear cell renal cell carcinoma (ccRCC), trans-sulfuration pathways, and regulation of 
Wnt/B-catenin signaling pathways (Figure 6C). 

 
Figure 6. Identification of miRNAs regulating the expression of key five SG genes, (A) miRNA-SG genes interaction net-
work. The network displays the miRNAs (blue) targeting five key SG genes (green). The antiviral miRNAs are highlighted 
with a yellow border. (B) Gene Ontology analysis of the antiviral miRNAs interacting with key SG genes. (C) KEGG 
pathways enrichment analysis of antiviral miRNAs. 

3. Discussion and Conclusion 
The activation of SGs upon viral infection has been considered as a host antiviral 

mechanism [3,5]. Besides blocking viral gene expression via translation arrest, SGs also 
eliminate viral factors to inhibit their growth [6,18,40]. Many viruses have developed strat-
egies to disrupt SG formation to help their growth [18,41]. MERS-CoV protein 4a, HCV 
NS5A, JEV NS2A protein, and Sendai virus C protein target PKR and prevent SG for-
mation [42–46]. Enterovirus (EV 71) protease 3Cpro cleaves G3BP1 and disrupts SGs as-
sembly following EV71 infection [47]. The poliovirus, foot-and-mouth disease virus, and 
feline calicivirus adopt similar mechanisms to inhibit SG assembly [48–50]. Recent studies 
have shown that the SARS-CoV-2 N protein prevents SG formation by preventing PKR 
autophosphorylation and activation, and by sequestering G3BP1 [22,51]. These observa-
tions indicate a fairly conserved mechanism of escaping the host defense by beta corona-
viruses. Several escaping mechanisms from host defense by the SARS-CoV-2 virus have 
been recently described [29–31,52,53], but it is not clear whether SARS-CoV-2 targets host 
key SG components. 

Here, we adopted an integrative network biology approach to decipher the SG genes-
based molecular alliance of COVID-19 with neurological disorders. Our findings showed 
that 116 SG proteins were targeted by 27 SARS-CoV-2 proteins. The results of the PPI 
network indicate that these SG proteins operate in a highly interconnected network that 
coordinates many activities of the cellular RNA homeostasis. The brain-specific disease-
genes network showed that 430 different brain disorders including COVID-19 interact 
with 116 SG genes. In this study, diseases such as seizures, intellectual disability, 

Figure 6. Identification of miRNAs regulating the expression of key five SG genes, (A) miRNA-SG genes interaction network.
The network displays the miRNAs (blue) targeting five key SG genes (green). The antiviral miRNAs are highlighted with a
yellow border. (B) Gene Ontology analysis of the antiviral miRNAs interacting with key SG genes. (C) KEGG pathways
enrichment analysis of antiviral miRNAs.

3. Discussion and Conclusions

The activation of SGs upon viral infection has been considered as a host antiviral
mechanism [3,5]. Besides blocking viral gene expression via translation arrest, SGs also
eliminate viral factors to inhibit their growth [6,18,40]. Many viruses have developed
strategies to disrupt SG formation to help their growth [18,41]. MERS-CoV protein 4a,
HCV NS5A, JEV NS2A protein, and Sendai virus C protein target PKR and prevent SG
formation [42–46]. Enterovirus (EV 71) protease 3Cpro cleaves G3BP1 and disrupts SGs
assembly following EV71 infection [47]. The poliovirus, foot-and-mouth disease virus,
and feline calicivirus adopt similar mechanisms to inhibit SG assembly [48–50]. Recent
studies have shown that the SARS-CoV-2 N protein prevents SG formation by preventing
PKR autophosphorylation and activation, and by sequestering G3BP1 [22,51]. These
observations indicate a fairly conserved mechanism of escaping the host defense by beta
coronaviruses. Several escaping mechanisms from host defense by the SARS-CoV-2 virus
have been recently described [29–31,52,53], but it is not clear whether SARS-CoV-2 targets
host key SG components.
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Here, we adopted an integrative network biology approach to decipher the SG genes-
based molecular alliance of COVID-19 with neurological disorders. Our findings showed
that 116 SG proteins were targeted by 27 SARS-CoV-2 proteins. The results of the PPI
network indicate that these SG proteins operate in a highly interconnected network that
coordinates many activities of the cellular RNA homeostasis. The brain-specific disease-
genes network showed that 430 different brain disorders including COVID-19 interact with
116 SG genes. In this study, diseases such as seizures, intellectual disability, microcephaly,
ataxia, cognitive impairment, dementia, developmental regression, and dysarthria rep-
resented the most connected diseases based on different SG genes—DYNC1H1, LMNA,
FMR1, DCTN1, and ALDH18A1. Next, to repurpose a drug targeting the most common
shared SG genes between SARS-CoV-2 and neurological complications, a GSEA analy-
sis was performed. Based on the enrichment analysis, bexarotene was identified as the
top significant enriched candidate interacting with the three downregulated SG genes in
COVID-19.

Bexarotene (antineoplastic retinoid) is a synthetic high-affinity retinoid X receptor
agonist used in the treatment of cutaneous T cell lymphoma, non-small cell lung cancer, and
breast cancer [54,55]. Bexarotene also exerts anti-inflammatory effects by downregulating
IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), and high mobility group box-
1 [56]. It has been shown previously that AM580 and tamibarotene belongs to the same
drug class as bexarotene, displayed broad-spectrum antiviral activities against influenza
viruses, enterovirus A71, Zika virus, adenovirus, MERS-CoV, and SARS-CoV [57]. Recently,
Yuan et al. [58] showed that abiraterone acetate and bexarotene effectively inhibit SARS-
CoV-2 replication in vitro. Bexarotene has also been shown as a potential drug target of
ACE2, TMPRSS2, and AAK1 through bioinformatic analysis [59]. Thus, bexarotene could
be regarded as a candidate drug for repurposing in COVID-19.

We also identified three miRNAs (hsa-miR-615-3p, hsa-miR-221-3p, and hsa-miR-124-
3p) which target at least two of the five key SG genes. The miRNA, hsa-miR-124-3p, helps in
regulating the inflammatory mechanisms in viral infection by targeting cytokine regulating
immune expressed genes and associated transcription factors [60]. Moreover, hsa-miR-
124-3p was found to be downregulated in JEV-infected human neural stem cells [61]. The
miR-124-3p agomir reduced pro-inflammatory cytokines IL-6 and TNF-α levels and thus
was able to protect against pulmonary injury [62]. It has been shown that SARS-CoV-2
hijacks Ddx58 which is involved in miRNA biogenesis and mRNA splicing to help its
replication. The miRNA, miR-124-3p, can bind to the 3’-UTR of Ddx58 and downregulate
the Ddx58. In one study, Arora et al. showed that overexpression of miR-124-3p would
degrade the Ddx58 and inhibit the replication of the SARS-CoV- 2 genome [63].

The miRNA, hsamiR-124, has been shown to inhibit influenza and RSV infection by
the reduction in mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2
or MK2) [64]. Moreover, according to one study, MK2 was predicted to be targeted by
miR-615-3p and was reduced in the lungs of COVID-19 patients [65]. The miRNA, hsamiR-
221-3p, is found to be upregulated in hamster lung tissue infected with SARS-CoV-2.
It targets ADAM17 which is involved in ACE2-dependent shedding linked with lung
pathogenesis [66].

Our study thus utilizes a comprehensive protein–protein interaction network to map
the interplay between SARS-CoV-2 proteins with human SG proteins along with their
functional annotations. Therefore, delineating the effect of SARS-CoV-2 infection on human
translational regulatory networks is central for identifying effective drug targets against
COVID-19.

4. Methods
4.1. Identification of SARS-CoV-2 Interacting Human SG Proteins from
SARS-CoV-2-Human Interactome

A list of 809 human target proteins known to interact with SARS-CoV-2 viral proteins
was retrieved from three different SARS-CoV-2 interactome studies [23–25]. The mam-
malian stress granules proteome (MSGP) database [67] was used for retrieving the list of SG
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proteins. The MSGP database curates the information regarding the SGs using published
literature available on PubMed and other sources. Further information regarding each SG
protein was then obtained from Uniport, GeneDatabase, and OMIM. The database also
provides the expression profile of SG proteins in the context of neurodegenerative diseases.
A list of 464 SG proteins was obtained from the MSGP database. Out of 809 proteins, a total
of 116 SG proteins were identified as known to have direct interaction with SARS-CoV-2
viral proteins.

4.2. Protein–Protein Interaction of Identified SG Proteins in the Human Proteome

The human proteome interaction data were obtained from TissueNet v.2 databases [68].
For human PPI, the TissueNet database provides the quantitative tissue association. For
preparing an extensive interaction network, protein-based assay profiles and RNA-Seq pro-
files were gathered from the human protein atlas (HPA) and the genotype tissue expression
project (GTEX), respectively. BioGrid, MINT, DIP, and IntAct were the four major databases
used for extracting the experimentally validated protein interaction information for the PPI
network. A list of 116 identified SG proteins interacting with SARS-CoV-2 proteins was
used for creating a subnetwork having interactions between SARS-CoV-2 proteins and SG
proteins and the directly connecting first neighbors.

4.3. Preparation of Disease–Gene Interaction Network Specific to Brain

After obtaining the interaction network of SARS-CoV-2 target SG proteins and their
neighboring proteins in the human proteome, the MalaCards database [69] along with
the GeneORGANizer database [70] was used to identify genes playing role in the brain,
cerebellum, and head-related disorders. GeneORGANizer allows the user to identify
the organs in which the query genes are expressed along with the information related to
disorders caused by the query genes in these organs. The database delivers organ-specific
gene-disease information from highly curated DisGeNET [71] and human phenotypes
ontology (HPO) tools. The MalaCards database scans 74 databases to provide disease–
gene relationship information regarding the query genes. Disease–gene interactions were
considered for further study if they had HPO identifiers. A total of 1246 disease–gene
interactions were obtained, of which 430 different brain disorders including COVID-19
were linked with 18 SG genes. The brain gene–disease interaction network was created
using the Cytoscape tool [72].

Similarly, we identified the role of SG genes in lung/respiratory-related disorders by
creating a lung disease–gene interaction network. The corresponding lungs/respiratory-
related disease–gene interaction network was prepared with a total of 40 interactions, in
which 36 different lung/respiratory-affecting disorders were linked with 17 SG genes.

4.4. Calculation of Topological Properties of the PPI Network

The topological properties of the network were calculated to identify the top genes
showing associations with brain-related disorders through the network analyzer plugin
of Cytoscape, similar to our previous studies [28,31]. The calculated network topological
properties included degree centrality (k) and betweenness centrality (Cb) values for identi-
fying the highly connected nodes. Degree centrality (k) indicates the number of interactions
made by a node with another node in the network and thus conveys the significance of
that node in controlling the network interactions, and is expressed as:

Degree centrality (k) = ∑aεKb
w(a, b) (1)

where, Ka is the node set containing all the neighbors of node a, and w(a,b) is the weight of
the edge between node a and node b.
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The other parameter, betweenness centrality (Cb), indicates the degree to which nodes
occur with each other in the shortest path. A node with higher betweenness centrality
denotes stronger control over the information flow in the network. It is expressed as:

Cb(u) = ∑k 6=u 6= f
p(k, u, f )
p(k, f )

(2)

where, p(k,u,f) is the number of interactions between nodes k and f that passes through u,
and p(k,f) denotes the total number of shortest interactions between node k and f.

4.5. Gene Ontology and Pathway Enrichment Analysis

Next, the enrichment analysis of the PPI network was explored using the DAVID
(Database for annotation visualization and integrated discovery) tool [73]. DAVID utilizes
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database
for studying the functional enrichment of the selected genes. GO analysis includes func-
tional annotation of genes at the biological, molecular, and cellular level. Functions and
pathways with p-values < 0.05 were considered significantly enriched and included in
the results.

4.6. Identification of Drugs through Gene Set Enrichment Analyses (GSEA) Analysis

Further, to identify the drugs modulating the expression of key SG genes, GSEA was
performed through the Enrichr web server, which stores the expression information of
almost 200,000 genes from more than 100 gene set libraries [74,75]. The Enrichr database
provides multiple drug–gene interaction information along with gene expression profiles
obtained from the gene expression omnibus (GEO) database.

4.7. Identification of microRNAs as a Gene Expression Regulator

MicroRNAs (miRNAs) are small non-coding RNAs that can regulate the expression
of genes by interacting with target messenger RNAs. miRNAs play an important role in
many viral diseases such as Ebola, SARs, and HIV by downregulating the host’s genes [76].
These properties make miRNAs a potential therapeutic target. For identifying miRNAs
interacting with five key SG genes, different miRNA–gene interaction databases including
miRTarBase, miRbase, miRDB, and miRNet2 were screened [77–80]. A list of miRNAs
showing antiviral properties was also retrieved from the VIRmiRNA database [81]. The
GeneTrail [82] database was explored for the GO and pathway-based enrichment analysis
of the selected antiviral miRNAs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10111459/s1, Figure S1: SG gene disease interaction network; Figure S2: Effects of
SARS CoV 2 challenges on the ex-pression of LMNA, DYNC 1 H 1 and DCTN 1 genes; Figure S3:
(A) GSEA of the drug perturba-tions from GEO database records of downregulated genes identify
bexarotene as potential drug candidate against SARS CoV 2 infection. (B) Bexarotene increasing the
expression of LMNA, DYNC1H1, and DCTN1 genes as shown by enriched GEO records (GSE39).
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