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Abstract: WiFi localization based on channel state information (CSI) fingerprints has become the
mainstream method for indoor positioning due to the widespread deployment of WiFi networks,
in which fingerprint database building is critical. However, issues, such as insufficient samples
or missing data in the collection fingerprint database, result in unbalanced training data for the
localization system during the construction of the CSI fingerprint database. To address the above
issue, we propose a deep learning-based oversampling method, called Self-Attention Synthetic
Minority Oversampling Technique (SASMOTE), for complementing the fingerprint database to
improve localization accuracy. Specifically, a novel self-attention encoder-decoder is firstly designed
to compress the original data dimensionality and extract rich features. The synthetic minority
oversampling technique (SMOTE) is adopted to oversample minority class data to achieve data
balance. In addition, we also construct the corresponding CSI fingerprinting dataset to train the
model. Finally, extensive experiments are performed on different data to verify the performance
of the proposed method. The results show that our SASMOTE method can effectively solve the
data imbalance problem. Meanwhile, the improved location model, 1D-MobileNet, is tested on the
balanced fingerprint database to further verify the excellent performance of our proposed methods.

Keywords: indoor localization; channel state information (CSI); fingerprinting; imbalanced data;
deep learning; self attention

1. Introduction

The localization of mobile devices is becoming increasingly significant, and indoor
WiFi localization has become a hot research area, thanks to the rapid expansion of WiFi
networks and the explosive rise of location-based services, such as indoor navigation,
indoor tracking, and activity recognition [1–3]. Various approaches have been proposed
successively to solve the indoor localization problems [4–6]. Some of these solutions
necessitate the use of many access points (APs), and their effectiveness is heavily dependent
on measurement accuracy, which is difficult to achieve with standard WiFi equipment.
In contrast, indoor positioning technique based on fingerprint recognition has become
a popular positioning technique because of its high precision and minimal hardware
requirements [7–9]. The working principle of fingerprint-based localization methods is to
extract feature information from the measured position, which is called “fingerprint”. The
WiFi signal of the device to be located is then compared to the known feature in the real-time
location phase to determine the location. The fingerprint-based localization approaches are
typically divided into two stages: offline training stage and online localization stage. In
the offline fingerprint training stage, the WiFi signals of each confirmed reference point
are measured and collected as training samples for the localization model [7]. During the
online localization stage, the WiFi signal of a specific reference point is fed to the trained
localization model to predict the location results.

Sensors 2022, 22, 5677. https://doi.org/10.3390/s22155677 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155677
https://doi.org/10.3390/s22155677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7719-2579
https://orcid.org/0000-0002-5759-4589
https://doi.org/10.3390/s22155677
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155677?type=check_update&version=1


Sensors 2022, 22, 5677 2 of 20

The received signal strength (RSS) and channel state information (CSI) techniques,
as the two most commonly used fingerprints, have been widely used in previous WLAN-
based indoor localization studies [10,11]. Although RSS is a fingerprint that can be easily
measured at WiFi receivers, it has some unavoidable limitations. RSS is coarse channel data,
which means it is vulnerable to dynamic environments that do not adequately reflect the
relationship between channel characteristics and location. Meanwhile, RSS is challenging to
implement across various mobile devices. For example, the RSS of a laptop and a cell phone
device at the same location is different because they have different antenna characteristics.
Instead, CSI uses varying signal intensities and phases in different subcarriers to deliver
more precise multipath information than RSS [12]. Therefore, we choose to use the more
reliable and mature CSI data as the fingerprint data for localization in this research.

However, one of the most significant drawbacks of fingerprint-based localization is
the vast amount of data that must be assessed in the offline stage in order to ensure the
correctness of the system [13]. Therefore, data collection work (i.e., building a fingerprint
database) is time consuming and labor intensive. In fact, we cannot guarantee that the
same number of fingerprints will be obtained at each reference location when collecting
data. Meanwhile, some outliers are removed from the fingerprint data during processing,
which will further lead to the imbalance of the fingerprint data. The fingerprint data
imbalance problem in the database will affect the popularity and application of fingerprint-
based location technology. In order to address the above issue, some approaches have
been proposed successively [14–17]. Gu et al. [15] proposed a compressed sensing-based
approach to recover absent fingerprints. However, this method only restores the missing
data and does not resolve the imbalance problem between the fingerprint data. Based
on the classic SMOTE algorithm [18], methods [16,17] utilize machine learning methods
to solve the problem of data imbalance between and within classes. Nevertheless, these
methods do not solve the problem of ambiguity of one-dimensional long sequence data,
and the generated data are easily affected by noise. In addition, it is worth noting that
there is no deep learning method to solve the imbalance problem of fingerprint data. It is
interesting to introduce deep learning techniques to this research topic.

Inspired by the above principles, we put forward a novel approach in this article,
called the Self Attention Synthetic Minority Oversampling Technique (SASMOTE), to
effectively solve the imbalance problem of fingerprint data. The specific composition of
the entire framework is as follows: a self-attention encoder firstly extracts features from
fingerprint data. Then, an oversampling method based on the SMOTE method is adopted
to populate minority class data samples. After that, a corresponding decoder is used to
output the balanced fingerprint data. In addition, we also specially built the corresponding
CSI fingerprint database for model training and testing. Finally, we perform extensive
experiments to evaluate the performance of the model. We use the improved 1D-MobileNet
to test the balanced fingerprint database to further verify the performance of the proposed
framework. In summary, the main contributions of this work are summarized as follows:

• We propose a deep learning-based oversampling method to end-to-end deal with the
imbalanced fingerprint database. In addition, a corresponding fingerprint dataset is
collected and constructed for model training and testing. To the best of our knowledge,
we are the first to study the problem of constructing a fingerprint database that
encounters data imbalance.

• In the framework, we design a self-attention encoder-decoder to extract and integrate
data features. Meanwhile, the SMOTE algorithm is integrated into the encoder-decoder
to supplement the small number of sample data, which solves the problem of fuzzy
features in high-dimensional data.

• Extensive experiments are conducted in real environments and the results show that
the proposed method has better performance compared to existing oversampling
methods. The new fingerprint library generated by SASMOTE is applicable to other
localization methods, such as the 1D-MobileNet model.
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The rest of the article is structured as follows. The Section 2 reviews the related
work. The core idea of this study is briefly described in Section 3.1. The backdrop of CSI
and the workflow of the localization system are presented in Sections 3.2 and 3.3. Our
proposed SASMOTE method, including training algorithms and evaluation measures, is
introduced in Section 4. Section 5 reports the simulation and experimental results. Finally,
the conclusions and discussions are presented in Section 6.

2. Related Works

Although it is quite reliable to establish fingerprint databases for localization, collecting
training samples to create fingerprint databases usually requires enormous considerable
manpower. To lessen the human workload, many researchers have developed efficient
methods to complete the fingerprint databases [15,19]. As mentioned above, the problem
of data imbalance between classes inevitably occurs in the construction of the fingerprint
database. This has a great impact on the classification accuracy of the later localization
model. At present, there is also a lot of work devoted to solving the data imbalance problem.
Data imbalance is a widespread research problem in the field of engineering technology.
Generally, there are three strategies used to solve this issue: (1) Reduce the number of
majority classes to balance the data, which is called undersampling [20]; (2) Increase the
number of minority classes to achieve data balance, which is called oversampling [18];
(3) Reduce the number of the majority class while increasing the number of minority class,
which can be called a hybrid approach [21]. Traditional undersampling and oversampling
algorithms can be performed with low computational complexity, but this can lead to
instability in new datasets (e.g., removing important instances or adding noisy instances
in the process). Therefore, intelligently selecting instances to preprocess imbalanced data
is a popular research direction. In this section, we mainly review these related works,
which can be divided into traditional machine learning based methods and deep learning
based methods.

2.1. Machine Learning Based Methods

Machine learning, as an important branch of artificial intelligence, is widely used in var-
ious research fields. Similarly, there are also some classical machine learning based methods
to solve the problem of imbalanced data distribution. For instance, Hoyos-Osorio et al. [22]
propose a Relevant Information-Based Undersampling (RIUS) method to select the most rel-
evant instances from the majority class to enhance classification performance on imbalanced
data. There are few solutions for directional undersampling, whereas the oversampling
technique has obtained greater attention as a result of the popularity of the SMOTE ap-
proach [18]. The SMOTE algorithm is a classic machine learning-based oversampling
method. It generates new synthetic samples from the k-nearest neighbors (KNN) of the
minority samples. Compared with the simple traditional oversampling method, the dataset
generated by the SMOTE method has strong generalization. In this way, the problem of
overfitting the model caused by the simple sampling method can be effectively overcome.
Based on the SMOTE algorithm, different excellent variants have been proposed succes-
sively [16,17,23]. Lee et al. [16] present an approach by combining Gaussian probability
distribution and the SMOTE algorithm. The results show that their method can solve the
class imbalance problem. Douzas et al. [17] propose an effective oversampling method
based on k-means clustering and the SMOTE algorithm, which avoids the generation of
noise and overcomes imbalances between and within classes. Nevertheless, these methods
are essentially based on the principle of KNN and cannot solve the problem of fuzzy charac-
teristics of high-dimensional data, such as fingerprint data. Aiming at the class-imbalance
problem in multi-label datasets, Mishra et al. [24] introduce a feature construction method
based on the SMOTE approach. It takes the distances of the minority class to all instances
as features, and then uses the SMOTE algorithm to balance the ratio between minority and
majority instances. However, the accuracy of the method is greatly affected when outliers
appear in the dataset. In the latest work [25], Yi et al. propose a simple and effective method
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called ASNSMOTE, which filters the noise in the minority class by determining whether
the nearest neighbor of each minority instance belongs to the minority class or the majority
class. However, it only considers the noise problem of the boundary.

2.2. Deep Learning Based Methods

Deep learning technology, as the most important branch of machine learning, has
achieved great success in various fields because of its powerful feature representation
ability [26–28]. Compared with machine learning, deep learning models can handle mass
and complicated data, which is required for processing complicated fingerprint data. Gen-
erative Adversarial Networks (GANs) [29] are attractive to researchers because they can
perform techniques similar to oversampling to generate the desired data. Douzas et al. [27]
introduce a network based on conditional generative adversarial networks (CGAN), which
generates minority class samples by setting up known conditional information to the
GAN model. Nonetheless, the model may crash due to a lack of sample size to support
it [30]. Li et al. [31] collect CSI data into amplitude feature maps and extend the finger-
print database using the proposed Amplitude-Feature Deep Convolutional Generative
Adversarial Network (AF-DCGAN) model. However, GAN models are good at processing
image data and are not so effective at processing one-dimensional input data (e.g., CSI).
Therefore, it is a challenge to efficiently process one-dimensional fingerprint data using
deep learning methods. We propose a novel self-attention encoder-decoder combined with
SMOTE algorithm to handle the imbalanced fingerprint database in an end-to-end manner.
Next, we will detail the motivation and rationale for building the framework.

3. Background and Framework
3.1. Basic Ideas

In the fingerprint-based indoor positioning system, the greater the imbalance of the
fingerprint database data, the greater the impact on the positioning accuracy. We conducted
relevant experiments to demonstrate this relationship. Specifically, the CSI data was
collected in a classroom to create a fingerprint database. The schematic diagram of the
environment plane of the localization experiments is shown in Figure 1. We adopt a TL-
WR745 N wireless router as the transmitter that is equipped with one transmit antenna
(AP in the figure). Additionally, a ThinkPad X201 laptop equipped with Inter Wireless Link
5300 network interface cards (NICs) and three antennae is used to receive signals.

During the signal acquisition process, we first collect 1000 samples at each reference
point. We then construct an imbalanced fingerprint database according to different imbal-
ance ratios. Here, the imbalance ratio refers to the proportion of the number of samples in
the minority class to the number of samples in the majority class. We set three imbalance
ratios in our experiments, which are 1:5, 1:10, and 1:20, respectively. Namely, the number of
samples in each minority class is 200, 100, and 50, respectively. In order to verify the impact
of unbalanced distribution of fingerprint data on localization accuracy, we use two deep
learning models 1D-MobileNet and DeepFi [32] to locate fingerprint data signal at different
imbalance rates. Among them, DeepFi is a representative method for indoor localization of
fingerprint data. Furthermore, 1D-MobileNet is our own improved method based on the
lightweight model MobileNet v2 [33], and its principle and architecture will be discussed
in Section 4.3.
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Table
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Door
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Figure 1. Illustration of the experimental environment (a classroom). The circles in the figure denote
the reference point of the majority class fingerprints data, and the stars denotes the reference point of
the minority class fingerprints data.

The experimental results are shown in Figure 2. It can be seen that with the increase in
the imbalance rate of the fingerprint database, the location accuracy of the two methods
decreases continuously. This shows that the unbalanced distribution of fingerprint data
has a great impact on the later location accuracy. This further verifies that the background
and motivation of our proposed research topic are reasonable. Therefore, how to effectively
solve the imbalance problem of the fingerprint database is the key research issue.
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Figure 2. The influence of different imbalance rates of fingerprint database on localization accuracy.
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3.2. Preliminaries on Channel State Information

Thanks to the Inter Wireless Link 5300 NICs, channel state measurements are now
easier to perform than in the past. CSI can now be collected from a computer by installing
the specified driver. The CSI reflects the channel changes that occur during transmission.
WiFi signals propagated in complex environments can suffer significant losses due to
multipath effects, fading, shadowing, and delay distortion. CSI is critical for presenting
channel properties in real-world scenarios.

In a channel with narrowband flat fading, the channel information is modeled in the
frequency domain as follows:

~y = H~x +~n, (1)

where: ~x and ~y denote the frequency domain transmit data vector and the frequency
domain receive data vector, respectively, H is the channel state information is the complex
matrix, and~n is the additive Gaussian white noise vector.

For a WLAN with a MIMO system, each packet has a complex matrix of p × q ×
30 HMIMO, where p is the number of transmit antennas and q is the number of receive
antennas. m = p × q is the number of antenna pairs.

HMIMO =


H11 H12 · · · H1q
H21 H22 · · · H2q

...
...

...
...

H p1 H p2 · · · H pq

, (2)

The CSI for the 30 sub-channels is as follows.

H = [h1, h2, h3, · · · , h30], (3)

hi = |hi|ej sin(∠hi), (4)

In our experiment, the transmitter is one antenna and the receiver is three antennas,
so the dimension of each packet is 1 × 3 × 30, as shown in Figure 3.

(a) Packet of the first antenna (b) Packet of the second antenna (c) Packet of the third antenna

Figure 3. Packets with different antennas. x-axis is the number of packets, y-axis is the subcarrier
length, and z-axis is the signal amplitude.

3.3. Workflow of the Csi Fingerprint Localization System

In general, the overall workflow of the imbalanced CSI fingerprint-based localization
system can be divided into an offline stage and online stage (see Figure 4). In this subsection,
we separately describe the offline and online stages in detail to understand the idea of the
whole work.
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Collected fingerprint 
data

Select different quantity 
of samples at RPs

Build unbalanced 
fingerprint database

Processed with 
oversampling method

Offline stage

Collect fingerprint data
at a access point

Fed to the localization 
model for testing

Estimation the location 
of the target

Online stage

Verification

Training localization 
model

Standard fingerprint 
database

Figure 4. Structure of CSI fingerprint positioning system.

3.3.1. Offline Stage

For the offline stage, it is necessary to select reference points (RPs) in the location area,
and the RPs are required to be distributed as evenly as possible and cover the entire area
to be located. We first collect fingerprint data at different RPs and preprocess the data
to extract different numbers of samples. In this way, we build an imbalanced fingerprint
database, which is required by the topic of our study. Then, our proposed oversampling
method is used to specifically deal with this imbalanced database. After being processed by
the oversampling method, we obtain a relatively complete standard fingerprint database,
in which the quantity of each class of data tends to be consistent. Finally, the processed
fingerprint database is fed to the model for training, and a location model with good
performance is obtained. Here, we use two models, DeepFi and an improved 1D-MobileNet,
as localization models, respectively. Next, the trained positioning model is tested in the
online stage to further verify the performance of our proposed oversampling method for
solving imbalanced database problems.

3.3.2. Online Stage

The verification process is mostly performed in the online phase, when a randomly
selected RPs point measures its CSI data and enters it into an offline fingerprint database for
identification, which can evaluate the present location and validate the positioning system’s
correctness. The offline stage is to verify the accuracy of the positioning system. In the test
stage, all reference points are regarded as access points, and the CSI data are measured and
collected at each access point as test data. It is then fed into an offline fingerprint database
for matching and identification to assess its current location, thus verifying the accuracy of
the positioning system.

Throughout the workflow, it can be seen that the oversampling method can be con-
sidered as a preprocessing method before the localization model. Most of the existing
localization methods currently use deep learning to train offline fingerprint databases but
ignore the importance of data class balance in fingerprint databases. Therefore, it is crucial
to adopt a suitable oversampling method that can reduce the skew of data classes while
capturing their main features. We will describe the proposed oversampling method in
detail in the Section 4.
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4. Our SASMOTE Model and Training Scheme

Based on the SMOTE algorithm, we put forward a self-attention encoder-decoder
framework to make it easier to supplement data of the fingerprint database and reduce
complex data collection efforts. In this section, we first introduce the principles of the
SMOTE algorithm and the proposed SASMOTE framework. Then, different evaluation
criteria are described to assess the performance of the proposed approach.

4.1. Smote Algorithm

The algorithm, Synthetic Minority Oversampling Technique (SMOTE) [18], is a typical
oversampling method to solve the problem of data imbalance. Its primary idea is to con-
struct new minority instances by combining many existing minority instances. Specifically,
its working principle is as follows: (1) for each sample xi of the minority class, calculate its
Euclidean distance to all samples in the minority class sample set S, and obtain its k nearest
neighbors (KNNs). (2) The sampling ratio n is determined according to the imbalanced
proportion of samples. For each minority class sample xi , one sample xold is randomly
selected from k nearest neighbor samples of the same class as the auxiliary sample for the
synthesis of new samples. (3) For each randomly selected neighbor xold, a new sample
xnew is generated with xi according to the following random interpolation formula, and an
interpolation sample is finally synthesized.

xnew = xi + rand(0, 1)(xi − xold), (5)

where rand (0, 1) represents a random value in the (0, 1) interval. By repeating this process
multiple times, multiple samples can be generated to balance the dataset. Figure 5 shows a
schematic diagram of using the SMOTE algorithm to generate new samples.

(a) Original dataset (b) GeneratIng samples

Figure 5. Schematic diagram of new sample generation using SMOTE algorithm. Blue circles
represent the majority data, green squares represent the minority data, and red squares represent
generated data.

SMOTE algorithm is a classical oversampling algorithm which synthesizes a few
classes. It can effectively solve the overfitting problem, which easily occurs in traditional
sampling methods. In this way, it can effectively solve the overfitting problem caused by
random oversampling. Therefore, we consider integrating the SMOTE algorithm in our
proposed framework to solve the imbalance problem of the fingerprint database.

4.2. SASMOTE Model

However, it is found in experiments that the traditional SMTOE algorithm is suitable
for samples with low-dimensional and simple features, but it is not suitable for processing
high-dimensional data, such as CSI fingerprint data. Therefore, we propose a novel
SAMOTE framework (see Figure 6) to solve this problem. Specifically, we first utilize a
self-attention encoder to extract fingerprint data features and compress the dimensionality
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of fingerprint data. Then, we utilize the SMOTE algorithm to generate fresh data and
output them through the decoder.

Encoder Decoder

Encoder/Decoder training

Original dataset

Test dataset Encoder SMOTE Decoder

0
1
2
3
...

0
1
2
3
...

Balanced dataset

0
1
2
3
...

Penalty

Loss

SAMOTE Framework

Trained model

Figure 6. Illustration of SASMOTE implementation. In the first part, training the SA encoder and
decoder; in the second part, using the trained encoder/decoder to complete the fingerprints.

4.2.1. Self-Attention Encoder-Decoder

In the self-attention encoder-decoder, the adopted attention module is inspired by
SAGAN, which is proposed by Zhang et al. [34]. Multiple convolutions are required to
generate global dependencies because the model has just convolution and most of the
convolution kernels are 1 × 1 and 3 × 3, and the receptive field is too tiny. The use
of a self-attention method to obtain dependencies at one layer at a distance rather than
a multi-layer convolution operation is particularly successful for one-dimensional long
sequence data and it minimizes processing effort. As shown in Figure 7, transposing f (x)
and multiplying it with g(x), as well as providing parameters to multiply with the attention
map and superimposing it with the input x, yields the attention map. Finally, the output is
as follows:

yi = γoi + xi, (6)

where γ is the scale parameter and is initialized to 0. The network learns the local infor-
mation first and then learns the remote information slowly, i.e., from easy to hard. We
integrate this attention mechanism module into each layer of the encoder and decoder,
respectively, so that the network has stronger feature representation ability.

Convoluitona
feature maps (x) 1×1 conv

1×1 conv

1×1 conv

f(x)

g(x)

h(x)

Transpose

Softmax

Attention map

1×1 conv

v(x)

Self-attention feature 
maps (o)

Figure 7. The proposed self-attention module for the Encoder/Decoder. The ⊗ denotes matrix
multiplication. The softmax operation is perfo.
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4.2.2. Enhanced Loss Function

The loss function is used in this study to calculate the degree of inconsistency between
the data and the original data after encoding and decoding, and it is a crucial component
of codec training. SMOTE is based on the KNN regression model’s premise and examines
whether to use the L1 or L2 loss function for evaluation. The distinction between L2 and L1
loss is that L2 loss squares the distance between the estimated and true values, imposing
a substantial penalty on the output that differs from the observed values. The absolute
value of the difference between the estimated and real values is used in the L1 loss, which
is insensitive to output that differs from the genuine value. So, it is beneficial to keep the
model stable when there are outliers in the observation. The L1 loss function was chosen
because there are several outliers in the CSI measurement.

L2 loss : L(y, ŷ) = 1/n ∑(ŷ− y)2,
L1 loss : L(y, ŷ) = 1/n ∑|ŷ− y|, (7)

where ŷ represents the predicted value and y represents the true value. A batch contains
n elements.

4.3. Evaluation Model and Metrics
4.3.1. Location Estimation Model

The standard classification model has a big memory need and a large number of
operations; thus, it cannot be employed as a localization model for indoor mobile needs.
Therefore, we also propose an improved 1D-MobileNet for the identification and local-
ization of fingerprint data. The improvement of the 1D-MonileNet model is based on the
MobileNet V2 model, and the biggest difference is that the input and output data of our
model are one-dimensional data. Figure 8 depicts the basic structure of our 1D-MobileNet
model. At the input and output ends of the framework, we first use 1 × 1 convolution to
transform the high-dimensional CSI fingerprint data into one-dimensional data. It is then
fed into an intermediate feature extraction module, which is stacked with seven MobileNet
V2 modules.
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Figure 8. The structure of the base block of the model; the structure contains shortcut connections. In
addition, satisfying stride = 1 and inputting feature matrix and output feature matrix of the same
shape will skip the base structure block to obtain the output. The different symbols in the figure
represent fingerprint maps.
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4.3.2. Evaluation Metrics

The most essential measurement index for a localization system is the system’s localization
accuracy. The localization system’s performance is measured using the following indicators.

As a measure of the accuracy of the localization algorithm, we use the Cumulated
Density Function (CDF). A significant number of localization tests are used to assess the
system’s stability from the standpoint of the probability distribution of the localization
error. The stability of the system is defined in Equation (8), where P(X ≤ x) represents the
probability that the localization error is less than x

Fx(x) = P(X ≤ x). (8)

The maximum localization error is used as a measure of the stability and robustness
of the positioning system, which is defined as the the maximum error of the positioning
system after all tests, and its expression is,

MaxError = arg max
√
‖pi(t)− p̂i(t)‖2. (9)

Average Root Mean Square Error (ARMSE) was utilized as a parameter measure
to evaluate the localization algorithm’s accuracy. This index measures the localization
accuracy of the localization system from the perspective of evaluating the localization error,
which is defined as,

ARMSE =
1
N

N

∑
i=1

√
|pi(t)− p̂i(t)|2, (10)

where pi(t) denotes the actual two-dimensional coordinates of the i-th test position and
p̂i(t) are the i-th test position’s location estimate 2D coordinates; N is the total number of
position tests.

5. Experiments

The proposed oversampling method’s performance is examined in this section. SAS-
MOTE’s performance is compared to those of other oversampling approaches. The fresh
fingerprint database created by the SASMOTE model is then fed into other classifiers to
acquire separate findings in order to assess the SASMOTE model’s applicability.

5.1. Experimental Setup

As illustrated in Figure 1, our experiments are performed in a classroom. There are
25 cumulative RPs with an average interval of 0.6 m in a 10 m × 6 m classroom. Because of
the walls, desks, and shelves, the experimental setting is complicated, and there are several
Non-Light Of Sight (NLOS) RPs. To avoid CSI outliers acquired due to the complicated
environment impacting the experimental results, we used the middle RPs as the minority
class points of the unbalanced fingerprint database. We set up a wireless router with an
antenna as the transmitter in IEEE 802.11n AP mode in the classroom, as well as a laptop
computer with an Intel Wireless Link 5300 NIC. On the laptop, we installed Ubuntu 16.04
and changed the WiFi driver kernel. The actual CSI data may now be transported to the
laptop and read with the Linux 802.11n CSI tool in the latest kernel.

In this experiment, we collect approximately 1500 CSI samples at each RP, and the
dimension of each CSI packet is 1× 3× 30. To construct an unbalanced fingerprint database,
1000 sample data are chosen as training samples for the majority class points, and 200,
100, and 50 sample data are chosen for the minority class points. In addition, 500 samples
of each class are used as the test set to verify the method performance. Then, we use
the created imbalanced fingerprint database to train the self-attention encoder-decoder of
the SASMOTE and supplement the fingerprint database with the SASMOTE model, as
shown Algorithm 1.
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Algorithm 1 SASMOTE model.

Require:
Batches of imbalanced CSI fingerprints: I = {i1, i2, . . . , in};
number of minority classes: k;
Model parameters:θ =

{
θ1, θ2, . . . , θj

}
;

Learning Rate: α;
Ensure:

Balanced CSI data of the minority class point: S;
Train the Encoder/Decoder:

1: for epoch ∈ [1, maxepoch] do
2: EI ← encode(I);
3: DI ← encode(EI);
4: RL = 1

n ∑n
i=1|DIi − Ii|;

5: PI ← permute order(I);
6: EP ← encode(PI);
7: DP ← decode(EP);
8: BL = 1

n ∑n
i=1|DPi − PIi|;

9: TL = RL + BL;
10: θ = θ − α ∂TL

∂θ ;
11: end for

Generate Simple:
12: for j ∈ [1, k] do
13: C ← select(Bj);// Select minority classes from the fingerprint database ;
14: E← encode(C);
15: G ← SMOTE(E);
16: S← decode(G);
17: end for

Figure 9 shows the process of training the self-attention encoder-decoder of SASMOTE.
When the 90-dimensional CSI data are fed into the SASMOTE encoder, it is compressed
into six-dimensional data by four convolutional layers fused with the self-attention module.
Instead, the SASMOTE decoder is composed of ConvTranspose layers (i.e., deconvolution
layer [35]) and self-attention layers to extend the data of dimension 6 to 90. Furthermore,
the L1 loss function is used to calculate the variances of the obtained data. The imbalanced
fingerprint database is disrupted again, and the same action is repeated. The model’s
learning rate was set to 0.0002, the training batch size to 100, and the total number of epochs
to 200.

5.2. Localization Performance

First, we use 1D-MobileNet for localization experiments, as shown in Figure 10,
which shows the CDF curves of localization errors for fingerprint databases with different
imbalance ratios. The red line shows the localization accuracy of the fingerprint database
with imbalance ratio 5 and also the CDF curve with the best result. Its ARMSE distance
is about 0.85 m, the minimum error distance is about 0.06 m, and the MaxError distance
is about 2.64 m. Its positioning error distance is 64% around 1 m, 87% around 2 m, and
99% within 3 m. When the unbalance ratio is 20, the positioning error is obviously the
largest. In this case, its ARMSE distance is about 1.34 m, the minimum error distance is
about 0.09 m, and the MaxError distance is 3 m. In addition, its positioning error distance
is 33% around 1 m, 69% around 2 m, and 99% within 3 m. We discovered that when
the imbalance ratio is too high, the generally utilized localization algorithms overfit, and
the loss rises throughout training, as shown in Figure 11. Compared with the DeepFi
localization method, the 1D-MobileNet training loss is more stable.
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Figure 9. Schematic of the training of the self-attention encoder-decoder. The encoder is used to
extract fingerprint data features, and the decoder is used to restore the extracted fingerprint data.

Figure 10. Initial database localization results. The red line indicates a fingerprint database with an
imbalance ratio of 5, the green line indicates a fingerprint database with an imbalance ratio of 10, and
the blue line is a fingerprint database with an imbalance ratio of 20.
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Figure 11. Training loss results for different localization methods.

Next, we train the self-attention encoder-decoder of the SAMOTE. For comparison,
we created a class distribution of the original fingerprint database and a class distribution
after the SAMOTE encoder, as shown in Figure 12. The 2D projections of the unprocessed
CSI data are clearly mixed together, with the features obscured. The data following the
SA encoder has more noticeable features, demonstrating the effectiveness of using the
SA encoder before the SMOTE oversampling approach. We were also able to extract the
confusion matrix of the unbalanced fingerprint database positioning and the balanced
fingerprint database positioning. As can be seen from Figure 13, in the initial fingerprint
database identification process, the misjudgment is more serious, and the predicted value
will be biased towards the majority of the points due to imbalance, as shown in the fifth row
in Figure 13a. In contrast, the balanced fingerprint library recognition is relatively stable.

(a) The original fingerprint database

(b) The encoded fingerprint database

Figure 12. 2D projection of the initial fingerprint database and the encoded fingerprint database.
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(a) (b) 

Figure 13. Confusion matrix of localization recognition results for the original database and bal-
anced database. Subfigures (a) shows the location identification result with unbalanced fingerprint,
and subfigures (b) shows the identification result after SASMOTE processing.

Finally, we use SASMOTE to complement the imbalance fingerprint database and
compare it with the existing oversampling approaches, e.g., Gaussian_SMOTE [16] and
Kmeans_SMOTE [17]. In addition, several good oversampling methods that have ap-
peared recently are also used for comparison, such as NANSMOTE [23], FCSMI [24], and
ASNSMOTE [25]. As shown in Figure 14, processed by various oversampling approaches,
the CDF curves of fingerprint databases with different imbalance ratios are indicated,
with the black line being the initial imbalance fingerprint database CDF curve. As shown
in Figure14a, the CDF curve of the fingerprint database with an imbalance ratio of 5 is
shown after the oversampling process. The red curve represents the CDF curve using the
Gaussian_SMOTE method. The probability that the error distance is within 1 m is 70%,
the probability of being within 1.5 m is 89%, and the probability of not exceeding 2 m is
93%. The blue curve represents the CDF curve using the Kmeans_SMOTE method, the
probability of error distance is less than 1 m is 67%, the probability of less than 1.5 m is 71%,
and the probability of not more than 2 m is 79%. The green curve represents the CDF curve
using the NANSMOTE method, the probability of error distance is less than 1 m is 64%,
the probability of being less than 1.5 m is 81%, and the probability of not exceeding 2 m is
91%. The cyan curve represents the CDF curve using the FCSMI method. The probability
of the error distance being less than 1 m is 66%, the probability of it being less than 1.5 m is
92%, and the probability of it not exceeding 2 m is 96%. The yellow curve represents the
CDF curve using the ASNSMOTE method. The probability of the error distance being less
than 1 m is 65%, the probability of it being less than 1.5 m is 90%, and the probability of it
not exceeding 2 m is 94%. The purple curve represents the CDF curve using the SASMOTE
method, the probability of error distance being less than 1 m is 64%, the probability it
is less than 1.5 m is 94%, and the probability it is not more than 2 m is 98%. It can be
seen that when the imbalance ratio is 5, the errors of each oversampling method are not
much different. The worst performance is Kmeans_SMOTE, even when the error distance
is greater than 1.2 m; the effect is not as good as the initial fingerprint library. The best
performer is our proposed SASMOTE.

As shown in Figure14b, the CDF curve of the fingerprint database with an imbalance
ratio of 10 is shown after the oversampling process. Using the CDF curve of the Gaus-
sian_SMOTE method, the probability of error distance within 1 m is 59%, the probability
within 1.5 m is 83%, and the probability of not exceeding 2 m is 91%. Using the CDF curve
of the Kmeans_SMOTE method, the probability of the error distance being less than 1 m is
67%, the probability of it being less than 1.5 m is 77%, and the probability is it not more
than 2 m is 86%. Using the CDF curve of the NANSMOTE method, the probability of the
error distance being less than 1 m is 57%, the probability of it being less than 1.5 m is 79%,
and the probability of it not exceeding 2 m is 88%. Using the CDF curve of the FCSMI
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method, the probability of the error distance being less than 1 m is 60%, the probability of
it being less than 1.5 m is 84%, and the probability of it not exceeding 2 m is 93%. Using
the CDF curve of the ASNSMOTE method, the probability of the error distance being less
than 1 m is 60%, the probability of it being less than 1.5 m is 84%, and the probability of it
not exceeding 2 m is 92%. Using the CDF curve of the SASMOTE method, the probability
of the error distance being less than 1 m is 62%, the probability of it being less than 1.5 m
is 89%, and the probability of it not exceeding 2 m is 96%. It can be seen that, affected by
the unbalanced ratio, the overall positioning accuracy decreases. Generally, when the error
distance is about 2.8, the CDF reaches 1.

As shown in Figure14c, the CDF curve of the fingerprint database with an imbalance
ratio of 20 is shown after the oversampling process. Using the CDF curve of the Gaus-
sian_SMOTE method, the probability of error distance within 1 m is 38%, its probability
within 1.5 m is 68%, and its probability of not exceeding 2 m is 74%. Using the CDF curve
of the Kmeans_SMOTE method, the probability of the error distance being less than 1 m
is 56%, the probability of it being less than 1.5 m is 62%, and the probability of it not
exceeding 2 m is 69%. Using the CDF curve of the NANSMOTE method, the probability of
the error distance being less than 1 m is 42%, the probability of it being less than 1.5 m is
54%, and the probability of it not exceeding 2 m is 71%. Using the CDF curve of the FCSMI
method, the probability of the error distance being less than 1 m is 48%, the probability of
it being less than 1.5 m is 72%, and the probability of it not exceeding 2 m is 81%. Using
the CDF curve of the ASNSMOTE method, the probability of the error distance being less
than 1 m is 43%, the probability of it being less than 1.5 m is 66%, and the probability of it
not exceeding 2 m is 74%. Using the CDF curve of the SASMOTE method, the probability
of the error distance being less than 1 m is 60%, the probability of it being less than 1.5 m
is 88%, and the probability of it not exceeding 2 m is 94%. It can be seen that when the
imbalance ratio is 20 and the number of samples of the minority class is 50, the traditional
SMOTE method is greatly affected, and the positioning accuracy is greatly reduced. Be-
cause our proposed SASMOTE uses SA encoder-decoder training before generating data,
the imbalance ratio of the initial fingerprint library has little effect on SASMOTE, as shown
in Figure 15.

Table 1 shows the localization error results obtained by using 1D-MobileNet with
different oversampling methods under different fingerprint imbalance ratios. This is
mainly through ARMSE, minimum error, and maximum error, evaluating their positioning
accuracy. The smaller the error, the better the positioning effect.

(a) (b) (c) 

Figure 14. Fingerprint database after different oversampling methods. (a) The localization results of
fingerprint database with an imbalanced ratio of 5. (b) The localization results of fingerprint database
with an imbalanced ratio of 10. (c) The localization results of fingerprint database with an imbalanced
ratio of 20.
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Figure 15. The localization results of the fingerprint database after SASMOTE.

Table 1. Location error of different oversampling methods.

Method Unbalanced Ratio:5 Unbalanced Ratio:10 Unbalanced Ratio:20
ARMSE Min. Max. ARMSE Min. Max. ARMSE Min. Max.

Initial dataset 0.85 0.06 2.64 1.14 0.07 3.00 1.54 0.09 3.00
Gaussian_SMOTE 0.74 0.06 2.51 0.84 0.06 2.75 1.28 0.06 2.97
Kmeans_SMOTE 0.91 0.03 2.68 0.95 0.03 2.84 1.34 0.03 3.00
NANSMOTE 0.79 0.04 2.54 0.86 0.04 2.78 1.40 0.04 3.00
FCSMI 0.72 0.03 2.43 0.80 0.03 2.67 1.18 0.03 3.00
ASNSMOTE 0.76 0.04 2.64 0.89 0.04 2.79 1.27 0.04 3.00
SASMOTE 0.70 0.02 2.53 0.72 0.02 2.57 0.76 0.02 2.62

In addition, we also evaluate the new fingerprint database generated by SASMOTE
with different methods, which contain our method (1D-MobileNet), DeepFi, and FIFS [36],
as shown in Table 2. After complementing the fingerprint database with an unbalanced
ratio of 5, the ARMSE distance is 0.13 m using the FIFS localization method. In this case,
the minimum error distance is 0.02 m and the MaxError distance is 2.84 m. Using the
DeepFi localization method, the ARMSE distance is 0.91 m. In this case, the minimum error
distance is 0.02 m and the MaxError distance is 2.74 m. After complementing the fingerprint
database with an unbalanced ratio of 10, the ARMSE distance is 1.17 m using the FIFS
localization method. In this case, the minimum error distance is 0.02 m and the MaxError
distance is 2.91 m. Using the DeepFi localization method, the ARMSE distance is 0.96 m. In
this case, the minimum error distance is 0.02 m and the MaxError distance is 2.78 m. After
completing the fingerprint database with an unbalanced ratio of 20, the ARMSE distance
is 1.21 m using the FIFS localization method. In this case, the minimum error distance
is 0.02 m and the MaxError distance is 3 m. Using the DeepFi localization method, the
ARMSE distance is 1.03 m. In this case, the minimum error distance is 0.02 m and the
MaxError distance is 2.83 m. So, employing the novel oversampling method, SASMOTE is
still applicable in the presence of other localization methods.

Table 2. Location error of different models after SASMOTE completed the fingerprints.

Method Unbalanced Ratio:5 Unbalanced Ratio:10 Unbalanced Ratio:20
ARMSE Min. Max. ARMSE Min. Max. ARMSE Min. Max.

FIFS 1.13 0.02 2.84 1.17 0.02 2.91 1.21 0.02 3.00
DeepFi 0.91 0.02 2.74 0.96 0.02 2.78 1.03 0.02 2.83
1D-MobileNet 0.70 0.02 2.53 0.72 0.02 2.57 0.76 0.02 2.62
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6. Conclusions

In this article, we proposed a novel deep learning-based oversampling method, the
Self-Attention Synthetic Minority Oversampling Technique (SASMOTE), called SAMOTE,
to solve the imbalanced fingerprint database in WiFi localization. SASMOTE fuses the
highly popular self-attention module from [34] and SMOTE algorithm [18]. We design a
multi-layer encoder-decoder to compress and recover high-dimensional CSI fingerprint
data features. Among them, each layer of encoder and decoder is integrated with a self-
attention module to help the model enhance its feature representation ability. Then, the
SMOTE algorithm is used to synthesize the minority class samples to make the database
achieve class balance. Additionally, we specially construct an imbalanced fingerprint
database for training and validation of the proposed model. In the verification stage, we
also propose an improved localization model, 1D-MobileNet, to verify the localization
accuracy of fingerprints on the processed balanced database, thereby further evaluating
the superiority of our algorithm.

Numerous experimental studies have shown that SASMOTE outperforms many ex-
isting oversampling methods. In the case of imbalanced fingerprint database caused by
removing outliers or missing fingerprints, the method can effectively generate CSI data
with similar features to minority class RP to complement its fingerprint database. Further-
more, the performance of fingerprint databases generated by SASMOTE is stable when
tested in different localization method models. We believe that the key to the success of
SASMOTE lies in the efficient feature extraction of high-dimensional fingerprint data by the
self-attention encoder-decoder. This enables the classical oversampling method to generate
higher quality samples to complement the imbalanced database. Unlike GAN, which
is biased to generate 2D feature images, our proposed method attempts an end-to-end
implementation of CSI data. That is, the original features of the data are retained, which is
more conducive to the application of the localization system in mobile.

The purpose of our article is to propose an idea based on deep learning to effectively
solve the problem of fingerprint data imbalance encountered in practice. However, this
research topic has much room for improvement in the future. First, our experimental
environment is limited, and the proposed algorithm cannot guarantee stable performance
in different experimental environments. In addition, with the development of deep learning
technology, it is a meaningful direction to use better models to directly solve the imbalance
problem of the fingerprint database in an end-to-end manner. In the future, we will develop
our work around these two points.
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