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Abstract: With the continuous increase in the use of social networks, social mining is steadily becoming a
powerful component of digital phenotyping. In this paper we explore social mining for the classification of
self-diagnosed depressed users of Reddit as social network. We conduct a cross evaluation study based on
two public datasets in order to understand the impact of transfer learning when the data source is virtually
the same. We further complement these results with an experiment of transfer learning in post-partum
depression classification, using a corpus we have collected for the matter. Our findings show that transfer
learning in social mining might still be at an early stage in computational research and we thoroughly discuss
its implications.

Keywords: cross-evaluation; depression; machine learning; post-partum depression; social monitoring.

1 Introduction
The Internet and social media have become major sources of health information, providing both broad and
targeted exposure to such information, as well as facilitating information-seeking and sharing. As people
increasingly turn to social media for news and information, these platforms can serve as novel sources
of observational data for infodemiology, public health surveillance, as well as tracking health attitudes
and behavioral intention. Because social media services collect and store a substantial amount of public
information about its users, they have gained a high interest from the computational research community over
the last decade. That is mainly due to the fact that they represent important sources for the extraction of health
insights. The ubiquitous use of social media platforms, many of which allow users to remain anonymous,
drives the opportunity for non-intrusively tracking behavioral patterns over time without disclosing personal
information.

The recent pandemic, among other devastating implications, has shown that mental healthcare is one
of the clinical area with most under-supply in diagnosis and care. Major challenges exist with the diagnosis,
prevention and treatment of mental illnesses, and researchers are working to fill the gap and ensure universal
access to quality mental healthcare services [1]. Machine learning is poised to change many fields of health,
including psychology and enable more personalized healthcare provision in several areas, including mental
health. The wealth of information provided by social media users in combination with machine-learning
technologies have the ability to enable automated psychological assessment and diagnosis [2]. A growing
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body of research has begun to suggest a potential role for technology in helping to address the automated
analysis and monitoring of social media language use in the mental health spectrum [3–5].

While technology cannot and should not replace the role of the clinician, it may provide clinicians
personal insights into a patient’s well-being state and mood, that ultimately adds value to the care process
[1]. However, the use of machine learning to diagnose people through social media is a young field with many
challenges to overcome. While the large nature of data in public social mining makes it difficult for individuals
to be targeted and identified, how the personal information is shared as well as what type of analysis are made
have some inherent privacy concerns that only recently started being addressed. Another challenge that has
only been tackled in the last couples of years is understanding to what degree these machine learning models
are supported by clinical evidence and how generalized they are. In a pioneer study on the matter, Ernala
et al. [6] raise awareness on these challenges that are under-explored in the current research scenario of social
mining for mental health. On a more recent study, Harrigian et al. [7] conduct a study on the generalization of
different machine learning approaches. Their results are not flattering for the mental health mining research
community and lead to further recommendations on how we should avoid overfitting such solutions to a
given dataset or problem.

In this paper we aim to contribute to understanding the challenge of approach generalization in social
mining for the classification of self-diagnosed depresses users, based on their writing history on social media.
As such, we conduct an exploratory study on the matter of transfer learning in mental health mining. We
explore two publicly available datasets of Reddit posts of self-diagnosed depressed users with the goal of
classifying depressed users. Since the two datasets contain virtually the same type of information and the
source is the same, we cross-evaluate machine learning models trained on one dataset and evaluated on the
other. We do so in an attempt to understand how much the machine learning models developed generalize over
different datasets. Moreover, we evaluate the same models on a post-partum depression (PPD) Reddit dataset
that we collected for the matter. Current scientific literature unveil little prior work focused on predicting PPD
based on a mother’s social media history or usage. One possible explanation is the difficulty of prospectively
engaging mothers in a screening process that accesses their digital writings, and consequently behaviors,
during a physically and emotionally taxing time. Despite such challenges, we believe social media provides
a rich source of information, yet to be tapped for clinical use, that reports on a person emotional well-being.

This paper is organized in five more sections. Section 2 overviews the current state of social mining in
the mental health spectrum. We present the methodology we followed in Section 3. Results are presented in
Section 4 and their implication is discussed in Section 5. We draw our final remarks in Section 6.

2 Related works
Previous research has reported that social media activity could be used to understand mental health in
individuals and could also enable more personalized methods for providing timely mental healthcare. Such
statements are also supported by research initiatives in the form of shared tasks, such as Conference and
Labs of the Evaluation Form (CLEF) eRisk1 or Computational Linguistics and Clinical Psychology (CLPsych)
Workshop.2 These workshops appeal to an interdisciplinary audience sharing findings, models, and methods
to increase access to and scalability of mental health care, by providing a closer union between clinical
psychology and natural language processing. They release extensive annotated corpora, that grow each
year, containing public, anonymous texts of thousands of users, retrieved from social networks and actively
contribute to the development of this research area.

On the early days of social mining, several studies focusing on mental health understanding through
social network data have been conducted using Twitter texts. Twitter was the preferred data source as it

1 https://early.irlab.org/.
2 https://clpsych.org/.
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was the first social media network to provide an application programming interface (API) that allowed data
retrieval. Coppersmith et al. [3] presented a method for gathering data for a range of mental illnesses along with
proof-of-concept results that focus on the analysis of four mental disorders: post-traumatic stress disorder,
depression, bipolar disorder, and seasonal affective disorder. Their ultimate goal was to enable the ethical
discussion regarding the balance between the utility of such data and the privacy of mental health related
information. Later on, Coppersmith et al. [4] released a Twitter dataset of users who have attempted suicide,
matched by neurotypical control users. Language modeling techniques were employed to classify these users,
along with open government data to identify quantifiable signals that can relate them to psychometrically
validated concepts associated to suicide.

In the spectrum of social mining for the identification of depression, Harrigian et al. [7] show that the
use of sentiments, emotions, and negative words in a statement is very influential in determining the level
of depression. A depressed person more often uses negative words that indicate his self-despair, prolonged
sadness, even suicidal thoughts. Mendu et al. [8] implemented a framework for constructing rich feature
spaces from digital text communications and applied it to a dataset of private Facebook messages in a
college student population. Their results show language usage in relation to validated measures of trait-level
anxiety, loneliness, and personality [8]. Yadav et al. [9] explored a new dimension of social media in Twitter
to identify depressive symptoms. They also introduced a robust BERT model that learns to automatically
discover complementary features required to identify the symptoms with the help of the auxiliary task of
figurative usage detection. Another recent model, STATENet, is a transformer based model that augments
linguistic models with historical context for providing cues for suicide risk assessment on social media [10].

While there are many works on the topic of social mining for depression screening, not many of them
address PPD.

De Choudhury et al. [11, 12] and more recently, Trifan et al. [13] have addressed the identification and
prediction of mothers at risk of PPD using social media data coming from Facebook or Reddit. De Choudhury
et al. analyzed more than just the text of a post and their prediction models took into consideration other
types of interactions with the social networks, such as times and frequencies of likes and comments, among
others. Their results, which were correlated to mothers’ answers to depression questionnaires, round up to
accuracies up to 80%.

Following pregnancy and childbirth, PPD is a disabling but treatable mental disorder that affects
approximately 10–15% of women [14]. The causes of PPD are not known. However, genetic and epigenetic sus-
ceptibility [15–17], hormonal changes [18], psychological, and social problems and especially stress [18] have
been implicated. PPD is often comorbid with anxiety [19], and is strongly predicted by an antepartum history
of either depression or anxiety [20–22]. Those suffering from it are at higher risks of substance abuse, anxiety,
and developing chronic diseases [18, 23]. Furthermore, PPD negatively impacts the mother–infant relation-
ship [14, 24], which can have long term consequences on the cognitive, social, and emotional development
of the child [25].

Despite the widespread use of prenatal care and the increasing adoption of ante- and PPD screening
tools, PPD often goes undiagnosed or untreated. For example, Ko et al. [26] estimated nearly 50% of pregnant
women who experienced a major depressive episode in the past year received treatment, and Vesga-López
et al. [27] estimated the prevalence for untreated, postpartum mood disorders to be 85%. Clearly, there is an
opportunity to enhance existing screening tools and protocols to detect PPD, and to promote better treatments.

3 Implementation
In this paper we first tackle a binary classification problem of depressed online users based on two publicly
available datasets. We explore machine learning algorithms along with psycholinguistic features. Since both
datasets were built using posts collected from the same social network, we are interested in a cross evaluation
process in order to understand the impact of the data collection process on the classification results, as well as
the interoperability of such datasets. We are interested in understanding how well does a model trained on one
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dataset perform on a different dataset and whether this is an indicator of the generalization or reproducibility
of the approach. Moreover, we explore transfer learning by evaluating one of the previous models on a PPD
dataset collected from the same social network, Reddit.

3.1 Corpora description
Reddit is a social media network of communities that aggregate users who share a common interest for a
given discussion topic. Discussion topics are called subreddits and many of them are public, meaning that
anyone can read the post published within these subreddits. Reddit users are given a randomly generated
username, which makes it impossible to identify a person based on the username. Moreover, it provides an
API for crawling public posts. Because privacy is guaranteed and public posts can be easily collected by
programmatic means, Reddit has become one of the most popular social network data source among natural
language processing (NLP) researchers. For this matter, we considered Reddit a suitable and privacy insuring
social media scenario for building a pilot corpus of PPD prediction based on users’ postings. The two publicly
available datasets used in this work are also composed of Reddit posts and are detailed next.

The Reddit Self-reported Depression Dataset (RSDD) proposed by Yates et al. [28] consists of all Reddit
users who made a post between January and October 2016. Using high-precision patterns of self-reported
diagnosis, 9210 diagnosed users were matched with 107,274 control users. The Losada and Crestani test
collection [29] comprises 137 depressed users matched by 755 control users. Users that expressed self-reported
depression diagnoses were obtained by running specific searches against Reddit and then their writings were
manually curated by the authors of the dataset. Both datasets contain the writings history of each user, from
which posts that explicitly express the diagnosis were removed. We consider this curation relevant for two
main reasons. First, it zeroes the possibility of wrongly classifying people engaged in social forums that share
experiences of relatives or families, as well as people who might be seeking to help the ones depressed, such
as doctors addressing the topic of depression. Moreover, it is relevant in the context of replicating a scenario
in which depressed users do not focus on their disease and that might even be unaware of it, which turns
this prediction even more ubiquitous. This relates to the possibility of identifying people that are unaware of
their mental health status through heterogeneous texts.

With respect to the PPD dataset, we build a corpus of PPD related posts matched with control posts using
the Reddit API.3 This API supports developers in building open source products powered by Reddit. We built
a Reddit crawler using PRAW – Python Reddit API Wrapper4 and scraped the following public subreddits for
PPD related posts: r/postpartumdepression, r/MyPPDSupport, r/Postpartum_Depression and r/PPDepression.
This process led to the collection of 512 posts, that were manually inspected and refined in three different
stages. First, the 512 titles were assessed for relevance. Titles such as “Share your story here”, “Volunteers
needed for a study” or containing other similar advertising information were removed. Next, for each of the
PPD related post, its comments and replies were retrieved. Finally, all posts containing only a web link or
short phrases such as “Thank you for the support” were removed. By the end of this third step of data cleaning
we were able to harvest 491 PPD related posts. These posts were matched with 991 control ones, retrieved
from a parenting subreddit – r/beyondthebump. The data collection process for the parenting posts ignored
all posts that contained the following PPD related terms: postpartum depression, PPD and depression. We
chose to retrieve parenting posts as control posts of the corpus as the research question we are posing relates
to new mothers and the mother–infant relation.

3.2 Text preprocessing
Prior to post classification, the preprocessing of the Reddit posts followed a standard pipeline in NLP. Posts
were lowercased and tokenized, all non-alphabetic characters were removed and words with less than 2

3 https://www.reddit.com/dev/api/.
4 https://praw.readthedocs.io/en/latest/.
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Table 1: Absolutist words validated by Al-Mosaiwi et al. [30].

Absolutely Constant Every Never
All Constantly Everyone Nothing
Always Definitely Everything Totally
Complete Entire Full Whole
Completely Ever Must

characters were filtered out, along with other stopwords. Tokenization is the process of separating a piece
of text into smaller units called tokens. Here, tokens were considered words with more than two letters.
Stopwords are the most common words in any natural language. For the purpose of analyzing text data and
building NLP models, these stopwords do not add much value to the meaning of the text, therefore we have
removed them in this pre-processing step. The NLTK stopword list was used for this purpose.5

3.3 Psycholinguistic features
The background study on the use of social media for mental health status prediction revealed a series of
cognitive features that characterize the writings of depressed users. We explored the use of some of these
patterns as features to be considered by a rule based estimator, which we developed with the intent of
understanding their impact on the classification of depressed users. We describe next the ones on which we
focused in this paper.
– Absolutist words (Table 1) – a recent study on absolutist thinking, which is considered a cognitive

distortion by most cognitive therapies for anxiety and depression, showed that anxiety, depression,
and suicidal ideation forums contained more absolutist words than control forums [30]. The study by
Al-Mosaiwi et al. resulted in a validation of an absolutist words dictionary that was used in this paper.

– Self-related words – depressed users tend to use more often self-related words (such as: I, myself, mine)
in their writings [31, 32].

– Posts length – depressed and suicidal people tend to write more words than control users [5].

3.4 Binary classification
As a first approach, we followed a standard natural language processing stream for text classification. We
considered Bag of Words (BoW) features and term frequency-inverse document frequency (tf-idf) feature
weighting for different classifiers: multinomial naive Bayes, passive aggressive classifier and support vector
machine (SVM) with Stochastic Gradient Descent. A second approach took into consideration the psycholin-
guistic features previously introduced, that we modelled as features of a rule-based estimator. We then
considered a feature union of equal weights for tf-idf and the output of the rule-based estimator, combined
with a passive aggressive classifier. The code was written in Python6 and we used scikit-learn [33] as machine
learning framework.

4 Application
Because the two depression datasets were considerably different in size, we opted for using the one proposed
by Yates et al. [28] as reference and cross evaluate its performance on the one introduced by Losada and

5 https://gist.github.com/sebleier/554280.
6 www.python.org.

https://gist.github.com/sebleier/554280
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Crestani [29]. For each datasets, we present the statistics of the training and test subsets in Tables 2 and 3
respectively.

These statistics show for each of the two datasets a sharp difference in the number of self-related words
and the total number of words used by user. This is valid for both training and test collections. When it comes
to absolutist words, we note that in the Losada and Crestani dataset there is no clear distinction between the
number of absolutist words used by control and depressed users, both in the training and test collection. This
explains the low recall value obtained in the classification when relying on the rule based estimator.

Table 4 presents the classification results for each of the datasets when the training was done on the
respective training corpus and evaluation was measured on the corresponding test corpus.

Table 2: Statistics of the training datasets.

[28] [29]

Control Depressed Control Depressed

Number of subjects 36197 3112 403 83
Avg. number of words per user 20820 69556 21318 16416
Avg. number of absolutist words 189 701 153 154
Avg. number of self-related words 579 2411 430 731

Table 3: Statistics of the test datasets.

[28] [29]

Control Depressed Control Depressed

Number of subjects 36218 3112 352 54
Avg. number of words per user 21164 70305 21933 15370
Avg. number of self-related words 590 2435 529 637
Avg. number of absolutist words 189 709 167 145

Table 4: Classification results.

Method Prec. Rec. F1 Acc

[28]

Support vector machine 0.76 0.62 0.68 0.95
Multinomial Bayes 0.61 0.47 0.53 0.94
Passive aggressive 0.64 0.64 0.64 0.94
Feature union rule-based 0.68 0.72 0.70 0.95
[28] CNN 0.75 0.57 0.65 N/A
[28] FastText 0.37 0.70 0.49 N/A

[29]

Support vector machine 0.91 0.20 0.33 0.89
Multinomial Bayes 0.52 0.64 0.57 0.87
Passive aggressive 0.70 0.38 0.50 0.89
Feature union rule-based 0.72 0.14 0.24 0.87
[29] baseline 0.62 0.59 0.65 N/A
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For the Yates et al. dataset the feature union estimator provides the best results in terms of Recall and F1
score, while support vector machine leads to an improved precision. In the case of the Losada and Crestani
dataset best results are obtained by the Multinomial Bayes predictor, while feature union results are probably
negatively influenced by the use of absolutist words as a feature.

The results of the cross evaluation are presented in Table 5. For this experiment, we trained the model on
the entire Yates et al. dataset and we considered the whole Losada and Crestani dataset as test corpus.

The results obtained in the cross evaluation are slightly worse than when training and testing on the
same dataset. While these results are preliminary and probably intuitive for most readers, we consider such
cross evaluations important for researchers to understand whether their work is useful outside a well-defined
scenario. Moreover, these results represent evidence for supporting research into understanding how much
does data collection and curation contribute for the prediction or detection biases.

Our final experiment targeted the relation between generalized depression and PPD. For this purpose,
we employed one model trained on the RSDD. We show the results obtained with four different estimators, as
well as the model trained on the RSDD in Table 6. These results demonstrate that it is possible to distinguish
PPD related context from generalized user writings with quite a high degree of confidence. However, the use
of a model trained on a depression dataset leads to less accurate results.

Table 7 summarizes the results obtained after removing depression related words from the collected
corpus. As all four estimators led to similar results, we list only the ones obtained with the passive aggressive
classifier as it performed slightly better among the four. These results show that there is more to be explored in
the psycholinguistics and writing style of mothers suffering from PPD than just the simple use of depression
related wording.

Table 5: Cross evaluation results.

Method Prec. Rec. F1 Acc

Support vector machine 0.46 0.38 0.42 0.83
Multinomial Bayes 0.19 0.19 0.19 0.75
Passive aggressive 0.40 0.62 0.49 0.80

Table 6: Comparative results on classifying PPD. These results were obtained prior to
the removal of depression related terms from the corpus.

Method Prec. Rec. F1 Acc

Stochastic gradient descent (l1 = 0.95, loss = hinge) 0.90 0.88 0.89 0.93
Multinomial naive Bayes (alpha = 1) 0.95 0.81 0.87 0.92
Perceptron 0.83 0.87 0.85 0.89
Passive aggressive (loss = sqrt_hinge) 0.90 0.89 0.9 0.93
RSDD trained model 0.95 0.43 0.6 0.8

Table 7: Comparative results on classifying PPD after removing
depression related words from the corpus.

Method Prec. Rec. F1 Acc

Passive aggressive (loss = sqrt_hinge) 0.88 0.53 0.66 0.81
RSDD trained model 0.91 0.22 0.36 0.73
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5 Discussion
The use of machine learning to diagnose people through social media is a young field with many challenges
to overcome. Samples may be biased toward younger, technologically savvy individuals, yet research on
psychological assessment of persons through social media using machine learning demonstrates promise
[2]. Apart from this, interoperability of both datasets and computational models of social mining are only
now being explored by the research community. This simple study showed that while transfer learning holds
the a great research potential in terms of reproducibility and interoperability, more attention should be paid
on developing computational models that could work outside of the box of the specific problem that they
originally try to solve.

While this study is not free from limitations, we consider it relevant for understanding, on one hand,
how data collection impacts the results of a specific detection model and what is the current status of dataset
interoperability when it comes to social media writings. Data availability has always been an issue in the era
of Big Data and while consistent efforts are being made in order to securely gather social media writings, we
would like to understand if data collection itself is a source of bias or whether models trained on a given
dataset maintain their performance and there is indeed a knowledge transfer when used on a different dataset.

On the other hand, with respect to transfer learning for PPD, we acknowledge that one limitation of our
study in the PPD analysis is that the data collection focused on specific groups of Reddit users, which might
not entirely replicate the complex reality of PPD. Nevertheless, we foresee the continuation of such studies
as tools for pushing forward the development of the right types of early interventions, as means to provide
more personalized and precise healthcare. Patients’ language on social media may provide a valuable source
of information for clinicians outside the context of clinical encounters, and computational language analysis
tools show significant promise [34].

Our experiments show that substantial loss occurs when transferring between datasets, but also between
clinical context. This stands as a preliminary proof that researchers tend to overestimate the performance
of computational models and neglect their interoperability aspects. As the social mining community aspires
to introduce computational models into the clinical setting, it is imperative that we develop such mod-
els following standardized and generalized approaches, both in terms of data collection and models
evaluation.

6 Conclusions
Social media mining has the potential of extending the definition of digital phenotyping by contributing
with new insights on a person’s well-being based on her online writings. Several studies focus on developing
models for early prediction and high accuracy classification of depressed online users, but there is little
work done so far in ensuring study interoperability and reproducibility. Apart from building precise and fast
models, we are interested in building models that can be reused even when data changes.

This study presented cross evaluation results when using one public dataset for training and a different
one for testing. These results show that cross evaluation scores are lower than when training and testing
on the same dataset. These results are complemented with an experiment of transfer learning, in which we
evaluate a model trained on a depression corpus in the context of PPD. The results of both experiments show
that there is a certain degree of loss that occurs when transferring from on corpus to another and from one
clinical context to a slightly different one. Even though this outcome is somehow intuitive, we hope that this
paper could start the discussion on the topic of reusability and encourage scientist to test their approaches
“out of the box”.
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manuscript and approved submission.
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