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1  | INTRODUC TION

Most cancers develop genomic instability, which can be categorized 
as either chromosomal instability (CIN) or microsatellite instability 
(MSI).1 CIN encompasses a wide variety of chromosomal abnormal-
ities, including chromosome-number alterations (ie, aneuploidy) and 
chromosomal rearrangements,2,3 whereas MSI is defined as changes 
in the lengths of microsatellite fragments containing short repetitive 
sequences.4 Mismatch repair (MMR) status is a major determinant of 
whether CIN or MSI is induced; MSI is more likely to develop in cells 
with MMR deficiency.5 Both CIN and MSI are induced through erro-
neous repair of DNA double-strand breaks (DSB) arising due to repli-
cation stress.6

Cancer develops as a consequence of mutations in cancer-driver 
genes. However, recent studies have illustrated that mutations, in-
cluding those in cancer-driver genes, accumulate in association with 

age, even in pathologically normal organs.7,8 This indicates that can-
cer development is not directly triggered by those mutations, raising 
the question of what the actual trigger might be. Recent studies have 
suggested that one trigger is genomic destabilization. Indeed, can-
cer development is tightly associated with accumulation of genomic 
abnormalities, which are rarely observed in normal organs even at 
advanced ages but are widely observed after tumorigenic progres-
sion.9,10 In addition, a recent in vitro study revealed that genomic de-
stabilization is associated with mutagenesis and acts as a trigger for 
clonal evolution of cells with defects in defense systems such as the 
ARF/p53 pathway.6

In this manuscript, we review the current knowledge about the 
cellular backgrounds and mechanisms that increase the risk of ge-
nomic destabilization (ie, the genomic instability induction associ-
ated with CIN and MSI) and other pathways that induce genomic 
destabilization-associated mutagenesis.
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Abstract
Cancer develops through multiple rounds of clonal evolution of cells with abrogated 
defense systems. Such clonal evolution is triggered by genomic destabilization with 
associated mutagenesis. However, what increases the risk of genomic destabiliza-
tion remains unclear. Genomic instability is usually the result of erroneous repair of 
DNA double-strand breaks (DSB); paradoxically, however, most cancers develop with 
genomic instability but lack mutations in DNA repair systems. In this manuscript, we 
review current knowledge regarding a cellular state that increases the risk of genomic 
destabilization, in which cells exhibit phenotypes often observed during senescence. 
In addition, we explore the pathways that lead to genomic destabilization and its as-
sociated mutagenesis, which ultimately result in cancer.
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2  | RISK OF GENOMIC DESTABILIZ ATION 
AND THE A SSOCIATED CELLUL AR STATE

2.1 | Genomic instability and cancer risk

Genomic instability caused by erroneous repair of DSB is asso-
ciated with cancer development. This phenomenon is clearly il-
lustrated in cells harboring mutations in DNA repair systems. 
For example, in cells with mutations in the homologous recom-
bination (HR) factors BRCA1 or BRCA2, genomic destabilization 
is strongly induced, predisposing the cells toward carcinogen-
esis.11,12 Paradoxically, however, most cancers do not harbor any 
background mutations in DNA repair systems, despite the asso-
ciation between cancer development and genomic instability.13,14 
This poses the question of what increases the risk of genomic 
destabilization in normal cells.

2.2 | DNA double-strand breaks accumulate 
when normal cells exhibit senescence-
associated phenotypes

Recent reports have revealed that the DSB repair-defective back-
grounds that jeopardize genomic stability are more likely to ap-
pear when cells show senescence-associated phenotypes. Cellular 
senescence, defined as irreversible cell-cycle arrest, is generally 
induced in association with a series of phenotypes, including per-
sistent DSB accumulation, increased expression of p16Ink4A and 
the senescence-associated secretory phenotype, and increased 
activity of senescence-associated β-Gal.15,16 In fact, normal cells 

can accumulate persistent DSB that induce senescence in vitro 
and aging in vivo.15 Although repair factors localize to these DSB, 
they tend to persist there without completing repair, suggesting 
repair deficiency.17,18 Indeed, those cells are specifically defec-
tive in the repair of replication stress-associated DSB, which can 
cause genomic destabilization.19 In addition, cells that accumulate 
DSB are likely predisposed to genomic destabilization.20,21

Normal cells generally undergo growth arrest after serial prolif-
eration (Figure 1A). The growth-arrested cells can be divided into 
those that are in a quiescent state (Figure 1B) and those that are in 
a state characterized by senescence-related phenotypes and DSB. 
Cells in the former state arrest cell-cycle progression without DSB, 
as has been widely observed in the cells of healthy organs preserving 
homeostasis, such as the liver. By contrast, cells in the latter state are 
often observed in aging organs. These latter cells might not all be in 
a uniform state, because DSB accumulate as senescence progresses. 
Therefore, some cells could be in a pre-senescent state (Figure 1C) 
and others in a canonical senescent state (Figure 1D). Genomic de-
stabilization likely occurs when cells accumulate DSB and are still 
progressing the cell cycle.6 Escaping from senescence, clonal evolu-
tion of cells with abrogated defense systems will be induced among a 
genomic destabilized cell (Figure 1: see cells developing to the state 
shown in Figure 1E).

The risk of cancer generally increases with age and especially 
with genomic instability.22,23 The main cause of cancer is probably 
genomic destabilization. Even in normal cells with functional DNA re-
pair systems, the risk of genomic destabilization increases with senes-
cence-associated phenotype expression. First, senescence-associated 
phenotypes are generally induced in response to DSB when the risk of 
genomic destabilization is elevated.9,10 Second, these phenotypes are 

F I G U R E  1   Alterations of cellular state in normal cells. Normal cells (A) eventually undergo growth arrest (B-D) after serial proliferation. 
Growth-arrested cells can continuously preserve the quiescent state (B), as often observed in normal organs preserving tissue homeostasis. 
However, cells in this state are sensitive to exogenous growth stimuli that enforce cell-cycle progression, which leads to the accumulation 
of replication stress-associated DNA double-strand breaks (DSB) (C) in cells that exhibit senescence-associated phenotypes. In situations 
where cells escape from the induction of the senescent state (D), genomic destabilization could be triggered by those DSB, further 
increasing the risk of clonal evolution of cells with abrogated defense systems. Cancer develops after multiple rounds of clonal evolution (E)
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further induced in response to increased amounts of cytosolic DNA, 
a consequence of chromosomal mis-segregation caused by genomic 
destabilization.24 Given that genomic destabilization can trigger clonal 
evolution of cells with abrogated defense systems,6 cells with accumu-
lated DSB and senescence-associated phenotypes could be major con-
tributors to cancer development, which usually occurs in the elderly.

2.3 | Repair-defective cellular background

It remains unclear how senescent cells could become defective in 
repairing DSB. This phenomenon is at least partly due to a reduction 
in the H2AX level: H2AX, which mediates the damage response by 
forming γH2AX (phosphorylated H2AX at S139) foci at sites of dam-
age,25 is significantly downregulated when the growth rate of normal 
cells slows.26 This reduction in H2AX level mediates two separate 
cellular phenotypes, formation of the quiescent cellular state and 
induction of a repair-defective state.27 Cells that express very lit-
tle H2AX can remain continuously quiescent (Figure 1B), like cells 
in normal organs under tissue homeostasis.26 However, such cells 
are sensitive to exogenous growth stimuli that enforce cell-cycle 
progression, which results in the accumulation of replication stress-
associated DSB and an increased risk of genomic destabilization 
(Figure 1C).6,9 Thus, the H2AX-diminished state is associated with 
preservation of homeostasis but is simultaneously associated with 
a repair-defective background, posing the risk of future genomic 
destabilization (Figure 1B). This is supported by the phenotypes of 
H2AX-knockout (KO) cells, which exhibit elevated genomic instabil-
ity; however, H2AX-KO mice are not predisposed to cancer.28

Although changes in the levels of H2AX and γH2AX are closely 
associated with the risk of genomic destabilization, these changes 
do not explain all of the genomic instability phenotypes observed in 
cancer cells. For example, cancer cells can recover H2AX expression, 
but often continue to exhibit higher rates of genomic changes,26 im-
plying the involvement of another mechanism that further increases 
the risk of genomic destabilization.

2.4 | Role of ARF/p53 in the formation of the 
quiescent state

As illustrated in an in vitro model, formation of the H2AX-
diminished quiescent state is regulated by both ARF and p53 
(Figure 1B). Therefore, this state can only be induced in nor-
mal cells, and not in cancer cells or cells transformed in vitro 
(Figure 1E).26,29 Given that the H2AX-diminished state is widely 
observed in normal organs at steady state, quiescence is likely 
to be associated with preservation of homeostasis and cancer 
suppression.26

Among the targets of p53, those involved in cancer suppression 
remain unclear. Given that most cancers without mutations in TP53 
develop following loss of the CDKN2A gene, which encodes ARF,30,31 
the cancer-suppressive function of p53 is probably ARF-dependent. 

However, most p53 targets currently known were discovered in 
cancer cells harboring mutations in ARF, implying that the role of 
p53 in cancer suppression might be distinct from the identified 
p53 targets. In fact, most currently known p53 targets are likely 
to be involved in acute damage responses but are dispensable for 
the primary cancer-suppression effect.32-34 Importantly, the ARF-
dependent cancer-suppression role by p53 may involve the H2AX-
diminished quiescent state induction, because this state can only 
arise when both ARF and p53 are correctly regulated (Figure 1B). 
However, it remains unclear how the ARF/p53 pathway mediates 
H2AX downregulation.

3  | GENOMIC DESTABILIZ ATION 
TRIGGERED BY REPLIC ATION STRESS

3.1 | Replication stress-triggered chromosomal 
instability induction

Mismatch repair (MMR)-proficient cells usually become defec-
tive in the repair of replication stress-associated DSB and de-
velop senescent-associated phenotypes when the risk of CIN is 
elevated.15 Such CIN-type genomic instability is induced through 
erroneous repair of those DSB,2,19 which are primarily targeted 
by factors involved in HR. A wide variety of genomic alterations 
arise in the resultant cells, including ploidy abnormalities,5 chro-
mosome rearrangements and losses,35,36 gene amplifications and 
deletions,37 loss of heterozygosity (LOH),38-40 and cytosolic DNA 
(ie, micronuclei).41,42

One outstanding question is how these multiple types of ge-
nome-wide alterations are induced. The answer probably has to 
do with the repair-pathway switch (Figure 2). In fact, although 
replication stress-associated DSB are the primary target of HR, 
most genomic rearrangements are joined through the error-prone 
non–homologous end joining (NHEJ) pathway,43,44 suggesting a 
switch from HR to NHEJ (Figure 2A). This could be the result of 
cell-cycle carryover of DSB, as seen during tetraploidization.19 
Replication stress-associated DSB arise in cells displaying senes-
cence-associated phenotypes, and are, therefore, often carried 
over into the M phase.19 Such carryover can result in tetraploid-
ization because mitotic DSB cause chromosomal mis-segregation, 
leading to failure of cytokinesis.19,45 Importantly, this process 
could also cause the HR–NHEJ switch, because HR does not oper-
ate during G1 phase when DSB are usually repaired by NHEJ.46,47 
After the collapse of HR intermediates at entry into G1 phase, 
the DSB end must remain free until a partner DSB end is paired 
by factors involved in NHEJ. This provides the necessary time 
window for the generation of genome-wide structural variants 
such as chromosomal translocations and deletions. Chromosomal 
translocations associated with DSB carryover have been demon-
strated in vitro.48

DNA double-strand breaks carryover into M and G1 phases 
mediates other CIN-associated genomic alterations as well. 
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Micronuclei are induced in association with mitotic DSB-mediated 
chromosomal mis-segregation, resulting in split chromosomal 
fragments.49 Besides tetraploidization, aneuploidy is also widely 
induced during this process through imbalanced chromosomal 
segregation and loss of DNA due to micronuclei formation.49,50 In 
addition, because HR does not operate effectively during CIN in-
duction, LOH could also be induced through aberrant HR between 
allelic chromosomal loci.

3.2 | Replication stress-triggered microsatellite 
instability induction

microsatellite instability (ie, insertion/deletion errors specifically 
induced at repetitive loci) is widely observed in MMR-deficient 
cancer cells.1 It was once thought that MSI was induced by repli-
cation errors under MMR deficiency.51-53 However, recent studies 

suggest otherwise. In fact, MSI is triggered by replication stress-
associated DSB, as an alternative to CIN (Figure 2B).6,54 Replication 
stress-associated DSB in MMR-proficient cells persist continuously 
throughout S and M phases (Figure 2A), whereas DSB in MMR-
deficient cells are primarily recognized by HR factors, but are ef-
fectively repaired by microhomology-mediated end joining (MMEJ) 
concomitant with induction of MSI6 (Figure 2B). Microsatellite loci 
(ie, short repetitive sequence patches) are naturally advantageous 
for microhomology annealing and associated end joining; how-
ever, multiple annealing positions could be used, including those 
with small insertions or deletions, resulting in MSI induction.55-57 
Because this results in DSB elimination, MSI induction is associ-
ated with suppression of CIN.6

Although it remains unclear how the HR–MMEJ switch is 
specifically induced in an MMR-deficient background, it is prob-
ably associated with complex formation.58 In fact, MMR factors 
form large complexes with many repair factors, illustrated by 

F I G U R E  2   Replication stress triggers induction of chromosomal instability (CIN) or microsatellite instability (MSI). Cells become sensitive 
to replication stress when they exhibit senescence-associated phenotypes. Both CIN and MSI are triggered by replication stress-associated 
DNA double-strand breaks (DSB) that are primarily targeted by repair factors involved in HR, which is not active in the senescent state. (A) 
In a mismatch repair (MMR)-proficient background, those DSB are persistent but eventually undergo erroneous repair by non–homologous 
end joining (NHEJ), which can induce multiple types of chromosomal abnormalities, such as aneuploidy (tetraploidy), chromosomal 
translocations and deletions, and formation of micronuclei. (B) Under an MMR-deficient background, the DSB are erroneously repaired by 
MMEJ. During this process, MSI is induced and CIN is suppressed
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the BRCA1-associated genome surveillance complex (BASC).59 
Importantly, clonal evolution is induced in conjunction with MSI 
and the associated mutagenesis6; MSI induction is accompanied 
by a very high rate of mutations, even compared to the mutation 
level induced during canonical replication under MMR deficiency.

4  | GENOMIC DESTABILIZ ATION AND 
A SSOCIATED MUTAGENESIS

4.1 | Genomic destabilization-associated 
mutagenesis

Genomic destabilization is associated with an increased risk of mu-
tagenesis, which results in the clonal evolution of cells with abro-
gated defense systems.6 In fact, many base-substitution mutations 
in cancer cells are likely to be induced in association with genomic 
destabilization. A typical example is kataegis; that is, localized hy-
permutation occurring in a small genomic region that is specifically 
induced in close proximity to genomic rearrangements.60,61 Further 
supporting this argument, mutations in cancer cells are more likely to 
accumulate in heterochromatin regions, where chromosomal trans-
locations occur at high frequencies.62-64 Furthermore, a recent in 
vitro model study revealed that the mutation rate in the growing cel-
lular state is limited even in MMR-deficient cells that cannot repair 
replication errors. By contrast, the mutation rate is highly elevated 
during genomic destabilization.6

A longstanding question is how mutations that induce clonal 
evolution are caused. Genomic destabilization-associated muta-
genesis is probably the major cause of the resultant clonal evolu-
tion. In fact, clonal evolution of cells with mutations in the ARF/
p53 module is triggered by genomic destabilization, at least in an 
in vitro model.6

4.2 | Genomic destabilization-associated 
induction of cancer-driver mutations

Besides base-substitution mutations, many mutation types can be 
induced in association with genomic destabilization. This includes 
chromosomal deletions and translocations, which are inducible by 
genomic destabilization but not polymerase errors (Figure 3A,B).35,36 
For example, the cancer suppressor Cdkn2a is often inactivated by 
deletions.40,65-67 In addition, some types of cancer drivers are gen-
erated by gene fusions caused by chromosomal translocations.68,69

Loss of heterozygosity also occurs during genomic destabilization 
and leads to dysfunction of cancer-suppressor genes (Figure 3C).38-

40 The probability of mutations in both alleles of a gene due to 
random replication errors or erroneous repair is extremely low. By 
contrast, LOH could increase the probability of biallelic mutation 
during genomic destabilization. After one allele is mutated, the sec-
ond mutation can be induced in a “copying and pasting” manner by 
erroneous HR between the allelic loci. In this scenario, the proba-
bility of mutation propagation is as high as 50%.38,70 Indeed, LOH 
is widely observed in cancer cells and results in the dysfunction of 
cancer-suppressor genes.71

The rate of base substitutions is also elevated during genomic 
destabilization (Figure 3D). Replication stress-associated DSB are 
primarily targeted by HR, in which high-fidelity replicative poly-
merases do not operate; instead, low-fidelity translesion synthesis 
(TLS) polymerases with no proofreading activity are induced.6,72,73 
Indeed, the mutation rate is highly elevated during genomic destabi-
lization.6 The induction of hypermutation during DSB repair is similar 
to somatic hypermutation of immunoglobulin loci, in which muta-
tions other than those caused by deamination are induced by errors 
of the low-fidelity TLS Polζ during class-switch recombination.74,75 
Therefore, the rate of base-substitution mutations is also highly ele-
vated when cells are subjected to genomic rearrangements.

F I G U R E  3   Genomic destabilization-associated mutagenesis. High levels of mutations are induced during genomic destabilization. 
Mutation types include chromosomal deletions (A) and translocations (B), loss of heterozygosity (LOH) (C), and massive base-substitution 
errors, which are induced due to the operation of low-fidelity translesion synthesis (TLS) polymerases during DNA double-strand breaks 
(DSB) repair (D)
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4.3 | Differences in the spectrum of ARF and p53 
mutations between chromosomal instability and 
microsatellite instability induction backgrounds

It is well established that ARF/p53 mutations are generally a pre-
requisite for cancer development. Intriguingly, while p53 mutations 
and deletions are often seen in CIN-associated cancer,76 they are 
uncommon in MSI-associated cancer, in which ARF is usually dys-
functional.77 This suggests that ARF and p53 mutation spectrum 
may differ between CIN and MSI cell backgrounds. However, the 
mechanism to cause the different mutation spectrum is still an open 
question.

5  | C ANCER RISK

Another important question is whether mutations that promote 
cancer development are avoidable. It was once thought that most 
cancers are unavoidable because most mutations in cancer-driver 
genes are caused by random replication errors in cancer-driver 
genes (Figure 4A).78,79 The standard view was that cancer mutations 
can be categorized into three types (ie, hereditary, replicative, and 
environmental). The environmental mutations are avoidable but the 
others, including mutations randomly induced during replication, are 
not.78,79 Accordingly, secondary prevention is a major priority in ef-
forts to prevent cancer-associated death.

Based on recent findings, however, the above hypothesis is prob-
ably untrue. Replicative mutations can be separated into two types: 
mutations randomly induced as replication errors during active 
growth (Figure 4A) and genomic destabilization-associated mutations 
induced by replication stress in cells expressing senescent cellular 
phenotypes (Figure 4B).6 The latter is the major type and is closely 
correlated with the resultant clonal evolution (Figure 4B). Importantly, 
unlike the former, the latter is theoretically avoidable through main-
tenance of genome stability. In fact, a recent study revealed that ge-
nome stability can be maintained by consumption of certain types of 
polyphenols that exert a cancer-suppressive effect80; however, the 
mechanism underlying these compounds’ effects on maintenance of 
genome stability remains unclear. Given that most cancers develop 
with genomic instability,1,5 a cancer-prevention strategy involving 
maintenance of genome stability might be applicable to many can-
cers, suggesting a future direction for cancer-prevention research.
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