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ABSTRACT
Non-small cell lung cancer is one of the leading causes of cancer-related death in the world. Lung
adenocarcinoma, the most common type of non-small cell lung cancer, has been well characterized as
having a dense lymphocytic infiltrate, suggesting that the immune system plays an active role in shaping
this cancer’s growth and development. Despite these findings, our understanding of how this infiltrate
affects patient prognosis and its association with lung adenocarcinoma-specific clinical factors remains
limited. To address these questions, we inferred the infiltration level of six distinct immune cell types from
a series of four lung adenocarcinoma gene expression datasets. We found that naive B cell, CD8C T cell,
and myeloid cell-derived expression signals of immune infiltration were significantly predictive of patient
survival in multiple independent datasets, with B cell and CD8C T cell infiltration associated with
prolonged prognosis and myeloid cell infiltration associated with shorter survival. These associations
remained significant even after accounting for additional clinical variables. Patients stratified by smoking
status exhibited decreased CD8C T cell infiltration and altered prognostic associations, suggesting
potential immunosuppressive mechanisms in smokers. Survival analyses accounting for immune
checkpoint gene expression and cellular immune infiltrate indicated checkpoint protein-specific
modulatory effects on CD8C T cell and B cell function that may be associated with patient sensitivity to
immunotherapy. Together, these analyses identified reproducible associations that can be used to better
characterize the role of immune infiltration in lung adenocarcinoma and demonstrate the utility in using
computational approaches to systematically characterize tissue-specific tumor-immune interactions.

KEYWORDS
genomics; immunotherapy;
Immunology; lung
adenocarcinoma; survival

Introduction

The immune system plays a broad role in shaping tumor
growth and development. The presence of immune infiltrate in
the tumor microenvironment is closely correlated with patient
prognosis in numerous cancer types, with infiltrate from some
cells, such as cytotoxic CD8C T cells commonly linked to pro-
longed survival, while other cells, such as immunosuppressive
T-regulatory cells and certain myeloid cells, associated with a
shorter survival time.1 Tumors can affect the behavior of differ-
ent cell types to inhibit an otherwise effective adaptive immune
response by recruiting immunosuppressive cells to the micro-
environment or expressing immune checkpoint proteins.2

There has thus been great interest in targeting these inhibitory
mechanisms to treat cancer. Blockade of immune checkpoint
proteins, including PD-1/PD-L1 and CTLA-4 has shown prom-
ise in several cancer types, reducing tumor burden and prolong-
ing patient survival.3 However, the success of these approaches
has been tempered by a highly heterogeneous response rate
across the patient population, as well as between tissues, indi-
cating the need for tissue-specific studies into how the immune
system interacts with the tumor microenvironment.

Lung adenocarcinoma, a type of non-small cell lung cancer
(NSCLC), is the most common cancer of the lung and is one of
the leading causes of cancer-related death in the United States.4

Compared to other cancer types, lung adenocarcinoma has
been well-characterized as having a high level of immune infil-
tration.5,6 This infiltration makes it a strong candidate for
immunotherapeutic approaches. However, early studies mea-
suring the effectiveness of anti-PD-1 in NSCLC have revealed
response rates ranging from 18% to 45%.7,8 These highly het-
erogeneous response rates underscore the need for more a
more thorough understanding of the tumor-immune interac-
tions specific to lung adenocarcinoma. Early attempts to
functionally characterize these interactions through survival
analyses have had mixed results leading to inconsistent conclu-
sions. Generally, it has been found that an intense lymphocytic
infiltrate is associated with prolonged prognosis in NSCLC.9

However at the cellular level, CD8C and CD4C T cells have
been linked to both a protective effect and no association with
prognosis,10 while B cell infiltration has been associated with
prolonged survival,11 poor survival,12 and has been found to
have no association.11 Beyond adaptive immune cells,
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infiltration from several innate cells has been studied, with
macrophages linked to poor survival13 and mature dendritic
cells tied to prolonged survival.14 Systematic analyses spanning
multiple independent lung adenocarcinoma datasets may allow
for a greater consensus understanding of each cell’s role on
prognosis in lung adenocarcinoma and NSCLC.

Recently, several computational approaches have made it
possible to systematically infer immune infiltration levels in
large-scale cancer patient datasets using gene expression infor-
mation.5, 15-19 These methods vary in their approaches and out-
puts, with some providing relative immune cell infiltration
levels that can be compared between patients and others deter-
mining the composition of the immune cell infiltrate present in
each patient’s tumor. We have developed a method that infers
immune infiltration from tumor gene expression data by exam-
ining the distribution of immune cell-specific genes throughout
a patient’s ranked gene expression profile.6 This method calcu-
lates transcriptome-wide specificity weights for different
immune cell types by comparing the differential expression
level of each gene in a given cell’s transcriptome to that of all
other cells in a reference immune cell gene expression matrix.
The dataset chosen for this approach, developed by the Immu-
nological Genome Project (ImmGen) contains over 200 murine
immune cell gene expression profiles capturing multiple steps
in development throughout the hematopoietic hierarchy.20 The
comprehensive nature of this dataset makes it ideal for deter-
mining immune cell-specificity weights, as it contains a diverse
collection of immune cell phenotypes found in the tumor
microenvironment, as well as a series of highly proliferative or
dedifferentiated progenitor cells that can be used to normalize
against tumor-specific gene expression programs. Furthermore,
each of the profiles in this dataset have been collected under
the same protocol using the same microarray platform, remov-
ing the batch effects and platform-specific artifacts that could
potentially confound infiltration analyses. While transcrip-
tomic differences exist between murine and human immune
cells, previous studies have shown that murine and human
transcriptomes share a high degree of global similarity, and
that the expression of lineage-specific genes in analogous cell
types is conserved between species.21 In concordance with this
finding, ImmGen-based infiltration scores have been found to
be closely associated with scores derived using human reference
immune cell profiles.22

In this study, we further refine this approach to perform a
tissue-specific analysis with the goal of clarifying the function
of different immune cells in the context of lung adenocarci-
noma. To accomplish this, we pool the ImmGen dataset into
six consensus immune cell signatures that have been optimized
through a series of benchmarking analyses to detect infiltration
signals from lung adenocarcinoma gene expression data. We
then correlate the resulting immune cell infiltration scores with
patient survival in four independent lung adenocarcinoma
datasets to identify reproducible associations and characterize
the most relevant cell types for patient prognosis. To further
understand the prognostic role of different immune infiltrates,
we use multivariate Cox regression to identify the cells that are
independent prognostic factors. In addition to the survival
analyses, we examine the effect smoking has on immune infil-
tration and function by comparing the infiltration scores of

different cell types between smokers and non-smokers. Finally,
we conclude our analysis by integrating immune infiltration
and immune checkpoint gene expression information in a
multi-class survival analysis to determine how the prognostic
effect of immune cell infiltration is affected by the presence of
immune checkpoint proteins. Together, our results further vali-
date the role immune infiltration plays on tumor growth and
development in lung adenocarcinoma, while providing novel
insights into the behavior of different immune cells in the con-
text of immune checkpoint gene expression.

Results

Consensus immune signatures detect immune infiltration
in lung adenocarcinoma

Our method traditionally uses a series of over 200 tran-
scriptome-wide gene-specificity signatures derived from the
ImmGen dataset to calculate immune infiltration scores
from bulk tumor gene expression data. Many of these signa-
tures are redundant as they come from genetically similar
cell types. Thus, it is possible to further improve the output
of this method by reducing the dataset down to a smaller
number of immune signatures representing distinct cell
types. To accomplish this, we collapsed the ImmGen dataset
into a series of consensus immune cell signatures made up
of the ImmGen signatures that were best associated with
flow cytometry measurements of naive B cells, memory B
cells, CD8C T cells, CD4C T cells, NK cells, and myeloid
cells in peripheral blood mononuclear cell (PBMC) mixture
and NSCLC tumor settings. In PBMC mixtures, the scores
produced by each consensus signature were highly corre-
lated with the flow cytometry fraction of the cell types they
represented (mean SCC D 0.63), and lowly correlated with
the fraction of the cell types they did not represent (mean
SCC D ¡0.06), indicating high sensitivity and specificity
(Fig. 1A). Furthermore, in NSCLC tumors, most of the con-
sensus signatures were strongly associated with the flow
cytometry fraction of their respective cell type, indicating
they were not confounded by lung adenocarcinoma-specific
gene expression signals (Fig. 1B). We thus reasoned that
these six consensus signatures could offer high fidelity esti-
mates of immune infiltration from lung adenocarcinoma
gene expression data.

Immune infiltration in lung adenocarcinoma predicts
patient prognosis

We applied these six signatures to calculate immune infil-
tration scores in a lung adenocarcinoma dataset generated
by Okayama et al (n D 226).23 In this dataset, expression-
based measures of tumor purity as calculated by the ESTI-
MATE algorithm16 were negatively associated with immune
infiltration, for all cell types, indicating that our infiltration
scores were picking up expression signals from the tumor
microenvironment (SCC range D ¡0.22 to ¡0.51). To
examine the cellular immune infiltration patterns in these
patients, we correlated each immune cell’s infiltration scores
against one another. Infiltration scores from naive B,
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memory B, CD8C T, CD4CT, and NK cells primarily
exhibited positive correlations with one another, suggesting
patterns of co-infiltration, while myeloid cells were nega-
tively associated with the other cell types (Supplementary
Fig. S1). To further examine these patterns, we hierar-
chically clustered the patients using their infiltration scores
(Fig. 2A). Splitting the patients into two groups based on
their infiltration patterns revealed an immune-hot and
immune-cold cluster, where patients in the immune-hot
cluster had significantly lower tumor purity values com-
pared to those in the immune-cold cluster, indicating higher
levels of immune infiltration (p D 1e-15; Wilcoxon sum-
rank test; Fig. 2B). This clustering pattern mirrored findings
from a previous study24 and supported the idea that lung
adenocarcinoma patients can be broadly classified into two
distinct immunophenotypes.

To investigate how the individual immune cells affect
patient survival, we performed two class-survival compari-
sons by stratifying patients into high- and low-infiltration
groups based on the median infiltration score of each
immune cell type (Fig. 2C). Interestingly, we found that
patients with high naive B and CD8C T cell infiltration
experienced significantly longer relapse-free survival times
compared with their low-infiltration counterparts (log-rank
p D 7e-4 and 9e-4, respectively). Conversely, patients with
high myeloid infiltration exhibited significantly shorter
relapse-free survival times compared to low myeloid infil-
trate patients (log-rank p D 0.03). Infiltration from the

remaining cell types did not show significant survival asso-
ciations. These results were further validated using univari-
ate Cox proportional hazards models that used either high/
low infiltrate classification or continuous infiltration score
as the variable (Supplementary Table S1). To confirm that
these associations were not specific to one dataset, we
applied our method to three additional lung adenocarci-
noma datasets by Tomida et al (n D 117),25 Shedden et al
(n D 442),26 and Lee et al (n D 63)27 and split samples into
high and low infiltration groups based on their median
infiltration scores for each cell type. We then calculated
each cell’s association with patient survival by fitting high/
low classification for each cell type in a univariate Cox pro-
portional hazards model (Fig. 2D). Naive B cells and CD8C
T cells were significantly associated with prolonged patient
survival in at least one of the additional datasets tested,
while myeloid cells were associated with worse prognosis in
all three of the additional datasets. In addition to these
reproducible associations, we found that memory B cells
were associated with improved prognosis in two out of the
three additional datasets, while NK cells were associated
with improved prognosis in one of the three datasets.

The survival associations we observed for CD8C T cells,
naive B cells, and myeloid cells, while reproducible, did not
account for clinical factors that could potentially confound
our results. For instance, when stratifying patients by differ-
ent clinical factors, we found that infiltration levels for all
three cell types varied depending on a patient’s EGFR

Figure 1. Validation of consensus immune signatures. a Heatmap depicting the correlation (Spearman) between infiltration scores calculated from the six consensus
immune signatures and flow cytometry percentages for all cell types in 20 peripheral blood mononuclear cell mixtures. b Scatterplots of infiltration scores calculated
from the naive B cell, CD8C T cell, and CD4C T cell consensus immune signatures and flow cytometry fractions from a series of 29 NSCLC tumors. The flow cytometry per-
centages measure the fraction live cells that were CD19C B cells, CD8C T cells, and CD4C T cells, respectively. For all analyses, the Spearman correlation coefficient is
displayed.
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mutation status, (Supplementary Table S2). To determine
whether each cell’s prognostic associations were indepen-
dent of these variables, we applied three multivariate Cox
proportional hazards models to the Okayama et al dataset
that included the high/low infiltrate classification for a given
cell type, smoking status, tumor stage, gender, age, EGFR
mutation status, KRAS mutation status, and ALK fusion sta-
tus as covariates (Fig. 3A). After adjusting for these covari-
ates, infiltration from naive B cells, CD8C T cells, and
myeloid cells each remained significant (p D 5e-4, 8e-4,
and 7e-3; HR D 0.39, 0.25, and 2.22, respectively). We fol-
lowed up this analysis by performing two-class survival
comparisons between high- and low- infiltration groups in
stage I lung adenocarcinoma patients, as these tumors have
been associated with high recurrence rates following surgical
resection (Fig. 3B).28, 29 For all three cell types, infiltration
was significantly associated with relapse-free survival, with
naive B cell and CD8C T cell infiltration associated with
prolonged patient survival (log-rank p D 5e-3 and 6e-3,
HR D 0.41, 0.26, respectively) and myeloid infiltration with
shorter survival (log-rank p D 3e-3, HR D 3.05). These
results suggested that the composition of the tumor micro-
environment may be a useful indicator in predicting

recurrence and determining treatment strategies in early-
stage lung adenocarcinomas.

Smoking status is associated with reduced immune
infiltrate

Smoking has been associated with a poor prognosis in lung
adenocarcinoma,30 but its effects on immune infiltration
levels remain unclear. To characterize how immune infil-
tration differed between ever-smokers and never-smokers,
we compared the immune infiltration scores between the
two groups in the Okayama, Tomida, and Shedden et al
datasets (Fig. 4A; Supplementary Table S3). In smokers,
CD8C T cell and NK cell infiltration were significantly
lower in two of the three independent datasets, while naive
B cells were significantly lower in one dataset and myeloid
cells were significantly higher in one dataset. In the Shed-
den et al dataset there were no immune cells whose infil-
tration scores significantly differed based on smoking
status. We next tested how smoking can affect immune
cell function by analyzing patient survival distributions
after double stratification by smoking status and high/low
immune infiltrate (Fig. 4B). In ever-smokers, increased

Figure 2. Patterns of immune infiltration in lung adenocarcinoma. a Heatmap depicting the infiltration scores for six immune cell types in the Okayama et al dataset. Bot-
tom sidebar indicates the tumor purity level for each sample, as calculated using ESTIMATE. Red line is the rolling average purity level for the last 20 samples going left to
right. Top sidebar indicates the grouping of the samples based on hierarchical clustering. b Boxplot indicating the difference in tumor purity level between each two
groups of patients determined from hierarchical clustering. P-value was calculated using the two-sided Wilcoxon sum-rank test. c Kaplan-Meier plots depicting the
relapse-free survival (rfs) distributions for patients with high (red) and low (blue) immune infiltration scores for the noted cell types. In Kaplan-Meier plots, p-values were
calculated using the log-rank test and vertical hash marks indicate censored data. d Volcano plot depicting the –log10 adjusted p-value and the hazard ratio from Cox
proportional hazards models inputted with high/low infiltration score classification for the noted cell types. Colors indicate cell types used in the model and shapes indi-
cate the dataset the analysis was performed in.
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CD8C T cell infiltration resulted in significantly longer
relapse-free survival time (log-rank p D 6e-3, HR D 0.10),
while the trend in never-smokers was protective but insig-
nificant despite a comparable sample size. Myeloid cell
infiltration was associated with significantly poorer
relapse-free survival in ever-smokers (log-rank p D 0.01,
HR D 2.94), but there was again no significant difference
in prognosis in never-smokers. These trends were reversed
for naive B cells, where never-smokers with high infiltrate
had significantly longer relapse-free survival time than
patients with low infiltrate (log-rank p D 7e-5, HR D
0.53) and infiltration in ever-smokers was protective but
insignificant. Together, these findings suggest that smoking
may affect both the level of infiltrate and the extent to
which the infiltrate can properly function.

Prognostic analyses of immune cell infiltration and
checkpoint gene expression suggest immunomodulatory
interactions

Through our survival analyses, we found that CD8C T cells
were associated with prolonged patient survival, even when
considering other clinical variables. However, the expression
of the immune checkpoint proteins CTLA-4, PD-1, and

PD-L1 in the tumor microenvironment are known to be
involved in immunosuppression, which could potentially
lead to poorer patient outcome.31 We thus examined
whether the expression of these proteins was associated
with noticeable survival differences in patients with similar
levels of CD8C T cell infiltration. Using the Okayama et al
dataset, we compared the survival distributions of four
groups of patients stratified based on their levels of CD8C
T cell infiltration and their expression of either CTLA4 or
PDCD1, which encode CTLA-4 and PD-1, respectively
(Fig. 5), as well as their expression of CD274, which enco-
des the PD-1 ligand, PD-L1 (Supplementary Fig. S2). In all
analyses, at least one group of patients had significantly bet-
ter survival than the other groups (log-rank p D 3e-3, 0.01,
and 0.01, for CTLA4, PDCD1, and CD274 respectively).
Interestingly, patients with high CD8C T cell infiltration
and low CTLA4 expression trended toward prolonged sur-
vival relative to patients with high CD8C T cell infiltration
and high CTLA4 expression (log-rank p D 0.06). This was
not the case when stratifying based on PDCD1 or CD274
expression. To examine whether other cell types could be
affected by immune checkpoint gene expression, we
repeated this analysis using infiltration scores from the
other five cell types. This revealed that patients stratified

Figure 3. Multivariate analysis of immune infiltration-survival associations. a Forest plot depicting the hazard ratios and p-values for three different multivariate Cox pro-
portional hazards models fit to the Okayama et al dataset. Colors indicate the immune cell inputted into the model. Darker colors indicate significant associations in the
model (p<0.05), while lighter colors indicate insignificant associations (p>0.05). Points indicate the hazard ratio, with lines depicting 95% confidence interval. b Kaplan-
Meier plots depicting the relapse-free survival (rfs) distributions of stage I lung adenocarcinoma patients from the Okayama et al dataset with high (red) and low (blue)
immune infiltration scores for the noted cell types. P-values were calculated using the log-rank test, hazard ratios (HR) were calculated using a univariate Cox proportional
hazards model using high and low infiltration classification, and vertical hash marks indicate censored data.
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based on naive B cell infiltration and immune checkpoint
gene expression exhibited similar patterns to those of
CD8C T cells (Fig. 5, Supplementary Fig. S2). Together,
these results indicate that while patient survival is primarily
driven by immune infiltration, the prognostic effect of this
infiltration may be modulated by the proteins encoded by
immune checkpoint inhibitor genes such as CTLA4.

Discussion

Immune infiltration in lung adenocarcinoma is a useful prog-
nostic factor and may be a potential biomarker of immuno-
therapy response. Genomics-based approaches to inferring
immune infiltration enable high-throughput immune profiling
over many samples, increasing the power to detect these asso-
ciations. Here, we have applied our computational method to
multiple lung adenocarcinoma datasets to better define the
role different immune cells play on patient survival. Using
this method, we found reproducible associations linking infil-
tration from naive B cells and CD8C T cells to prolonged
relapse-free survival and infiltration from myeloid cells to
decreased relapse-free survival. In addition, we identified
potential interactions between smoking behavior, immune

infiltration, and patient survival, and found associations sug-
gesting that the expression of some immune checkpoint genes
may modulate the prognostic effects of certain immune cell
infiltrates. Together, our results demonstrate the utility of
using computational approaches to define the tumor microen-
vironment and introduce new potential methods for identify-
ing immune-based biomarkers.

When inferring immune infiltration, our method uses the
ImmGen dataset as a reference to determine the immune-
related genes for each cell type. This dataset contains gene
expression profiles from over 200 different murine hematopoi-
etic cells and as a result, our method outputs a set of immune
infiltration scores for each one of these reference cell types.
Many of these scores detect redundant signals in the microenvi-
ronment, creating a need for us to simplify the output of our
method. Furthermore, some of these signatures could be detect-
ing lung tumor cell-specific expression signals, as the ImmGen
dataset does not include cancer cells to normalize against. To
address these issues, we created a series of consensus immune
signatures representing naive B cells, memory B cells, CD8C T
cells, CD4C T cells, NK cells, and myeloid cells that sensitively
and specifically captured gene expression signals of the cells
they represented in PBMC mixture experiments and were vali-
dated in a gold-standard dataset consisting of NSCLC tumors
profiled by flow cytometry.

Previous efforts to characterize the prognostic effect of
immune infiltration in lung adenocarcinoma have revolved
around using immunohistochemistry (IHC) and flow cytome-
try.10-14, 24, 32, 33 These approaches have substantially advanced
our understanding of the lung adenocarcinoma immune
response, especially regarding how the spatial distribution of
certain immune cells in the tumor can affect patient prognosis.
However, these approaches are time consuming and the tissue
biopsies necessary for performing these analyses are not as
readily available compared to other types of data. By using gene
expression data to study immune infiltrate, we were able to
quickly identify reproducible prognostic associations for many
different immune cell types. Our analysis revealed that naive B
cell and CD8C T cell infiltration was associated with prolonged
patient survival, while myeloid cell infiltration was predictive of
shorter survival. These associations remained significant even
after adjusting for multiple covariates, including stage, smoking
status, EGFR and KRAS mutations, and ALK fusions. Further-
more, we found that in early-stage tumors specifically, the
prognostic associations from all three cell types mirrored what
was found in the dataset as a whole. These associations are in
line with a previous study reporting that reduced CD8C T cell
infiltration and altered myeloid cell activity are observed begin-
ning in stage I lung adenocarcinoma tumors34 and suggest that
patients with tumors containing high myeloid content or low
lymphocytic infiltrate may need to be treated more aggressively.
Understanding the degree to which these cells are functioning
in the lung adenocarcinoma microenvironment throughout
development may be able to provide additional insights into
how the tumor and immune cells shape other as they evolve.

The effects of certain clinical factors, such as oncogenic
mutation status and smoking behavior, on immune cell infiltra-
tion and function are currently under investigation. Our study
found that EGFR mutations were associated with differing

Figure 4. Interactions between immune infiltration score and smoking status. a
Boxplots depicting the difference in infiltration between never-smokers (Never)
and ever-smokers (Ever) in two datasets. P-values were calculated using a two-
sided Wilcoxon sum-rank test. b Kaplan-Meier plots depicting the relapse-free sur-
vival (rfs) distributions in patients from the Okayama et al dataset stratified by
high (red) and low (blue) immune infiltration scores for the noted cell types as
well as ever-smoking (solid line) and never-smoking (dotted line). P-values were
calculated using the log-rank test, hazard ratios (HR) were calculated using a uni-
variate Cox proportional hazards model using high and low infiltration classifica-
tion, and vertical hash marks indicate censored data.
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levels of CD8C T cell, naive B cell, and myeloid cell infiltration,
which conflicted with a smaller multi-parametric immune pro-
filing study of 51 NSCLC tumors.24 This same study also
reported no association between smoking behavior and
immune infiltration, while we found evidence in two indepen-
dent datasets that ever-smokers exhibit significantly lower lev-
els of CD8C T cell infiltration compared to never-smokers.
These discrepancies highlight the need for systematic analyses
spanning multiple datasets as dataset-dependent factors such
as sample size and demographic makeup may influence the dis-
covery of new associations. Our study’s findings regarding
smoking behavior are especially noteworthy as we found that
the prognostic associations for CD8C T cell and myeloid cells
were only significant in ever-smokers compared to never-
smokers despite the sample size being similar between the two
groups. Furthermore, B cell infiltration was only associated
with survival in never-smokers, mirroring the findings of a his-
tology-based study examining the relationship between
immune infiltration and smoking behavior.35 If smoking
behavior truly does influence immune cell function, it will be
important to take this factor into account in future studies of
lung adenocarcinoma.

Immune checkpoint blockade therapy has shown prom-
ise in several cancer types, including NSCLC. However,
only a small subset of NSCLC patients has proven to be
responsive to these therapies.7, 8, 36 To better characterize
how these immune checkpoint proteins interact with cellu-
lar immune infiltrate, we compared the survival distribu-
tions of patients stratified into groups based on their levels

of infiltration and immune checkpoint gene expression.
When examining this relationship using the gene encoding
CTLA-4, we found that patients with high CD8C T cell or
naive B cell infiltration and low checkpoint gene expression
had the best survival time of the four groups, including
those with high CD8C T cell infiltrate and high gene
expression. These results suggest that CTLA-4 abundance
may be associated with an immunosuppressive phenotype
that modulates CD8C T cell or naive B cell function, and
that the patients most likely to respond to anti-CTLA-4
therapy are those with high CD8C T cell infiltration and
high checkpoint gene expression. Interestingly, these rela-
tionships were not present for either cell type when strati-
fying patients based on expression of the genes encoding
PD-1 and PD-L1. These associations mirror studies in mel-
anoma, which have noted that CTLA-4 expression and
cytolytic cell infiltrate is associated with anti-CTLA-4
response,37 while responders to anti-PD-1 therapy do not
exhibit differential expression of PD-1, PD-L1, or genes
associated with CD8C T cell infiltrate.38 However, these
findings conflict with studies linking IHC-based PD-L1 lev-
els to anti-PD-1 response.39, 40 The discrepancy between
our findings and those using PD-L1 IHC suggests that the
location of the cells expressing PD-L1 is an important fac-
tor in determining response rate, as expression-based meth-
ods cannot provide this type of information. Alternatively,
these inconsistencies could be due to a poor correlation
between gene expression and protein abundance measures.
Going forward, it will be important to better characterize

Figure 5. Effect of immune checkpoint gene expression and immune infiltration on patient survival. Kaplan-Meier plots depicting relapse-free survival (rfs) distributions
between patients with high CD8C T cell infiltration (top) or naive B cell infiltration (bottom) scores and low checkpoint gene expression (blue), high infiltration and high
expression (orange), low infiltration and low gene expression (red), and low infiltration and high gene expression (green). High/low immune infiltration cutoffs were
based on an infiltration score greater than or less than 0, while high/low immune checkpoint gene expression cutoffs were made using the median. P-values were calcu-
lated using the log-rank test and vertical hash marks indicate censored data.
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how the abundance and location of these checkpoint pro-
teins affect immune cell function as this understanding
may aid the development of biomarkers predicting immu-
notherapy response in lung adenocarcinoma.

In conclusion, we have presented a computational analysis
that further characterizes the prognostic landscape of immune
infiltration in lung adenocarcinoma. Using high-throughput
gene expression-based analyses, we inferred infiltration levels
for six distinct immune cell types and found that infiltration
from three, naive B cells, CD8C T cells, and myeloid cells, was
significantly associated with patient survival, even when adjust-
ing for several covariates. Using these infiltration scores, we
showed that smoking can decrease immune infiltration levels
and may modulate the prognostic effect of certain cell types.
Lastly, we characterized how immune checkpoint gene expres-
sion modulates the prognostic effect of CD8C T cells and naive
B cells in the tumor microenvironment. Our results present
new biomarkers predicting patient prognosis and provide
insights into potential biomarkers of immunotherapy response.
As computational approaches continue to mature and datasets
detailing immunotherapy response are released, we are hopeful
that high-throughput immune inference approaches can be
used to improve precision medicine in a variety of cancer types.

Methods

Datasets

Lung cancer datasets by Okayama et al,23 Tomida et al,25 Shed-
den et al,26 and Lee et al27 were downloaded from the Gene
Expression Omnibus (GEO) under accession numbers
GSE31210, GSE13213, GSE68465, and GSE8894, respectively.
PBMC gene expression data and associated flow cytometry
data were obtained from GEO under accession number
GSE65133 and a prior publication.17 NSCLC Nanostring gene
expression data and associated flow cytometry data were
obtained from GEO under accession number GSE84797 and a
prior publication.24 Hematopoietic gene expression data from
ImmGen was obtained in its raw form (.CEL files, Affymetrix
Mouse Gene 1.0 ST Array) from GEO under accession number
GSE15907 in October 2015. Raw data was background cor-
rected using Robust Microarray Analysis and then quantile
normalized. Probesets for hematopoietic profiles were fitted to
a multichip linear model using the R ‘affy’ library’s “expresso”
function.41 The probe with the highest average intensity across
all cell types was used for each gene, and each murine transcript
was matched to human transcript using the gene symbol.

Calculation of immune infiltration score

To calculate immune infiltration scores, we used our previ-
ously developed binding association with sorted expression
(BASE) algorithm.42 To infer immune infiltration on a group
of patients, this algorithm requires two types of data, immune
cell gene-specificity weight profiles and the patients’ gene
expression data. Immune cell weight profiles are created from
the normalized ImmGen gene expression profiles and repre-
sent the differential up- or down-regulated state of each gene
in each ImmGen cell type’s expression profile relative to the

rest of the ImmGen dataset. Weight profile calculation has
been described previously.6 BASE orders a given patient’s
gene expression profile from high to low and then uses each
ImmGen cell’s weight profiles to weigh the patient’s gene
expression values. BASE then calculates two running sums,
one representing the cumulative distribution of the patient’s
weighted gene expression values (foreground function) and
another representing the cumulative distribution of the
patient’s complementary weighted (1-weight) gene expression
values (background function). In the presence of a high
amount of infiltrate from a given cell type, the foreground
function increases quickly early on, as the highly-expressed
genes in a patient’s profile tend to also be the ones with high
weights for a given immune cell, before plateauing later in the
patient’s ranked profile, while the background function does
the opposite. The maximal absolute difference of these two
functions represents immune infiltration level and, after a nor-
malization procedure, results in the final immune infiltration
score. Full details on the calculation and validation of the
immune infiltration scores using BASE have been described
previously.6

Creation of consensus immune cell signatures

To increase the robustness and interpretability of our infiltra-
tion scores, we used the ImmGen reference profiles to create
consensus immune cell signatures representing six distinct
immune cell types: naive B cells, memory B cells, CD8C T
cells, CD4C T cells, natural killer (NK) cells, and myeloid
cells (Supplementary Table S4). In order to select the Imm-
Gen signatures that were best suited for each cell type, we
subjected each profile to a series of quality-filtering steps that
measured the resulting infiltration scores’ associations with
tumor purity and flow cytometry fraction in PBMC and lung
tumor settings. To begin, we calculated infiltration scores for
each ImmGen signature in The Cancer Genome Atlas
(TCGA)’s lung adenocarcinoma dataset and then removed all
ImmGen signatures whose scores were positively correlated
(R > ¡0.05) with previously calculated consensus tumor
purity estimates.43 We then used each of the remaining cell
types to generate infiltration scores for a series of gene
expression profiles from PBMC mixtures whose composition
was defined using flow cytometry measuring the percentages
of naive B cells, memory B cells, CD8C T cells, CD4C T cells,
NK cells, and monocytes (GSE65133).17 For non-T cells,
ImmGen profiles whose infiltration scores were correlated
with a given cell’s flow cytometry fraction at an SCC > 0.6
and who were defined by ImmGen to be from the same line-
age as the representative cell were selected to potentially be
used in the creation of that cell type’s consensus immune cell
signature. For CD8C and CD4C T cells, whose transcrip-
tomic phenotypes in the tumor microenvironment differ
from those of the naive cells used in the PBMC mixture
experiments, we used a reduced correlation coefficient cutoff
of 0.3. After filtering using PBMC criteria, we performed
additional cell-specific filtering steps to ensure that each pro-
file was well-suited to specifically measure infiltration of their
respective cell type in the tumor microenvironment. To
ensure greater discrimination between naive and memory B
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cells, we required that the infiltration scores from the Imm-
Gen cell types selected for these profiles exhibit flow cytome-
try correlations of > 0.6 for either naive or memory B cells,
but not both. For the CD8C T cell consensus signature, we
filtered out ImmGen CD8C T cell profiles that were in the
early stages of activation, as these cell types exhibit a high
degree of proliferation-associated gene expression that could
confound their resulting infiltration scores.44 For the CD4C
T cell consensus signature, we removed all ImmGen cell types
whose correlation coefficients were greater when measuring
CD8C T cell fraction than CD4C T cell fraction. For the
monocyte correlations, where over 50 ImmGen cells met the
PBMC filtering criteria, we selected the ImmGen profiles
with the top 10 correlation coefficients to ensure maximum
fidelity in measuring myeloid cell infiltration. The remaining
ImmGen profiles were then subjected to a final benchmarking
analysis, where each profile was applied to a dataset consist-
ing of a series of NSCLC gene expression profiles measured
on the Nanostring platform and paired flow cytometry frac-
tions measuring the abundance of different cell types in the
tumor microenvironment (GSE84797).24 For B and T cells,
all profiles whose scores were correlated with their respective
cell type’s flow cytometry fraction at a coefficient > 0.5 were
kept for the final consensus signatures. In myeloid cells,
which have a diverse collection of cell surface markers, this
threshold was lowered to 0.2. In NK cells, this step was
skipped as only 1% of the total live cell events on average
came from NK cells, making it difficult to detect NK-cell spe-
cific signals in this dataset. Once the profiles were chosen, the
final consensus signatures were created by taking the mean
gene expression profile of the ImmGen cell types in each
group. The resulting six profiles were then median normal-
ized against the overall ImmGen dataset, converted to
immune cell weights, and input into BASE to calculate
immune cell infiltration scores. A full list of the ImmGen cells
chosen for each consensus signature, as well as their infiltra-
tion scores’ flow cytometry and tumor purity correlations, is
available (Supplementary Table S5).

Survival analysis

For continuous univariate and multivariate survival analyses,
infiltration scores and the appropriate clinical covariates were fit
to a Cox proportional hazards model using the “coxph” function
from the R “survival” package. Survival distributions for different
cell types were visualized using Kaplan-Meier curves created by
the “survfit” function from the R “survival” package. The median
infiltration score was used to stratify patients into “high” and
“low” infiltration groups when performing univariate two-class
comparisons, while an infiltration score of 0 was used to stratify
the two groups when performing multivariate analyses. Differen-
ces between the survival distributions in each Kaplan-Meier plot
were calculated using a log-rank test through the “survdiff” func-
tion from the R “survival” package.
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