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Abstract: The existing studies indicate that the measurement formulas used in blister test techniques,
which are used to measure the mechanical properties of thin-film/substrate systems, are usually given
based on an approximation—that is, the applied direction of the uniformly distributed transverse
load is always vertical, while the applied direction of the uniformly distributed gas pressure is
always perpendicular to the surface of the thin film. This approximation will lead to a large
measurement error. In this study, we obtained the analytical solution to the problem of axisymmetric
deformation of blistering circular thin polymer films under the action of uniformly distributed gas
pressure via the power series method. An example is given to illustrate the error caused by the
approximation mentioned above, and the validity of the solution presented here is verified. The
result shows that the chance of error caused by the approximation increases with the increase in
the applied load, and it far exceeds the allowable error of measurement when the applied load is
relatively large. In addition, the related experiments of the blistering circular thin polymer film under
uniformly distributed gas pressure are carried out, and the experimental results are compared with
the theoretical results. The comparison results show that the analytical solution given in this paper
is correct. The solution presented here is of great significance to improve the measurement accuracy
of the blister test technique.

Keywords: thin-film/substrate systems; pressure blister test; uniformly distributed gas pressure;
experimental verification; closed-from solution

1. Introduction

Thin-film/substrate systems have found increasing application in many fields, such as civil
engineering, mechanics and biotechnology [1–6]. Usually, the reliability of thin-film/substrate systems
depends mainly on the mechanical properties of thin-film/substrate systems (including the mechanical
properties of surface thin film and interfacial adhesive strength of thin-film/substrates). Therefore, in
order to know the reliability of thin-film/substrate systems more accurately, it is necessary to measure
the mechanical properties of thin-film/substrate systems precisely. The measurement formula used
is usually based on the analytical solution of the corresponding mechanical problem, so it is also
necessary to give the analytical solution of the corresponding mechanical problem.

To date, many test techniques have been used for the measurement of the mechanical properties
of thin-film/substrate systems [7–18], of which the blister testing method is common and realizes the
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synchronous measurement (the mechanical properties of the thin film and the adhesive strength of the
thin-film/substrate systems can be measured simultaneously) [19–21]. The blister test technique was
first suggested by Dannenberg [22], and was then developed into many variant forms by subsequent
investigators [23–26]. All blister tests can be classified into two major variants according to the loading
method: (i) gas pressure loading (corresponding to a pressure blister test, as shown in Figure 1a
where q denotes applied load, a denotes the radius of film, h denotes the thickness of film, r denotes
the radial coordinate and wm denotes the max transversal displacement of the circular membrane),
and (ii) shaft-loading (corresponding to a shaft-loaded blister test, as shown in Figure 1b where F
denotes applied load). In the pressure blister test, the thin film is pressurized progressively by working
gas, until an axisymmetric blister crack runs into the interface of thin-film/substrate systems. From
Figure 1a, it can be seen that the delamination process of the thin film from the substrate can be
simplified as the mechanical problem of axisymmetric deformation of circular thin film under the action
of uniformly distributed gas pressure. The measurement formulas used in the pressure blister test
are given based on the analytical solution of the mechanical problem. However, due to the difficulty
in obtaining the analytical solution of axisymmetric deformation problem of circular thin film under
uniformly distributed gas pressure, the existing measurement formulas are all given by the analytical
solution of the axisymmetric deformation problem of circular thin film under uniformly distributed
transverse load. The mechanical model of this is shown in Figure 2 [15]. The problem of axisymmetric
deformation of circular thin film under uniformly distributed transverse load was originally dealt with
by Hencky [27]; therefore, it is widely known as the Hencky problem for short, and its solution is
known as the Hencky solution [28].
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Figure 2. Sketch of circular thin film under uniformly distributed transverse load.

From Figures 1a and 2, it can be seen that the applied direction of the uniformly distributed
transverse load is always vertical, while the applied direction of the uniformly distributed gas
pressure is always perpendicular to the surface of the thin film. When the gas pressure is very small,
the deformation of the thin film will be correspondingly small. Thus, the component of uniformly
distributed gas pressure along the horizontal direction is also relatively small. In this case, the uniformly
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distributed gas pressure may be approximately replaced by the uniformly distributed transverse load
without much error. However, with the increase in uniformly distributed gas pressure, the deformation
of the thin film will increase correspondingly, meaning that the component of uniformly distributed
gas pressure along the horizontal direction is no longer too small, and will have a great impact on the
deformation of the thin film. If the uniformly distributed gas pressure is replaced by the uniformly
distributed transverse load, obviously there will be a big error. In addition, thin films are usually
made of flexible materials, which can easily produce large deformations under the action of external
loads. Therefore, it is obviously inappropriate to replace the uniformly distributed gas pressure with
the uniformly distributed transverse load. As a result, in order to obtain an accurate measurement
formula of the blister test technique, it is necessary to give an analytical solution of the axisymmetric
deformation problem of circular thin film under uniformly distributed gas pressure.

In this paper, the closed-form solution of the problem of axisymmetric deformation of the blistering
circular thin film under the action of uniformly distributed gas pressure was presented by the power
series method. In Section 2, the governing equations of the problem solved here will be given and
dimensionless, and the dimensionless governing equations will be solved by the power series method.
The solution presented in this paper will be compared with the well-known Hencky solution [28] in
Section 3. Next, in Section 4, we will conduct the related experiments of the blistering circular thin
films under uniformly distributed gas pressure and compare the experimental results with the solution
presented here. According to the results mentioned above, some main conclusions will be drawn in
Section 5. The work presented here is of great significance and aims to improve the measurement
accuracy of blister test technique. In addition, thin and ultrathin films are widely used for gas and
solvent separation [29,30]. Thus, the work of this paper also has a certain guiding role for gas and
solvent separation.

2. Membrane Equation and Its Solution

2.1. Establishment of Membrane Equations

A uniformly distributed gas pressure, q, is applied onto the surface of a peripherally fixed circular
membrane with Young’s modulus of elasticity, E, Poisson’s ratio, v, thickness, h, and radius, a, as shown
in Figure 3, where the dashed lines denote the initial flat circular membrane, r is the radial coordinate
and w is the transversal displacement of the circular membrane.
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Figure 3. Sketch of circular membrane under uniformly distributed gas pressure.

Let us take a piece of the central portion of the circular membrane, whose radius is 0 < r < a, with
a view to studying this membrane’s static problem of equilibrium under the action of the uniformly
distributed gas pressure q and the membrane force σrh acted on the boundary, as shown in Figure 4,
where σr is the radial stress and θ is the sloped angle of the membrane after loading.
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Figure 4. The equilibrium diagram of the central portion (r < a) of the circular membrane.

Then, a wedge differential element, ABCD, is cut out from the circular membrane by the two
radial sections AB, CD, normal to the membrane, and by two cylindrical sections AD, BC, also normal
to the membrane, as shown in Figure 5, in which the normal stress component in the radial direction is
denoted by σr, another component in the circumferential direction by σt and ϕ is the other coordinate
parameter, i.e., the angular coordinate in the cylindrical coordinate (r,ϕ, w). There are four normal
forces acting on the four sides of this element, in which the radial membrane force acting on the side
AD is σrh and the radial membrane force on the side BC is (σr +

dσr
dr dr)h. The sides AB and CD are

subjected to the same circumferential membrane force σth due to axisymmetric characteristics.
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It is easily seen from Figure 5 that the equilibrium equation along the w-axis direction is(
σr +

dσr
dr dr

)
h(r + dr)dϕ sin

(
θ+ dθ

dr dr
)

−σrhrdϕ sinθ = q 1
2
[(r+dr)2

−r2]
cosθ dϕ cosθ

. (1)

By summing up the components of forces along the r-axis direction, we can obtain the
equilibrium equation, (

σr +
dσr
dr dr

)
h(r + dr)dϕ cos

(
θ+ dθ

dr dr
)
− σrhrdϕ cosθ

−2σth dr
cosθ sin

(
dϕ
2

)
+ q 1

2
[(r+dr)2

−r2]
cosθ dϕ sinθ = 0

, (2)
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where the body force of the membrane is ignored.
From Equations (1) and (2), we can obtain

2σrrh sinθ = qr2, (3)

and

h
d(σrr cosθ)

dr
cosθ− σth + qr sinθ = 0, (4)

where
sinθ � tanθ = −

dw
dr

(5a)

and
cosθ =

1√
1 + tan2 θ

=
1√

1 + (−dw/dr)2
. (5b)

Substituting Equations (5a) and (5b) into Equations (3) and (4), it can be found that

− 2σrh
dw
dr

= qr (6)

and

σth = h
d
(
σrr/

√
1 + (dw/dr)2

)
dr

1√
1 + (dw/dr)2

− qr
dw
dr

. (7)

The relations of the strain and displacement of the large deflection problem—that is, the so-called
geometric equations—still follow the classical geometric equations [31],

er =
du
dr +

1
2

(
dw
dr

)2

et =
u
r

, (8)

in which er is the radial strain, et is the circumferential strain, and u is the radial displacement. The
relations of the stress and strain—that is, the so-called physical equations—also follow the classical
physical equations [31],

σr =
E

1−ν2 (er + νet)

σt =
E

1−ν2 (et + νer)

}
. (9)

Substituting Equation (8) into Equation (9), we may obtain

hσr =
Eh

1− ν2

du
dr

+
1
2

(
dw
dr

)2

+ v
u
r

 (10a)

and

hσt =
Eh

1− ν2

u
r
+

v
2

(
dw
dr

)2

+ v
du
dr

. (10b)

By means of Equations (10a), (10b) and (4), we may obtain

u
r
=

1
Eh

h
dσr
dr r

1 + (dw/dr)2 + h
σr

1 + (dw/dr)2 − h
σrr dw

dr
d2w
dr2[

1 + (dw/dr)2
]2 − qr

dw
dr
− νhσr

. (11)
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Then substituting the u of Equation (11) into Equation (10a), we obtain

hσr =
3h dσr

dr r

1+(dw/dr)2 +
hσr

1+(dw/dr)2 −
4hσrr dw

dr
d2w
dr2

[1+(dw/dr)2]
2 − 2qr dw

dr − νhσr

+
h d2σr

dr2 r2

1+(dw/dr)2 −
3h dσr

dr r2 dw
dr

d2w
dr2

[1+(dw/dr)2]
2 −

hσrr2 dw
dr

d3w
dr3

[1+(dw/dr)2]
2 −

hσrr2
(

d2w
dr2

)2

[1+(dw/dr)2]
2

+
4hσrr2( dw

dr )
2
(

d2w
dr2

)2

[1+(dw/dr)2]
3 − qr2 d2w

dr2 − νhr dσr
dr + Eh

2

(
dw
dr

)2
+

vh dσr
dr r

1+(dw/dr)2

+ vhσr

1+(dw/dr)2 −
vhσrr dw

dr
d2w
dr2

[1+(dw/dr)2]
2 − vqr dw

dr

. (12)

The boundary conditions, under which Equations (6), (7) and (12) can be solved, are

dw
dr

= 0 at r = 0 (13a)

and
u
r
= 0 and w = 0 at r = a. (13b)

Equations (6), (7) and (12) are three differential equations for the solutions of σr, σt and w, which can
be solved by the boundary conditions, Equations (13a) and (13b).

2.2. Nondimensionalization

Let us introduce the following dimensionless variables

Q =
aq
hE

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, (14)

and transform Equations (6), (7), (12) and (11) into

Qx + 2Sr
dW
dx

= 0, (15)

St =

dSr
dx x

1 + (dW/dx)2 +
Sr

1 + (dW/dx)2 −
Srx dW

dx
d2W
dx2[

1 + (dW/dx)2
]2 −Qx

dW
dx

, (16)

3 dSr
dx x

1+(dW/dx)2 +
Sr

1+(dW/dx)2 −
4Srx dW

dx
d2W
dx2

[1+(dW/dx)2]
2 − 2Qx dW

dx − νSr

+
d2Sr
dx2 x2

1+(dW/dx)2 −
3 dSr

dx x2 dW
dx

d2W
dx2

[1+(dW/dx)2]
2 −

Srx2 dW
dx

d3W
dx3

[1+(dW/dx)2]
2 −

Srx2
(

d2W
dx2

)2

[1+(dW/dx)2]
2

+
4Srx2( dW

dx )
2
(

d2W
dx2

)2

[1+(dW/dx)2]
3 −Qx2 d2W

dx2 − νx dSr
dx + 1

2

(
dW
dx

)2
+

v dSr
dx x

1+(dW/dx)2

+ vSr

1+(dW/dx)2 −
vSrx dW

dx
d2W
dx2

[1+(dW/dx)2]
2 − vQx dW

dx − Sr = 0

(17)

and
u
r = 1

[1+(dW/dx)2]
2

{
dSr
dx x

[
1 + (dW/dx)2

]
+ Sr

[
1 + (dW/dx)2

]
−Srx dW

dx
d2W
dx2 −Qx dW

dx

[
1 + (dW/dx)2

]2
− νSr

[
1 + (dW/dx)2

]2
} . (18)

Accordingly, the boundary conditions can be transformed into

dW
dx

= 0 at x = 0 (19a)
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and
dSr
dx x

[
1 + (dW/dx)2

]
+ Sr

[
1 + (dW/dx)2

]
− Srx dW

dx
d2W
dx2

−Qx dW
dx

[
1 + (dW/dx)2

]2
− νSr

[
1 + (dW/dx)2

]2
= 0

and W = 0 at x = 1 (19b)

2.3. Power Series Solution

Equations (6), (7) and (12) are three differential equations that are usually difficult to solve.
Here, we use the power series method to solve them. Note that the radial stress and the transverse
displacement are continuous functions; both of them can be expanded in terms of the power series.
So the dimensionless radial stress Sr and transversal displacement W are simultaneously expanded in
the form of power series with respect to x, i.e., let

Sr(x) =
∞∑

n=0

bnxn (20)

and

W(x) =
∞∑

n=0

cnxn. (21)

After substituting Equations (20), (21) into Equations (15) and (17), the equations are represented by
the undetermined constants bn and cn. In order to let the expressions on the left-hand of Equations (15)
and (17) constantly be zero, the coefficients of all items of xn should be zero. Thus, we can obtain the
expressions of the dimensionless stress and transversal displacement with the unknown constants b0

and c0, such that,

Sr = b0 −
Q2

64b2
0
x2
−

Q4

6144b5
0

(
48νb2

0 + 240b2
0 + 1

)
x4
−

Q6

4718592b8
0

(
1248νb2

0

−6144νb3
0 − 43008b3

0 + 8352b2
0 + 13

)
x6
−

Q8

1509949440b11
0

(
119808ν2b4

0

+2045952νb4
0 − 116736νb3

0 + 8709120b4
0 + 12960νb2

0 − 1038336b3
0

+106848b2
0 + 85

)
x8
−

Q10

724775731200b14
0

(
4520448ν2b4

0 − 28016640ν2b5
0

−498401280νb5
0 + 89275392νb4

0 − 2092400640b5
0 − 2574336νb3

0
+440732160b4

0 + 199920νb2
0 − 27703296b3

0 + 1944528b2
0 + 925

)
x10
− . . .

(22)

and
W = c0 −

1
4

Q
b0

x2 + 1
512

Q3

b4
0

x4
−

1
147456

Q5

b7
0

(
96νb2

0 + 480b2
0 + 5

)
x6

+ Q7

75497472b10
0

(
43008b3

0 + 6144νb3
0 − 14112b2

0 − 2400νb2
0 − 55

)
x8

−
Q9

724775731200b13
0

(
5087232ν2b4

0 + 71221248νb4
0 + 264314880b4

0

−4276224νb3
0 − 35241984b3

0 + 910080νb2
0 + 6066432b2

0 + 12600
)
x10 + . . .

. (23)

It can be seen that Equation (19a) is automatically satisfied by taking the first derivative with
respect to x in Equation (23). For the given problem where a, h, E, ν, and q are known in advance, the
remaining undetermined constant b0 can be determined by substituting Equations (22) and (23) into
Equation (19b), and with this known constant b0, the undetermined constant c0 can be determined by
substituting Equation (23) into Equation (19b). As for St, it is easily obtained by direct substitution,
so there is no need to illustrate in detail. Thus, the radial stress and transverse displacement of the
circular membrane under uniformly distributed gas pressure are determined.

3. Results and Discussion

Let us consider a rubber circular thin film with a = 70 mm, h = 5 mm, E = 6.11 MPa, ν = 0.49
subjected to the uniformly distributed gas pressure q, as a numerical example, to discuss some related
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issues. Figures 6–9 show the variations of w with r when q takes 0.01, 0.05, 0.07 and 0.2 MPa, respectively,
and Figure 10 shows the variations of σr with r when q takes 0.07 MPa, where the solid line represents
the result obtained by the solution presented here, and the dashed line by the Hencky solution [28].
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Theoretically, when the uniformly distributed gas pressure is very small, correspondingly, the
deformation of the thin film will also be very small. In this case, the uniformly distributed gas pressure
can be approximately regarded as the uniformly distributed transverse load, due to the fact that the
horizontal component of the uniformly distributed gas pressure is not obvious. Therefore, when the
load is very small, the deflections of the uniformly distributed gas pressure problem and uniformly
distributed transverse load problem should be very close. From Figure 6, it can be seen that, when
q = 0.01 MPa (very small), the solid line is very close to the dash line, which demonstrates, from the
side, the validity of the solution presented here.

From Figures 7–9, it can be seen that, when q = 0.05 MPa, the transverse deflections w(r) obtained
by the solution presented here were all smaller than that of the Hencky solution within the entire
definition domain. When q = 0.07 MPa, the transverse deflection w(r) obtained by the solution
presented here was approximately equal to that by Hencky solution in the peripheral region of the
circular film, and was smaller than that of the Hencky solution in the central region. Finally, when
q increases to 0.2 MPa, the transverse deflection w(r) obtained by the solution presented here was
larger than that of the Hencky solution in the peripheral region of the circular film and was smaller
than that of the Hencky solution in the central region. Through the comparative analysis of the
three cases, it can be seen that when the load was small, the horizontal component of the uniformly
distributed gas pressure had little effect on the deflection of the circular thin film, and the uniformly
distributed gas pressure can be approximately equivalent to the uniformly distributed transverse load.
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When the uniformly distributed gas pressure became larger, the horizontal component of the uniformly
distributed gas pressure had a greater impact on the deflection of the circular thin film, which is mainly
reflected in the outer part of the circular thin film. The horizontal force of the uniformly distributed
gas pressure made the outer part of the circular thin film expand horizontally. At this point, if the
uniformly distributed gas pressure was replaced by the uniformly distributed transverse load, a large
error would have been generated.

From Figure 10, it can be seen that the variation trend of σr obtained by the presented solution
and Hencky solution is basically consistent. The σr obtained by the presented solution is always less
than that of the Hencky solution on the outer side of the circular film. In the center part of the circular
thin film, the σr obtained by the presented solution is all greater than that that of the Hencky solution.
It can be seen that both ends of the circular thin film expanded outward due to the horizontal force of
uniformly distributed gas pressure. This horizontal component made the circular thin film relaxed and
the stress decreased in the outer part, and the circular thin film tightened and the stress increased in
the central part.

The measuring formulas used in existing blister test techniques are usually calculated based on
the ratio of deflection at r = a/2 of the thin film to deflection at the center of the thin film. Therefore,
Table 1 shows w0 and wa/2 obtained from the two solutions (the Hencky solution and the solution
presented here) and the ratio between them, and also gives the relative error of w0.5a/w0. From Table 1,
it can be seen that when the gas pressure is small, the error is relatively small, but with the increase in
gas pressure, the error gradually increases. Generally, the allowable error of the measurement is 3%,
but the error exceeds this allowable value when the load is just 0.2 MPa. When the load is equal to 1.5
MPa, the error is as high as 10.301%. This fully illustrates the necessity and importance of obtaining
the analytical solution of axisymmetric deformation of circular thin films under uniformly distributed
gas pressure.

Table 1. The deflection of the thin film when q is equal to different values.

q(MPa)
w0.5a (mm) w0 (mm) w0.5a/w0 (mm)

Error (%)
A 1 B 2 A 1 B 2 A 1 B 2

0.05 14.467 14.274 18.372 18.150 0.787 0.786 0.125
0.10 18.227 18.115 23.147 22.580 0.787 0.802 −1.878
0.15 20.865 20.503 26.497 25.293 0.787 0.810 −2.938
0.20 22.965 22.473 29.163 27.408 0.787 0.819 −4.125
0.50 31.168 31.398 39.581 37.516 0.787 0.836 −6.280
1.00 39.270 39.962 49.869 46.847 0.787 0.853 −8.326
1.50 44.953 46.958 57.086 54.063 0.787 0.868 −10.301

1 Denotes the Hencky solution and 2 denotes the solution presented here.

4. Experimental Analysis

An experiment was conducted to verify the validity of the closed-form solution given in this paper.
A rubber film with h = 5 mm, E = 6.11 MPa, ν = 0.49 was clamped by two plastic-steel cylinders
with an inner radius of 70 mm and an outer radius of 75 mm. A total of thirteen measuring points
were marked every 10mm on the axis of the rubber film, then the other film with the inflation hole and
the air pressure gauge was clamped on the upper plastic-steel cylinder. The scheme of cylinder device
is shown in Figure 11. The gas pressure, q = 0.07 MPa, was filled into the cylinder from the inflation
hole. After the rubber film was deformed stably, the displacement of each measuring point on the film
was measured by a laser displacement sensor, as shown in Figure 12. The measured experimental data
and theoretical calculation results are shown in Table 2.
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Table 2. Results in numerical values.

Measuring Points Experiment Results (mm)
Theoretical Results (mm) Error (%)

A 1 B 2 A 1 B 2

1 5.034 6.362 5.514 26.38 8.72
2 9.345 11.163 9.987 19.45 6.43
3 12.244 14.762 13.526 20.56 9.48
4 15.334 17.383 16.207 13.36 5.39
5 16.857 19.171 18.086 13.73 6.80
6 18.253 20.210 19.200 10.72 4.93
7 19.043 20.552 19.569 7.92 2.69
8 18.245 20.210 19.200 10.77 4.98
9 16.648 19.171 18.086 15.15 7.96

10 15.563 17.383 16.207 11.69 3.97
11 12.986 14.762 13.526 13.68 4.00
12 9.457 11.163 9.987 18.04 5.32
13 5.188 6.362 5.514 22.63 5.93

1 Denotes the Hencky solution and 2 denotes the solution presented here.
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From Table 2, it can be seen that the experimental results are very close to the theoretical solution
presented here, and the maximum error is 9.48%, which is much smaller than the allowable error
measurement of 15%. Thus, it can be concluded that the theoretical solution given in this paper is
reliable. Moreover, from Table 2, it can also be seen that the errors of the Hencky solution at multiple
points are above 15%, which indicates that the Hencky solution is not an appropriate replacement.

5. Concluding Remarks

In this paper, the problem of axisymmetric deformation of the blistering circular thin polymer
film under the action of uniformly distributed gas pressure was solved and its closed-form solution
was presented by the power series method. The presented numerical example shows that the solution
presented here was correct, and in blister test techniques, using the solution of a uniformly distributed
transverse load as a substitute for the solution of uniformly distributed gas pressure will cause
greater error. Generally, the error will increase with the increase in pressure. In addition, the related
experiments of the blistering circular thin polymer film under uniformly distributed gas pressure were
carried out, and the experimental results are compared with the theoretical solution. The comparison
results show that the theoretical results are in good agreement with the experimental results, which
ensures the reliability of the analytical solution given in this paper.

The work presented here should be of great significance to increase the accuracy of the blister test
technique. In further studies, this work will be used for the derivation of measurement formulas of the
blister test technique.
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