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Abstract: The metabolites produced by the gut microbiota have been reported as crucial agents
against obesity; however, their key targets have not been revealed completely in complex micro-
biome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics,
postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we
retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed
a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and
SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM
databases. After selecting the overlapping targets, we adopted topological analysis to identify core
targets against obesity. Furthermore, we employed the integrated networks to microbiota–substrate–
metabolite–target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to
verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on
holistic viewpoints, we performed a filtering step to discover the core targets through topological
analysis. Then, we implemented protein–protein interaction (PPI) networks with 342 overlapping
target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final
core networks were obtained after screening the top 30% betweenness centrality (BC). The final core
targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other
components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and
six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics)
via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with
the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In
this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabo-
lite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for
further research.

Keywords: gut microbiota; obesity; equol; isoflavone; Lactobacillus paracasei JS1; IL6

1. Introduction

Obesity is an serious health issue globally because it is related to diverse diseases,
such as diabetes, atherosclerosis, hypertension, heart attack, and even cancers [1]. The
main cause of obesity a persistent between consumed energy and expended energy for
a long period of time [2]. A criterion used to assess the severity of obesity is body mass
index (BMI), with BMI values of 30.00 or more indicating obesity [3]. At present, obesity is
prevalent in all ages, with the worldwide prevalence of obsesity expected to increase to
573 million by 2030 [4].

Common medications administered for short-term weight management include phen-
termine and diethylpropion as appetite suppressants [5]. Orlistat is approved for long-term
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oral administration, acting as a pancreatic lipase inhibitor to interrupt dietary fat absorp-
tion [6]. However, these drugs are associated with negative side effects, such as headache,
nausea, dry mouth, constipation, diarrhea, and even anxiety [7].

Recently, a report demonstrated that metabolites from the gut microbiota can exert
favorable efficacy to ameliorate metabolic disorders, including obesity [8]. Another report
suggested that metabolites produced by the gut microbiota act as regulators to maintain
energy balance in host system [9]. The gut microbiota is related to the etiology of obesity and
its associated metabolic disorders, for instance, by regulating the fermentation of dietary
polysaccharides, fat consumption, and even obesity [10]. In addition, a study showed that
utilization of prebiotics, probiotics, and synbiotics (the mixture of prebiotics and probiotics)
may affect the production of chemical messengers (hormones and neurotransmitters) and
inflammatory elements, interrupting diet intake stimulators that result in obesity [11].
Therefore, favorable dietary food (prebiotics) and gut microbes (probiotics) may exert
positive effects on obesity. As mentioned above, prebiotics (a precursor of postbiotics)
converted into postbiotics (defined as metabolites) via probiotics (known as gut microbiota)
have been documented as critical constituents for the treatment of obesity; however, their
core targets have not been completely elucidated in highly complicated microbiome systems.
Thus, we pioneered potential prebiotics, probiotics, postbiotics, and more importantly, key
targets to establish the four key components against obesity.

Flavonoid-abundant foods, such as fruits and vegetables, exert therapeutic effects,
including anti-inflammation, antioxidant, hypertension, and anti-obesity actions, a rela-
tionship that is expounded by characteristics of the gut microbiome to a certain extent [12].
Flavonoid are considered significant nutritional constituents in therapeutics due to their
favorable physicochemical properties, providing an improved absorption rate, increased
therapeutic capacity, and fewer adverse effects relative to other compounds [13]. The
gut–liver axis is a cross junction between the gut, its microbial colonization, and the liver,
regulating the signaling pathways tuned by nutritional, genetic, and environmental vari-
ables [14]. Therefore, flavonoids with advantageous pharmacokinetic characteristics for use
as agents against some diseases, including obesity, might be promising additives produced
by the gut microbiota.

Additionally, the construction of multiple biological networks offers prospective in-
sight to elucidate complex pharmacological information, such as microbial interactions,
protein–protein interaction (PPI) network analysis, and even topological analysis [15,16].
Specifically, biological network models can serve as a paradigm to uncover the underlying
causes of complex diseases [17]. Network pharmacology is an integrated analytical method-
ology to pioneer significant components (bioactives, proteins, diseases, and genes) [18].
With the development of bioinformatics, network pharmacology can decode the mechanism
of action in complex biological systems through interdisciplinary studies, suggesting that
network pharmacology is a convergent approach to shift from “one target, one compound”
to “multiple targets, multiple compounds” [18–20].

We constructed a microbiota–substrate–metabolite–target (MSMT) network to reveal
the underlying therapeutic values of the interactions. A previous report suggested that
Lactobacillus paracasei JS1, isoflavone, and equol might be significant components in the
treatment of skin and intestinal disorders [21]. Another significant factor related to obesity
is IL6. This target is a key element exerting pharmacological efficacy against obesity and is
better known as a targeted to inhibit obesity [22].

Our description shows that important components, such as prebiotics, probiotics,
and postbiotics, can dampen obesity in the microbiome and bed targeted via network
pharmacology analysis. Targets with high betweenness centrality (BC) (the route value
of the shortest path between nodes) can be used to identify significant nodes (or targets)
in the network [23]. Key targets with highest BC values are noteworthy therapeutically
relevant candidates that can be used to treat diverse diseases [24]. Hence, we generated PPI
networks based on the BC values of each target, and targets with high connectivity values
in the networks were considered therapeutic targets against obesity.
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Despite insufficient data to elucidate a crucial therapeutic underpinning of obesity
etiology, our findings contribute to unraveling the potentiality of an antiobesity effect in
complex microbiome systems.

2. Hypothesis

We postulated that targets with a high degree of betweenness centrality (BC) can serve
as therapeutic candidates against obesity. Targets with a high correlation degree value in
PPI networks based on a high BC value are potential targets for the treatment of obesity.
The most stably bound metabolites on a key target in the molecular docking test (MDT)
were considered key postbiotics, and microbes produced by postbiotics were defined as
key probiotics.

3. Methods and Materials

Biologically substantial datasets with abundant data on the association between lig-
ands and targets enable researchers to employ network pharmacology as an efficient
method for drug discovery or development (Table 1). Such web-based datasets are available
freely to users to obtain valuable information that can be applied to microbiome and net-
work pharmacology. In this study, we implemented new approach to explore the complex
microbiome and its network via public databases and network pharmacology strategies.

Table 1. List of databases used in the present study.

No. Database Brief Description Utilization URL

1 ADMETlab 2.0

A web-based platform
to identify

physicochemical
properties of organic

compounds

The pioneering of
pharmcokinetics of
organic compounds

https://admetmesh.scbdd.com/
(accessed on 4 June2022)

2 DisGeNET
A database of
target–disease

correlations

The pioneering of targets
in response to diseases

https://www.disgenet.org/
(accessed on 1 June 2022)

3 gutMGene

Online database for
identification of targets
and metabolites from

gut microbiota

The retrieval of targets
and metabolites of gut

microbes

http://bio-annotation.cn/gutmgene
(accessed on 31 May 2022)

4
Online Mendelian
Inheritance in Man

(OMIM)

A collective
compendium of human

targets and diseases

The correlation of human
targets and diseases

https://www.omim.org/
(accessed on 1 June 2022)

5 Similarity Ensemble
Approach (SEA)

A database of targets
related to compounds

The identification of
potential targets on

compounds

https://sea.bkslab.org/
(accessed on 31 May 2022)

6 String

A web-based tool to
identify

protein–protein
interaction networks

The identification of
network functional
enrichment analysis

https://string-db.org/
(accessed on 1 June 2022)

7 SwissADME
A web-based tool for

prediction of drug-like
properties

The identification of
physicochemical

properties on compounds

http://www.swissadme.ch/
(accessed on 4 June 2022)

8 SwissTargetPrediction
(STP)

A web server to explore
targets from small

molecules

The selection of targets
on small molecules

http://www.swisstargetprediction.ch/
(accessed on 31 May 2022)

9 VENNY 2.1
A web-based tool for

identification of
overlapping elements

The identification and
comparison of elements

in a Venn diagram

https:
//bioinfogp.cnb.csic.es/tools/venny/

(accessed on 1 June 2022)

https://admetmesh.scbdd.com/
https://www.disgenet.org/
http://bio-annotation.cn/gutmgene
https://www.omim.org/
https://sea.bkslab.org/
https://string-db.org/
http://www.swissadme.ch/
http://www.swisstargetprediction.ch/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
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The metabolites generated by the gut microbiota were identified via gutMGene (http:
//bio-annotation.cn/gutmgene/) (accessed on 31 May 2022) [25]. We adopted the similarity
ensemble approach (SEA) (https://sea.bkslab.org/) (accessed on 31 May 2022) [26] for
mining analysis and SwissTargetPrediction (STP) (http://www.swisstargetprediction.ch/)
(accessed on 31 May 2022) [27] to search for targets linked to the metabolites. Obesity-
responsive targets were identified by DisGeNET (https://www.disgenet.org/) (accessed
on 1 June 2022) [28] and OMIM (https://www.omim.org/) (accessed on 1 June 2022) [29].
Crucial targets were utilized to identify the interaction between each node through PPI
networks. Then, we constructed MSMT networks for descriptive purposes. Finally, MDT
was implemented to evaluate the binding stability between metabolites and targets. The
study protocol was conducted as follows.

Step 1: Retrieval of metabolites produced by gut microbiota through gutMGene. The
metabolites converted by gut microbes were identified by a subfolder in the downloads sec-
tion (http://bio-annotation.cn/gutmgene/public/res/gutMGene-human.xlsx) (accessed
on 31 May 2022) in gutMGene v1.0, suggesting key metabolites reported to date.

Step 2: Targets associated with the metabolites were mined by SEA and STP databases.
The metabolites were selected in simplified molecular input line entry system (SMILES)
format to load in the two databases, the format of which was converted by PubChem
(https://pubchem.ncbi.nlm.nih.gov/) (accessed on 31 May 2022). Obesity-related targets
were identified via DisGeNET (https://www.disgenet.org/) and OMIM (https://www.
omim.org/).

Step 3: Selection of intersecting targets between SEA and STP. We selected the intersect-
ing targets to achieve rigor and exactness from the two databases. In detail, an SEA database
was constructed by Dr. Shoichet’s group to identify the affinity of compound targets and
eventually reveal their binding stability [26]. Additionally, 23 of 30 drug targets suggested
by SEA were experimentally confirmed [30]. STP was used as a tool to predict targets for
cudraflavone C, a species of flavanols, which were experimentally demonstrated [31]. Thus,
we utilized the two databases to enhance the success rate in this study. With the help of
VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) (accessed on 1 June 2022) Venn
diagram, we selected the overlapping targets.

Step 4: Identification of crucial targets among obesity-related targets and the overlap-
ping targets extracted by SEA and STP. We considered intersecting targets to be crucial
targets.

Step 5: The crucial targets from Step 4 were analyzed by the String database ver-
sion 11.5 (https://string-db.org/) (accessed on 1 June 2022) [32], and we adopted PPI
networks to identify relationships using the R package.

Step 6: Construction of sub-PPI networks with the highest degree centrality (DC)
values in the upper 30% from the PPI networks (Step 5) via R package. DC is determined
as the number of edges on each node [33].

Step 7: Construction of a subnetwork with the highest betweenness centrality (BC)
values in the top 30% from the sub-PPI networks (Step 6) via R package. BC is a measure-
ment of the influence of node in a network [34]. The highest BC value reflects the relative
significance of aspects of biological effect in the networks, i.e., nodes with higher BC values
have increased potential therapeutic value against disease [23].

Step 8: Description of MSMT networks via R package. The most important elements
against obesity were indicated by the size degree of the circle.

The size of each component (node) describes the number of interactions (edge) in the
MSMT networks.

The microbiota, substrate, metabolite, and target were merged to describe their rela-
tionships in Microsoft Excel in combination with R package to identify their connectivity.
We defined specific compounds of prebiotics as substrates (S) that are pre-metabolites
before becoming primary metabolites in the MSMT networks.

Step 9: Initial screening was performed by MDT, with a cutoff less than -6.0 kcal/mol
or the lowest Gibbs energy in each complex. The metabolites were downloaded in .sdf

http://bio-annotation.cn/gutmgene/
http://bio-annotation.cn/gutmgene/
https://sea.bkslab.org/
http://www.swisstargetprediction.ch/
https://www.disgenet.org/
https://www.omim.org/
http://bio-annotation.cn/gutmgene/public/res/gutMGene-human.xlsx
https://pubchem.ncbi.nlm.nih.gov/
https://www.disgenet.org/
https://www.omim.org/
https://www.omim.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
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format from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and converted to .pdb format
via Pymol. The selected .pdb format was converted to .pdbqt format to implement the MDT.
The crystal structure of each target was obtained by RCSB PDB (https://www.rcsb.org/)
(accessed on 2 June 2022). The MDT was implemented to verify the affinity between
metabolites and targets via AutoDockTools-1.5.6 [35].

The docking box size was solidified with x = 40 Å, y = 40 Å, and z = 40 Å. The
active site of the crystal structure was formatted with a cubic box in the center: AKT1
(x = 6.313, y = -7.926, z = 17.198) and IL6 (x = 11.213, y = 33.474, z = 11.162). Both
hydrophilic and hydrophobic interaction analyses were performed with LigPlot + 2.2.
(https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html) (accessed on
3 June 2022) [36].

Step 10: Drug-resemblance and toxicity properties were validated by SwissADME
(http://www.swissadme.ch/) (accessed on 4 June 2022) and the ADMETlab web-based
tool (https://admetmesh.scbdd.com/) (accessed on 4 June2022) [37]. These two factors are
critical elements to facilitate new agents; thus, we assessed their physicochemical values
and side effects. The study workflow is represented in Figure 1.

Figure 1. The workflow of this study.

4. Results

A total of 208 metabolites were obtained via the gutMGene database and identified by
the SEA (1256) and STP (947) databases (Supplementary Table S1). A total of 668 targets
overlapped between SEA and STP (Figure 2A); a Venn diagram plotter program intersected
342 common targets between the 668 targets and obesity-related targets (3028) (Figure 2B)
(Supplementary Table S1).

https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/download2.html
http://www.swissadme.ch/
https://admetmesh.scbdd.com/
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Figure 2. (A) The common 668 targets between SEA (1256) and STP (947). (B) The common 342 targets
between the 668 targets and obesity-related targets (3028).

In the PPI networks, NMUR2, PAM, BRS3, UTS2R, and SSTR4 did not exhibit any
interactions with other targets and consisted of 337 nodes and 4492 edges (Supplementary
Figure S1). The subnetwork was obtained by selecting the upper top 30% in terms of degree
centrality (DC) (Table 2), comprising 106 nodes and 1441 edges (Supplementary Figure S2).

Table 2. The degree of to 30% DC targets.

No. Target Degree of Centrality No. Target Degree of Centrality

1 AKT1 156 54 ACLY 21
2 ALB 147 55 ALOX5 21
3 GAPDH 90 56 BACE1 21
4 CASP3 88 57 CSK 20
5 EGFR 85 58 CYP17A1 20
6 IL6 80 59 ELANE 20
7 ACE 71 60 F3 20
8 ESR1 71 61 HDAC6 20
9 CXCL8 65 62 MMP2 20

10 APP 61 63 ADCY5 19
11 EP300 59 64 ANPEP 19
12 AR 58 65 BCHE 19
13 HIF1A 58 66 CDK6 19
14 HSP90AA1 54 67 CHRNA4 19
15 CREBBP 51 68 CYP2C9 19
16 FGF2 46 69 HDAC4 19
17 MAPK1 42 70 HNF4A 19
18 ABCB1 39 71 IGFBP3 19
19 CASP8 39 72 INSR 19
20 GSK3B 39 73 ACE2 18
21 AHR 38 74 ADORA2A 18
22 CASP1 37 75 ADRB1 18
23 AKT2 36 76 FLT3 18
24 COMT 35 77 GSR 18
25 CYP3A4 35 78 HSPA1A 18
26 ACHE 34 79 AKR1C3 17
27 CNR1 34 80 BCL2A1 17
28 IL2 34 81 DRD2 17
29 ABCG2 33 82 NOS2 17
30 CTSB 33 83 NR3C1 17
31 NOS3 32 84 ADORA1 16
32 FYN 31 85 CHEK1 16
33 MAPK14 30 86 CTSL 16
34 ADRB2 29 87 CYP2D6 16
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Table 2. Cont.

No. Target Degree of Centrality No. Target Degree of Centrality

35 MMP9 29 88 FGF1 16
36 AKR1B1 27 89 GRIN1 16
37 ARG1 27 90 MAPT 16
38 CYP1A1 27 91 MCL1 16
39 F2 27 92 MET 16
40 CYP19A1 26 93 NFE2L2 16
41 ESR2 26 94 PPARA 16
42 IGF1R 26 95 AOC3 15
43 CCR2 25 96 CPB2 15
44 PPARG 25 97 REN 15
45 CD38 24 98 ALDH2 14
46 CDK1 24 99 ALOX15 14
47 CDK5 24 100 ERN1 14
48 CFTR 24 101 G6PD 14
49 CYP1A2 24 102 LGALS3 14
50 HDAC2 24 103 MMP3 14
51 MAPK8 24 104 NOS1 14
52 MPO 23 105 NR0B2 14
53 HDAC3 22 106 PTGS2 14

After screening the top 30% in terms of betweenness centrality (BC) of the subnetwork,
which comprised 32 nodes and 254 edges (Table 3) (Figure 3).

Table 3. The degree of the top 30% BC targets from Table 1.

No. Target Betweenness Centrality No. Target Betweenness Centrality

1 AKT1 1.000000 17 F2 0.121939
2 GAPDH 0.961904 18 AR 0.119210
3 EGFR 0.631284 19 GSK3B 0.111653
4 ALB 0.605009 20 DRD2 0.106535
5 CXCL8 0.564944 21 FYN 0.102145
6 ESR1 0.531729 22 NOS2 0.100364
7 IL6 0.519001 23 HDAC2 0.089496
8 CASP3 0.345339 24 FLT3 0.084114
9 HIF1A 0.344015 25 HNF4A 0.078172
10 CYP1A1 0.277903 26 GRIN1 0.068896
11 COMT 0.239681 27 CASP1 0.068437
12 HSP90AA1 0.227377 28 CYP19A1 0.067422
13 CYP3A4 0.210552 29 CYP2D6 0.064594
14 FGF2 0.198164 30 CNR1 0.063946
15 MAPK1 0.136887 31 CYP2C9 0.058081
16 MMP9 0.131470 32 MAPK8 0.057694

In the BC subnetwork, the targets with the top three BC values were albumin (ALB),
interleukin-6 (IL6), and AKT serine/threonine kinase 1 (AKT1), which were considered the
core targets connected with microbes to alleviate obesity. The gut microbes directly related
to the production of metabolites were identified as Escherichia coli, Lactobacillus paracasei JS1,
Eubacterium limosum, and Enterococcus durans M4-5; however, there are additional unknown
microbes (Unknown 1, Unknown 2, Unknown 3, and Unknown 4) that produce favorable
metabolites against obesity, as indicated in the MSMT networks (Figure 4). Additionally,
the beneficial prebiotics to convert into metabolites against obesity were identified as
tryptophan and isoflavone, which can produce indole and equol via Escherichia coli and
Lactobacillus paracasei JS1, respectively [21,38]. Likewise, there are unknown prebiotics
(Unknown 5, Unknown 6, Unknown 7, Unknown 8, and Unknown 9) that may act against
obesity. However, the information on prebiotics, probiotics, and postbiotics (Unknown 10)
has yet to be confirmed, although ALB was selected as a core antiobesity target.
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Figure 3. PPI networks (32 nodes, 254 edges) of the top 30% BC values from Figure 3.

Five metabolites (equol, 3-indolepropionic acid, trimethylamine oxide, butyrate, and
acetate) on IL6 (PDB ID: 4NI9) and one metabolite (indole) on AKT1 were selected to
perform MDT (Table 4). We observed that the equol–IL6 complex (-7.4 kcal/mol) (Figure 5)
docked most stably, indicating its promise as a postbiotic and a target.

Table 4. Molecular docking test of IL6 (PDB ID: 4NI9) and AKT (PDB ID: 3O96).

Grid Box
Hydrogen

Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem
ID

Binding
Energy

(kcal/mol)
Center Dimension Amino Acid

Residue
Amino Acid

Residue

IL6 (PDB ID:
4NI9) Equol 91469 −7.4 x = 11.213 x = 40 Glu110,

Asp34, Tyr31

Gly35,
Gln111,
Ala114

y = 33.474 y = 40
z = 11.162 z = 40

3-
Indolepropionic

acid
3744 −7.2 x = 11.213 x = 40 Arg16 Pro18, Gln17

y = 33.474 y = 40
z = 11.162 z = 40
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Table 4. Cont.

Grid Box
Hydrogen

Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem
ID

Binding
Energy

(kcal/mol)
Center Dimension Amino Acid

Residue
Amino Acid

Residue

Trimethylamine
oxide 1145 −3.6 x = 11.213 x = 40 N/A N/A

y = 33.474 y = 40
z = 11.162 z = 40

Butyrate 104775 −4.4 x = 11.213 x = 40 N/A N/A
y = 33.474 y = 40
z = 11.162 z = 40

Acetate 175 −3.8 x = 11.213 x = 40 N/A Arg16
y = 33.474 y = 40
z = 11.162 z = 40

AKT1 (PDB
ID: 3O96) Indole 798 −5.2 x = 6.313 x = 40 Ser259

Asp262,
Tyr417,
Tyr263

y = −7.926 y = 40 Gln414,
His207

z = 17.198 z = 40

Then, the drug-likeness properties and toxicity of equol were evaluated by the Swis-
sADME and ADMETlab platforms according to Lipinski’s rule of five, including criteria
of molecular weight (≤500), H-bond acceptor (≤10), H-bond donor (≤5), MlogP (≤4.15),
bioavailability score (>0.1), and topological polar surface area (TPSA) (<140). Our results
indicate that equol can be accepted by pharmacokinetics parameters to be assessed as a
new agent (Table 5).

Despite an acceptable therapeutic value, an agent may not be an end product due to
unexpected toxicity. Therefore, a drug candidate should exceed the limits of toxicity for
further verification. Accordingly, equol was evaluated in terms of hERG blockers, rat oral
acute toxicity, eye corrosion, and respiratory toxicity, including LD50 (5.238 mg/kg), via
the ADMETlab platform (Table 6). Our observational study suggests that Isoflavone as a
prebiotic, Lactobacillus paracasei JS1 as a probiotic, equol as a postbiotic, and IL6 as a target
might exert positive effects on obesity.

Table 5. Physicochemical properties of equol.

No. Compound

Lipinski Rules

Lipinski’s
Violations

Bioavailability
Score

Topological
SurfaceArea

(Å2)
Molecular

Weight

Hydrogen
Bonding
Acceptor

Hydrogen
Bonding

Donor

Moriguchi
Octanol-

Water
Partition

Coefficient

<500 <10 ≤5 ≤4.15 ≤1 >0.1 <140

1 Equol 242.27 3 2 2.2 0 0.55 49.69
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Figure 4. MSMT networks (25 nodes, 23 edges). Yellow circles: microbiota (probiotics); red circles:
substrate (prebiotics); orange circles: metabolites (postbiotics); pink circle: target.

Figure 5. Equol–IL6 (PDB ID: 4NI9) complex on MDT.
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Table 6. Toxicity profile of equol.

Parameter Metabolite (Postbiotic)

Equol

hERG blocker Non-blocker
Rat oral acute toxicity Negative

Eye corrosion Negative
Respiratory toxicity Negative

LD50 of acute toxicity 5.238 mg/kg

5. Discussion and Conclusion

Previous studies have demonstrated that the metabolites from the gut microbiota act
as significant agents in a wide range of diseases, such as cancer, stroke, irritable bowel
syndrome, and even mental disorders, including obesity [39,40]. In this study, we analyzed
microbiota–substrate–metabolite–target (MSMT) networks and found that Lactobacillus
paracasei JS1, isoflavone, equol, and IL6 exhibited considerable connectivity in the networks,
indicating significant antiobesity effects.

Isoflavone is a major compound isolated from soybeans; its pharmacological action has
been established against cancers, osteoporosis, metabolic disorders, and neurodegenerative
symptoms [41]. Furthermore, equol, as an isoflavone-derived metabolite, has diverse favor-
able therapeutic effects on human health, such as estrogenic and antioxidant efficacy [42].
An animal test demonstrated that equol can result in a reduction in body weight, white
adipose tissue, and depression caused by dietary restriction [43]. More importantly, its
therapeutic effects can be confirmed in the context of equol produced by gut microbes.
In contrast, in patients who cannot produce equol due to a lack of equol-producing gut
microbes, an alternative is to directly administer equol with pharmaceutical forms [44].

A recent report showed that Lactobacillus paracasei JS1 can convert isoflavones into
equol via fermentation [45]. Another report demonstrated that equol treatment in collagen-
induced arthritis (CIA) inhibited the expression level of IL6 and its receptor at the point of
rheumatoid arthritis (RA) [46], suggesting that IL6 is a key regulator of inflammatory levels.
The considerable production of IL6 from adipocytes may lead to metabolic disorders, such
as obesity; moreover, IL6 cytokine signaling in adipose tissue is associated with hepatic
insulin resistance and steatosis [47]. IL6 spontaneously stimulates the secretion of free
fatty acid (FFA) by exerting a negative effect on glucose metabolism [47]. Therefore, IL6
inhibition might be an optimal therapeutic target against obesity.

We conducted analysis to identify a key target via topological analysis based on
betweenness centrality (BC). In drug network analysis, a drug with a high BC value tends
to be associated with several therapeutic applications, with considerable promising for
treatment of diverse diseases [36,48]. In particular, a study demonstrated that targets
with top 30% BC related to Xiao-Chai-Hu-Tang (Chinese herbal formula) were selected to
uncover the mechanism of action against colorectal cancer, providing a theoretical basis
for clinical tests [49]. Based on this result, we adopted “top 30% BC” as a threshold in
this study.

Network pharmacology research is a powerful tool to monitor targets, pathways,
drugs, and diseases in light of the rapid development of databases [50]. We constructed a
stepwise workflow to investigate key targets and metabolites to treat obesity by combining
public databases. Bioinformatics can be used not only to efficiently mine for drug candidates
but also to facilitate drug repurposing [51]. Furthermore, Huangqin decoction was proven
an antidiabetic enteritis agent via the combination of network pharmacology and gut
microbiota sequencing [52].

Accordingly, we performed a network pharmacology study to evaluate the phar-
macological value of the key target identified by a microbiome study. We conducted an
observational trial to explicitly elucidate a key target against obesity in complex microbiome
networks by reporting up-to-date information. According to the MSTM network results,
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we selected five potential metabolites and three targets for MDT, with results indicating
that equol can bind stably to IL6, which suggests that equol may ameliorate obesity by
inhibiting IL6.

Taken together, our results show that isoflavone (prebiotic), Lactobacillus paracasei JS1
(probiotic), equol (postbiotic), and IL6 (Target) are the most crucial components against
obesity in current microbiome research. However, accumulation of information concerning
the microbiome is subject to some limitations. Due to the limitations of bioinformatics and
cheminformatics, we suggest that further preclinical or clinical test should be conducted to
specify the four identified elements.
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