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Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and HCC patients often develop
drug resisitene. Long non-coding RNAs (LncRNAs) are closely related to cell cycle, growth, development, differ-
entiation, and apoptosis. Abnormally expressed lncRNAs have been proved to mediate drug resistance in tumor
cells. However, the effect of LIMT on drug resistance has not been explored in HCC. In this study, we explored the
effect of long non-coding RNA LIMT on drug resistance and its underlying mechanism in hepatocellular carcinoma
(HCC). Our results showed that LncRNA LINC01089 (LIMT) expression is downregulated in 78.57% (44/56) of 56 HCC
tumor tissue samples. LIMT expression is also downregulated in HCC cells compared with that in normal liver LO2
cells. Inhibition of LIMT increases the resistance to sorafenib and promotes cell invasion via regulation of epithelial
to mesenchymal transition (EMT) in HCC. StarBase V3.0 was used to predict the potential binding site of miR-665 in
LIMT. Furthermore, miR-665 participates in sorafenib resistance and also regulates the level of EMT-related proteins
in HCC cells. A rescue experiment demonstrated that silencing of LIMT eliminats the inhibitory effect of the miR-665
inhibitor on sorafenib resistance in HCC cells. Taken together, our findings revealed that downregulation of LIMT
increases the resistance of HCC to sorafenib via miR-665 and EMT. Therefore, LIMT, which serves as a ther-
apeutically effective target, will provide new hope for the treatment of HCC.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most pernicious tu-
mors worldwide [1]. Because of the high rate of recurrence and
metastasis, more and more patients are diagnosed with HCC every
year and also with a poor prognosis [2]. Sorafenib, which acts as a
multiple kinase inhibitor, is the first-line drug for the treatment of
HCC in many countries [3]. Although sorafenib can extend HCC
patients’ survival time, its curative effect is short because of the
development of drug-resistant cells. Some patients with HCC are not

only resistant to the long-term effects of sorafenib, but also show
resistance in the early stage [4]. Thus, it is urgent to reveal the
detailed mechanisms of sorafenib resistance in HCC.
Long non-coding RNAs (lncRNAs> 200 nucleotides) are closely

related to a series of physiological activities, such as cell cycle,
growth, development, differentiation, and apoptosis. Several ab-
normally expressed lncRNAs have been proved to mediate drug
resistance in tumor cells. For example, inhibition of HOTAIR could
decrease drug resistance in nonsmall-cell lung cancer (NSCLC) by
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regulating the expression of Unc-51 like autophagy activating kinase
1 (ULK1) [5]. Mechanistically, lncRNAs and microRNAs (miRNAs)
can interact to mediate drug resistance and cell invasion in various
cancer cells. For instance, silencing of SNHG16 was shown to in-
crease chemotherapy resistance to sorafenib in HCC by upregulat-
ing miR-140-5p [6]. In addition, drug resistance was inhibited
following transfection with a small interfering RNA (siRNA) tar-
geting FOXD2-AS1 via the miR-98-5p/cytoplasmic polyadenylation
element binding protein 4 (CPEB4) axis and the regulation of cell
proliferation and invasion [7]. LncRNA LINC01089 (LIMT) func-
tions as a metastasis inhibitory lncRNA, which was first discovered
to be inhibited by epidermal growth factor (EGF) in breast cancer,
and is related to cell migration and metastasis in different cancers
[8,9]. However, the effect of LIMT on drug resistance has not been
explored so far in HCC.
The process of epithelial to mesenchymal transition (EMT) ac-

companied by epithelial cells is rendered into cells containing me-
senchymal phenotypes via special steps [10,11]. EMT is related to a
great diversity of biological processes, such as embryonic devel-
opment, tissue reconstruction, chronic inflammation, cancer me-
tastasis, and drug resistance [12,13]. Cancer cells generally acquire
multi-drug resistance during EMT. Alternatively, EMT is closely
associated with chemo-resistance to cisplatin and doxorubicin in
HCC [14–16]. In addition, evidence shows that EMT and its ac-
companying molecules are the key determinants of resistance to
sorafenib therapy in HCC. Therefore, analysis of the molecular
mechanism underlying EMT might help to improve drug resistance
to achieve an anti-tumor effect.
This study intended to reveal the involvement of LIMT in sorafenib

resistance and the potential underlying mechanism. It provides im-
portant evidence that LIMT may be a novel therapeutic target and a
biomarker to predict the effect of sorafenib therapy in HCC.

Materials and Methods
Cell culture and the HCC human tissues
The human HCC cells (Huh7, Hep3B, and SNU449) were purchased
from ATCC (Manassas, USA) and cultured separately in Dulbecco’s
modified Eagle’s medium (DMEM), minimal essential medium
(MEM), and Roswell Park Memorial Institute (RPMI) 1640 medium
(Gibco, Carlsbad, USA) supplemented with 10% FBS (Sigma, St
Louis, USA) under a suitable environment (5% CO2 at 37°C). The
tumor tissue samples of HCC patients were obtained from Tongde
Hospital of Zhejiang Province. All patients provided written in-
formed consent and the study protocol was approved by the Clinical
Research Ethics Committee of Tongde Hospital of Zhejiang Province.

Cell viability
Cell viability in different treatment groups was determined by Cell
Counting Kit-8 (CCK-8) assay. HCC cell suspension (5×103 cells)
was inoculated into 96-well plates (100 μl/well) and cultured at
37°C with 5% CO2 until the cells adhered. Next, 10 μL of CCK-8
solution (Dojindo, Tokyo, Japan) was add into each well and in-
cubated at 37°C for 2 h. Thereafter, the optical density (OD) value
of each well was detected at 450 nm with a microplate reader.

Transfection
LIMT siRNAs (LIMT siRNA1:LIMT siRNA2:LIMT siRNA3=1:1:1),
miR-665 siRNA, miR-665 mimics, miR-665 inhibitor and their cor-
responding negative controls were designed and manufactured by

GenePharma (Shanghai, China). Transfections were performed
using lipofectamine 2000 (Invitrogen, Carlsbad, USA) according to
the manufacturer’s protocol. The sequences are shown in Table 1.

Western blot analysis
The concentrations of extracted protein from different treatment
groups were measured by bicinchoninic acid (BCA) protein assay.
Before separation by SDS-PAGE, equal amounts of protein (40 μg)
were denatured by heating with loading buffer at 100°C. The se-
parated proteins on the gel were electro-transferred onto poly-
vinylidene fluoride (PVDF) membranes. After being blocked with
5% nonfat dry milk in TBS-T buffer for 2 h at 37°C, the membranes
were incubated with indicated primary antibodies, including anti-
fibronectin 1 (FN-1) antibody, anti-E-cadherin antibody, anti-vi-
mentin antibody and anti-GAPDH antibody (1:1000 dilution; Ab-
cam, Cambridge, UK), overnight at 4°C. Then the membranes were
washed and incubated with the corresponding HRP-conjugated
secondary antibodies (1:2000 dilution; Cell Signaling Technology,
Beverly, USA). The immunoreactive protein bands were visualized
using an ECL kit (GE Healthcare, Piscataway, USA). GAPDH was
used as the loading control.

qRT-PCR analysis
Total RNA was extracted from HCC cells using Trizol reagent (In-
vitrogen) and then reverse transcribed to cDNA using a Reverse
Transcription kit (TaKaRa, Tokyo, Japan). Utilizing SYBR Premix
Ex Taq (TaKaRa), qRT-PCR was run and analyzed on the Applied
Biosystems Real-time PCR System (Foster City, USA). GAPDH and
U6 were used as reference controls for the lncRNA, mRNA, and
miRNA. The primers used were as follows: LIMT forward primer: 5′-
CGAATGGACAATCTTTCCTTCTGTC-3′, reverse primer: 5′-GCTA-
GAGGTTGAGGGCCTGAGT-3′; and miR-665 forward primer: 5′-
ACCAGGAGGCTGAGGC-3′, reverse primer: 5′-GAACATGTCTGC
GTATCTC-3′; GAPDH forward primer: 5′-CGGAGTCAACGGATT
TGGTCGTAT-3′ reverse primer: 5′-AGCCTTCTCCATGGTGGTGA
AGAC-3′; and U6 forward primer: 5′-GCTTCGGCAGCACATATA
CTAAAAT-3′, reverse primer: 5′-CGCTTCACGAATTTGCGTGTC
AT-3′.

Dual-luciferase reporter assays
Reporter plasmids containing the LIMT-3′UTR, which contained the
mutant (MUT) or wild-type (WT) binding sequence for miR-665,
were constructed by GenePharma. The plasmids were then tran-
siently co-transfected into cells with luciferase reporter vectors to-
gether with the miR-665-mimic, miR-665 inhibitor, or control using
Lipofectamine 2000. Forty-eight hours after transfection, the re-

Table 1. The siRNA sequences used in this study

Name Sequence

LIMT-homo-177
Sense: 5′-CCAUUCAUGUCAGCAGUUATT-3′;
Antisense: 5′-UAACUGCUGACAUGAAUGGTT-3′

LIMT-homo-295
Sense: 5′-GCAGAACGUGAGGGUGUAATT-3′
Antisense: 5′-UUACACCCUCACGUUCUGCTT-3′

LIMT-homo-888
Sense: 5′-GCUUCCAACCUCCAUUGCATT-3′;
Antisense: 5′-UGCAAUGGAGGUUGGAAGCTT-3′

miR-665 mimic
Sense: 5′-ACCAGGAGGCUGAGGCCCCU-3′;
Antisense: 5′-GGGCCUCAGCCUCCUGGUUU-3′

miR-665 inhibitor 5′-AGGGGCCUCAGCCUCCUGGU-3′;
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lative luciferase activity of the WT or MUT LIMT-3′-UTR was
measured using a dual-luciferase reporter assay kit (Promega, Ma-
dison, USA).

Ethynyl deoxyuridine (EdU) assay
Cell proliferation was determined using a Click-iT® EdU Imaging kit
according to the instructions of the manufacturer (Invitrogen).
Briefly, HCC cells were seeded in 96-well plates at a density of
3×103 cells/well in growth media. The medium was replaced by
serum-free medium to synchronize the cells. After 24 h of incuba-
tion, the serum-free medium was replaced by growth media with
the indicated concentrations and cuktured for 48 h. After incubation
with 20 μM EdU for 3 h, Cell nuclei were stained with Hoechst
33342 (Invitrogen) at a concentration of 5 μg/mL for 30 min. The
percentage of positive cells in five random fields of view per slide
was determined under an inverted fluorescence microscope
(Olympus, Tokyo, Japan) and expressed relative to that in the un-
treated control cells.

Cell cycle and apoptosis analysis
Cell cycle and apoptosis analysis were performed by flow cytometry
using Cell Cycle Assay kit-PI/RNase Staining and Annexin V/FITC
Apoptosis Detection kit (Roche, Basel, Switzerland) according to
manufacturer’s instructions. Cell cycle analysis was carried out by
Cell Cycle Assay Kit-PI/RNase Staining. Briefly, the cell density was
adjusted to 2×106 cells/mL, and 1 mL of cell suspension was added
into a 1.5-mL microtube and centrifuged at 1000 g for 3 min. Then
the supernatant was discarded and 1 mL of 70% ethanol (–20°C)
was added to the cell pellet to disperse the cells by votexing and
standing at 4°C for 2 h. After centrifugation at 1000 g for 3 min, the
ethanol was removed and 1 mL PBS buffer was added to wash the
cells. After centrifugation at 1000 g for 3 min, the supernatant was
discard and 0.5 mL of Working Solution (500 μL assay buffer,
containing 25 μL PI solution and 2.5 μL RNase solution) was added.
After vortexing and incubation for 30 min at 37°C in the dark, the
mixture was further incubated for 30 min at 4°C in the dark, fol-
lowed by vortexing and filtering through a nylon mesh to remove
cell clumps in the sample. Finally, cell cycle was detected by flow
cytometry.
Cell apoptosis analysis was carried out using Annexin V/FITC

Apoptosis Detection kit. Briefly, HCC cells (treated as above) were
harvested by trypsinization, rinsed with ice-cold phosphate PBS,
and centrifuged to remove the supernatant. Then, the cells were
resuspended in 100 μL 1× binding buffer and incubated with An-
nexin V-FITC for 15 min in the dark at room temperature. Finally, a
flow cytometer was used to determine the number of apoptotic cells
from B2 and B4 quadrants.

Transwell assay
HCC cell suspension (100 μL of 2.5×104 cells/μL) was added into
the upper Transwell chamber (Corning Costar, New York, USA)
coated with Matrigel (BD, Franklin Lakes, USA). After 48 h of in-
cubation, the membranes were fixed with methanol for 30 min and
stained with 0.1% crystal violet for 20 min. Then the infiltrated cells
were counted and photographed in five random fields under a mi-
croscope (Olympus) at a magnification of 100×.

Nude mouse xenograft model
Female BALB/c nu/nu mice (4–5 weeks old) were purchased from

Shanghai SLAC Laboratory Animal Co., Ltd (Shanghai, China).
Huh7 cells were subcutaneously injected into the left hip of three
mice. After the tumor was formed, a small section (1 mm3) of tumor
tissue was inoculated into the experimental group nude mice. After
10 days, the tumors had a diameter of 0.5 cm and reached a volume
of~50–100 mm3. The mice were randomly divided into four groups
(n=3 per group): control, sorafenib group, LIMT plasmid group,
and LIMT plasmid + sorafenib group. LIMT plasmid was injected
intratumorally four times from day 0 to day 14, while sorafenib was
injected into the tail vein once every two days for two weeks. Tumor
volumes were recorded every two days and body weight was
measured daily. The tumor volume (mm3) was calculated using the
formula: Volume=(length×width2/2). The mice were sacrificed
humanely on day 15 after treatment, and the resected tumors were
weighed and subject to subsequent analysis.

TUNEL analysis
The apoptosis in paraffin-embedded mouse tissue sections (5-mm)
was determined by an In situ cell death detection kit (Roche, Basel,
Switzerland). The apoptotic cells were observed under a light mi-
croscope (Olympus). The assay was independently repeated three
times. The positive rates were measured using IPP 6.0 software
(Media Cybernetics, Bethesda, USA).

Statistical analysis
GraphPad software 8 (GraphPad Inc., San Diego, USA) was used for
calculating statistical comparisons. Data were shown as the mean±
SD and analyzed by two-tailed Student’s t-test. A value of P≤0.05
was considered to be significantly different. StarBase 3 (http://
starbase.sysu.edu.cn/index.php) was used to analyze the relation-
ship between LIMT and miR-665.

Results
The level of LIMT is associated with sorafenib resistance
To verify the relationship between the expression level of LIMT and
sorafenib resistance, qRT-PCR was performed to detect LIMT ex-
pression in 56 pairs of HCC tumor tissues and matched adjacent
tissues. The results showed that LIMT expression was down-
regulated in 78.57% (44/56) HCC tumor tissue (Figure 1 A,B). We
also investigated the relationship between LIMT expression level
and clinical characteristics in the 33 HCC cancer cases to determine
whether LIMT expression is related to clinical features. The results
showed that low expression of LIMT in 33 HCC patients was closely
related to large tumor size (P=0.0270), TNM stage (P=0.0173),
and HBsAg (P=0.0221). However, LIMT expression level was not
correlated with other parameters, such as patient age, sex, alpha-
fetoprotein (AFP), and portal vein tumor thrombus (Table 2). Next,
the expression of LIMT was examined in HCC cells and normal liver
epithelial LO2 cells, which showed that LIMT expression was re-
duced in HCC cells (Figure 1C). Furthermore, we found that the
SNU449 cell line, with the lowest LIMT expression, was most re-
sistant to sorafenib. The IC50 values for sorafenib in HCC cells are
presented in Figure 1D,E.

Interference with LIMT enhances sorafenib resistance
and promotes invasion by promoting EMT
To further reveal the chemoresistance effect of LIMT on sorafenib,
HCC cells were transfected with LIMT siRNAs (LIMT siRNA1:LIMT
siRNA2:LIMT siRNA3=1:1:1) and observed the changes of cell
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viability and proliferation. As shown in Figure 2, LIMT silencing
increased the resistance to sorafenib by enhancing cell viability
and proliferation, while LIMT plasmid treatment decreased this
effect in HCC cells (Figure 2A,B and Supplementary Figure S1A).
Transwell analysis was then used to determine the invasion ability
of HCC cells. Compared with cells treated with sorafenib alone, the
number of HCC cells that invaded the Matrigel layer was increased
after transfection with LIMT siRNAs (Figure 2C). EMT was also
found to play an important role in HCC resistance to sorafenib and
cell invasion in a variety of cancers [17–19]. Western blot analysis
of the EMT-related proteins, including FN-1, E-cadherin, and Vi-
mentin, showed that LIMT silencing promoted the sorafenib-in-
duced reduction in E-cadherin, whereas it upregulated sorafenib-
induced increase in the expressions of FN-1, Vimentin and Twist 1
(Figure 2D). The phenotypic changes was shown in Supplemen-
tary Figure S3A. Furthermore, flow cytometry analysis showed

that sorafenib treatment could increase cell apoptosis and enhance
the rate of G2/S. However, LIMT siRNA combined with sorafenib
could reduce cell apoptosis and the rate of G2/S compared with
those in the sorafenib group (Supplementary Figure S1B,C). The
cell interference efficiency of LIMT was shown in Supplementary
Figure S2A–C.

LIMT negatively regulates miR-665 expression
To further explore the mechanisms underlying the effect of LIMT,
the potential miRNAs binding site in LIMT was identified from
multidimensional sequencing data using StarBase V3.0 and the re-
porter plasmids containing the LIMT-3′UTR were further con-
structed, which contained the mutant (MUT) or wild-type (WT)
binding sequences to verify the interaction between LIMT and miR-
665 by Dual-Luciferase Reporter Assays (Figure 3A,B). Moreover,
we detected the levels of miR-665, E-cadherin and Vimentin in HCC
tumor tissues and matched adjacent tissues, and the results re-
vealed that E-cadherin was donw-regulated, and the expressions of
miR-665 and Vimentin were increased in HCC tumor tissues (Figure
3C), indicating that LIMT was negative-correlated with the level of
miR-665 (Figure 3C), which is consistant with results from starBase
v3.0 (Supplementary Figure S2D). The level of miR-665 was sig-
nificantly increased after LIMT siRNA transfection, while its ex-
pression was downregulated after treatment with LIMT plasmid
(Figure 3D). Transfection with miR-665 mimics reduced LIMT level,
while the miR-665 inhibitor upregulated LIMT level (Figure 3E).
These data suggest that LIMT level is inversely correlated with the
miR-665 level in HCC cells.

miR-665 regulates resistance to sorafenib
To investigate the functions of miR-665 in HCC cells, we also ex-
amined resistance to sorafenib and cell invasion after treatment
with miR-665 mimics, inhibitor, with or without sorafenib. The
results showed that miR-665 mimics increased sorafenib resistance,
whereas the miR-665 inhibitor enhanced sorafenib sensitivity
(Figure 4A). EdU analysis also confirmed these results (Figure 4B).
The number of HCC cells passing through the membrane was in-
creased after miR-665 mimic treatment, indicating that miR-665
mimics could enhance the invasion capability of HCC cells (Figure
4C). To reveal whether miR-665 participates in the EMT process, we
determined the levels of EMT-related proteins. Compared with the
sorafenib group, miR-665 mimics combined with sorafenib could
downregulate E-cadherin level and increase FN-1, Vimentin, Twist
1 expressions. However, miR-665 inhibitor plus sorafenib could
reverse these effects (Figure 4D). The phenotypic changes are
shown in Supplementary Figure S3B.

LIMT regulates sorafenib resistance through regulating
miR-665 and EMT
To verify whether LIMT plays the role in sorafenib resistance via the
regulation of miR-665 and EMT, we transfected the miR-665 in-
hibitor into HCC cells along with the LIMT siRNAs, followed by
treatment with sorafenib to perform a rescue experiment. As ex-
pected, the results showed that the LIMT siRNA inhibited the in-
crease of miR-665 inhibitor-induced sorafenib sensitivity, and
showed no significant difference between the control group and
silencing of LIMT plus the miR-665 inhibitor group (Figure 5A–C).
MiR-665 inhibitor combined with LIMT siRNA could reduce the
invasion ability compared with LIMT siRNA treatment alone (Figure

Table 2. Correlations between LIMT and clinical characteristics of
33 HCC cancer patients

Clinical parameter n=33 High Low P-value

Sex Female 9 6 3 0.1340

Male 24 9 15

Age (year) <60 19 10 9 0.5787

≥60 14 6 8

Stage I–II 19 12 7 0.0173*

III–IV 14 3 11

Tumor size (cm3) <3 13 9 4 0.0270*

≥3 20 6 14

AFP <20 16 8 8 0.6109

≥20 17 7 10

Portal vein tumor thrombusYes 7 4 3 0.8764

No 26 14 12

HBsAg Yes 16 4 12 0.0221*

No 17 11 6

AFP, alpha-fetoprotein.

Figure 1. The level of LIMT is assiciated with sorafenib resistance (A,
B) LIMT expression was detected in 56 pairs of HCC tumor tissues and
matched adjacent tissues. **P<0.01. (C) LIMT expression was de-
termined in HCC cells and normal liver LO2 cells. *P<0.05, **P<0.01,
and ***P<0.001. (D,E) Cell viability was examined by CCK-8 assay
after treatment with sorafenib, and the IC50 values are represented by
a bar chart.
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5D). Western blot analysis also confirmed that miR-665 inhibitor
combined with LIMT silencing could inhibit EMT compared with
LIMT siRNA treatment alone (Figure 5E). These results indicated
that inhibition of LIMT might enhance chemotherapy resistance to

sorafenib by upregulating the effect of miR-665.

LIMT over-expression suppresses tumor growth in vivo
To explore the effect of LIMT on sorafenib resistance in vivo, tumor

Figure 2. Interference with LIMT enhances sorafenib resistance and promotes invasion via regulation of EMT (A,B) CCK-8 and EdU determination
of the cell viability and proliferation of HCC cells following transfection with LIMT siRNAs (LIMT siRNA 1, LIMT siRNA 2, LIMT siRNA 3) and
combined with or without sorafenib. **P<0.01 and ***P<0.001. (C) Transwell invasion analysis of HCC cells transfected with LIMT siRNA
combined with sorafenib. *P<0.05, **P<0.01, and ***P<0.001. (D) Western blot analysis of FN-1, E-cadherin, Vimentin and Twist 1 expression
levels in HCC cells.
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nude mouse model was established and treated with normal saline
alone, sorafenib alone, LIMT over-expression alone, or sorafenib
plus LIMT over-expression. The results showed that the tumor vo-
lume was significantly reduced in the sorafenib plus LIMT over-
expression group (Figure 6A,B). TUNEL analysis revealed that
sorafenib plus LIMT over-expression treatment could enhance tu-
mor cell apoptosis compared with that in other groups (Figure 6C).
Furthermore, the expressions of E-cadherin, FN-1 and Vimentin
were determined, showing that compared with the sorafenib group,
the level of E-cadherin was upregulated, and the expression levels
of FN-1 and Vimentin were downregulated in the sorafenib plus
LIMT over-expression group (Figure 6D). These data indicated that
up-regulation of LIMT could inhibit tumor growth in vivo.

Discussion
Sorafenib resistance and distant metastasis are closely correlated

with the poor prognosis in HCC patients. So, it is very important to
reveal the underlying molecular mechanisms and explore novel
therapeutic targets. Accumulated evidence indicates that lncRNAs
regulate gene expression related to various processes, such as cell
apoptosis, proliferation, and migration, suggesting that they may
play a carcinogenic or tumor-suppressive role in cancers [20].
Furthermore, lncRNAs are involved in sorafenib resistance in var-
ious cancers [21]. LIMT, located on chromosome 12, was de-
termined to be downregulated in cancers [9,22]. It had been
reported that over-expression of LIMT could inhibit the prolifera-
tion, migration, and invasion of NSCLC cells by regulating the miR-
152-3p/PTEN axis [23]. Furthermore, it has inhibitory effects on cell
migration and metastasis in a variety of cancer cells, such as gastric
cancer, colorectal cancer, breast cancer, and cervical cancer
[9,22,24,25]. However, the role of LIMT in drug resistance has not
been explored so far in HCC. Here, for the first time we explored the

Figure 3. LIMT is negatively correlated with miR-665 expression (A) StarBase V3.0 was used to predict the potential binding site for miR-665 in
LIMT. (B) Relative luciferase activity of HCC cells co-transfected with WT-LIMT or Mut-LIMT and NC, or miR-665 mimics. *P<0.05. (C) The levels of
miR-665 and EMT-related mRNAs were detected in HCC tumor tissues and matched adjacent tissues. The correlation between LIMT and miR-665
(**P<0.01 and ***P<0.001). (D) The level of miR-665 in HCC cells treating with LIMT siRNA or the LIMT overexpressing plasmid was determined by
qRT-PCR. **P<0.01 and ***P<0.001. (E) LIMT expression was detected after incubation with miR-665 mimics or inhibitors. **P<0.01 and
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effect of LIMT on chemotherapy resistance in HCC. Our results
verified that the level of LIMT was downregulated in HCC tumor
tissue and HCC cells, implying that LIMT might play a role in sup-
pressing cancers. As expected, knockdown of LIMT significantly
increased sorafenib resistance and promoted cell invasion in HCC
cells.
Evidence shows that some lncRNAs bind competitively to tar-

geted miRNAs, thus acting as sponges of miRNA molecules. Silen-
cing SNHG16 inhibitor increased chemotherapy resistance by
upregulating miR-140-5p in HCC [6]. Knockdown of HOTAIR en-
hanced sorafenib resistance by upregulating miR-217 in HCC [26].
Our study verified that downregulation of LIMT promoted sorafenib
resistance by promoting EMT. The regulatory relationship between
lncRNAs and miRNAs is related to many cell biological processes
[27,28]. Thus, we further investigated the relationship between

LIMT and miRNAs. We found that LIMT interacts directly with miR-
665 to reduce its apparent level. Furthermore, several miRNAs have
been proved to participate in sorafenib resistance in HCC. Upregu-
lation of miR-223 could promote sorafenib resistance through reg-
ulation of FBW7 (encoding F-box andWD repeat domain containing
7) expression in HCC [29]. MiR-221 participates in sorafenib re-
sistance [30]. Increasing evidence suggests that miR-665 is a tumor
suppressor or cancer-promoting miRNA, which is expressed in tu-
mor cells. For instance, miR-665 was reported to be a tumor-pro-
moting factor in HCC. High miR-665 expression promotes cell
metastasis, growth, and EMT of HCC and NSCLC cells [31–33].
Consistent with these previous reports, in this study we found that
miR-665 mimics could enhance sorafenib resistance and invasion
capability of HCC cells. Moreover, LIMT silencing abolished the
effect of the miR-665 inhibitor on sorafenib resistance in HCC cells.

Figure 4. MiR-665 regulates sorafenib resistance in HCC cells (A,B) CCK-8 assay and EdU analysis were used to determin cell viability and
proliferation of HCC cells exposed to sorafenib following miR-665 mimics or inhibitors treatment. **P<0.01 and ***P<0.001. (C) The invasion
ability of HCC cells transfected with miR-665 mimics or inhibitors combined with sorafenib was confirmed by Transwell invasion analysis.
*P<0.05, **P<0.01, and ***P<0.001. (D) Western blot analysis of FN-1, E-cadherin, Vimentin and Twist 1 levels in HCC cells.
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Thus, LIMT could regulate HCC cell sorafenib resistance.
Recently, EMT has been found to be closely associated with the

progress of chemoresistance, and reversing the formation of EMT
could reduce chemotherapy resistance in various cancers, indicat-
ing that EMT is an effective therapeutic target for cancer metastasis
and chemotherapy resistance [34,35]. It has been reported that TGF-
β1/ROCK signaling pathway is involved in vasculogenic mimicry
formation by inducing EMT [36]. For instance, a previous study
demonstrated that H19 could promote paclitaxel resistance by ad-
justing miR-340 expression and EMT in breast cancer cells [37].
Upregulation of miR-206 could inhibit cell proliferation, migration
and promote apoptosis in HCC cells by modulating cMET expres-
sion [38]. Over-expression of miR-4458 could also inhibit the mi-
gration, invasion, and EMT of HCC cells by suppressing the TGF-β

Figure 5. LIMT could regulate sorafenib resistance through regulating miR-665 and EMT (A–C) HCC cells were treated with the LIMT siRNA alone
or combined with miR-665 inhibitor, following treatment with sorafenib, and cell viability was examined by CCK-8 assay. (D) The rate of invasive
HCC cells treated with LIMT siRNA alone or combined with miR-665 inhibitor following treatment with sorafenib were determined by Transwell
invasion analysis. **P<0.01 and ***P<0.001. (E) The levels of FN-1, E-cadherin, Vimentin and Twist 1 proteins were determined by western blot
analysis.

Figure 6. LIMT over-expression could suppress tumor growth in vivo
(A,B) Growth curves of xenograft tumors and the tumor size treated
with control, sorafenib, LIMT plasmid, or sorafenib plus LIMT plasmid
(n= 3 per group). (C) TUNEL was used to analyze cell apoptosis in the
treatment groups. (D) RT-qPCR was used to analyze the mRNA ex-
pression levels of E-cadherin, Vimentin and FN-1.

Figure 7. The mechanism of the LIMT in regulating resistance to
sorafenib of HCC cells Schematic diagram of the regulatory me-
chanism of the LIMT/miR-665/EMT axis in regulating resistance to
sorafenib of HCC cells.
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signaling [39]. Our study also revealed that inhibition of LIMT could
affect sorafenib resistance and promote cell invasion by regulating
EMT. EMT-induced drug resistance in cancer cells involves many
typical signaling pathways, such as Wnt/β-catenin, nuclear factor
kappa B (NF-κB), and phosphatidylinositol-4,5-bisphosphate 3-ki-
nase (PI3K)/protein kinase B (AKT) [40–42]. Therefore, the re-
lationship between the LIMT and EMT-related signaling pathways
still needs further investigation in the future.
In summary, the present study revealed that regulation of LIMT is

a mechanism involved in the resistance to sorafenib directly
through regulating miR-665 and EMT in HCC cells (Figure 7). Our
results demonstrated that down-regulation of LIMT could enhance
sorafenib resistance and promote EMT by regulation of miR-665,
suggesting that LIMTmight serve as a molecular target for sorafenib
resistance detection treatment and prognosis in HCC by regulating
the miR-665/EMT axis.
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Supplementary data is available at Acta Biochimica et Biophysica
Sinica online.
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