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Abstract
Echocardiography is the imaging modality of choice for the assessment of
patients with valvular heart disease. Echocardiographic advancements may
have particular impact on the assessment and management of patients with
valvular heart disease. This review will summarize the current literature on
advancements, such as three-dimensional echocardiography, strain imaging,
intracardiac echocardiography, and fusion imaging, in this patient population.
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Introduction
The American Heart Association/American College of Cardiology 
Guidelines for the Management of Patients with Valvular Heart 
Disease1 state that echocardiography (transthoracic [TTE] or trans-
esophageal [TEE]) is the imaging modality of choice for the assess-
ment of patients with valvular heart disease. Numerous less invasive 
therapies, such as percutaneous or transcatheter interventions, have 
recently been introduced for the treatment of structural heart dis-
ease. Many of these procedures require extensive multi-modality 
imaging guidance and have increased interest in advancements in 
echocardiography. Recent advancements in echocardiography are 
of particular relevance to valvular disease. This review will discuss 
the application of these new technologies to diagnose and manage 
various types of valvular heart diseases.

Three-dimensional echocardiography
The echocardiographic advancement that has had the most 
impact on the diagnosis of valvular heart disease is real time 
three-dimensional (RT3D) echocardiography. The advantages of 
three-dimensional (3D) imaging over two-dimensional (2D) imag-
ing has been well described in the most recent societal guidelines: 
“Recommendations for cardiac chamber quantification by echocar-
diography in adults” update2 and “Recommendations for image 
acquisition and display using 3D echocardiography”3. These guide-
lines review the significant data supporting the improved accuracy 
and reproducibility of 3D imaging for ventricular volumes and 
mass, as well as valvular morphology and function. Initially intro-
duced in the year 2000, the continued improvement of 3D technol-
ogy has led to its widespread availability and its growing utility, 
particularly for valvular heart disease4.

Valve morphology
RT3D TEE has significantly changed the assessment of valvular 
pathology and has revolutionized patient selection not only for sur-
gical repair but also for newer transcatheter procedures, discussed 
in a subsequent section.

RT3D TEE is not only more accurate than 2D techniques in iden-
tifying specific mitral valve pathology in the setting of complex 
disease but the diagnosis can be made more rapidly, which is of 
particular use in the intraoperative evaluation of patients undergo-
ing mitral valve repair5–9. RT3D echo improves the accuracy and 
reproducibility of planimetry measurements of mitral valve area in 
the setting of rheumatic disease by ensuring on-axis imaging of the 
short-axis view10–13. This technology has also been integral to our 
understanding of the dynamic nature of the mitral valve complex in 
normal patients, as well as in primary and secondary mitral valve 
disease14–18.

Recent RT3D TEE studies have shown a coupling of mitral and aor-
tic valve dynamic anatomy. Mitral valve diseases may affect normal 
mitral-aortic coupling and aortic valve function; different patterns 
of abnormal mitral-aortic coupling are associated with different 
Carpentier types of mitral regurgitation19. Conversely, changes in 
aortic morphology may affect mitral valve function, particularly in 
the setting of aortic stenosis and calcification of the aortic-mitral 
fibrous continuity20. RT3D TEE has shown changes in mitral valve 
morphology following surgical aortic valve replacement21 as well as 

transcatheter aortic valve replacement (TAVR)22. Notably, a decrease 
of tenting area predicted those patients whose mitral regurgitation 
improved following TAVR.

Aortic valve morphology as well as aortic root measurements are 
more accurate and reproducible with RT3D imaging. Inter-com-
missural distance and free leaflet edge lengths can be measured by 
3D echocardiography and are used to choose the tube graft size in 
valve-sparing root operations23. Larger left ventricular outflow tract 
areas and calculated aortic valve dimensions and areas are obtained 
by RT3D TEE24. Planimetry of the aortic valve and left ventricu-
lar outflow tract area by RT3D has been shown to be accurate and 
reproducible25–27 and may influence surgical decision-making in the 
setting of moderate-to-severe aortic stenosis28. With accurate meas-
urement of the left ventricular outflow tract, geometric assumptions 
used in the continuity equation are avoided, resulting in more pre-
cise estimations of aortic valve areas using 3D echocardiography 
over traditional 2D methods.

Prosthetic valve function can also be accurately assessed using RT3D 
TEE. With transcatheter solutions to bioprosthetic valve failure29–31 
and paravalvular regurgitation32–34 RT3D TEE has become an impor-
tant tool for intra-procedural guidance during percutaneous inter-
ventions. TEE can depict not only the relevant cardiac landmarks 
adjacent to the sites of paravalvular leaks but also wires, delivery 
catheters, and closure devices35. RT3D TEE imaging results in a 
more accurate localization of paravalvular defects and an estima-
tion of the size of the defect that correlated better with surgical find-
ings when compared with 2D TEE36.

Quantification of valvular function
Three-dimensional color Doppler may overcome the limitations of 
2D and standard Doppler measurements for quantifying regurgita-
tion3,37,38. Studies have shown the feasibility of measuring the 3D 
vena contracta (narrowest portion of the regurgitant jet) on RT3D 
echocardiography to assess the severity of regurgitation for native 
regurgitant valve disease37,39–41, as well as following surgical42 or 
transcatheter interventions43.

Calculation of regurgitant volume in native valvular disease using 
the proximal isovelocity surface area (PISA) method44 has known 
technical limitations, primarily the geometric assumptions of PISA 
shape required to calculate effective regurgitant orifice area. Multi-
ple studies have validated the use of single-beat RT3D echocardio-
graphic color Doppler imaging allowing the direct measurement of 
PISA without geometric assumptions for aortic, mitral, and tricus-
pid regurgitation assessment45–48.

Newer methods of determining relative flows within the heart make 
use of the velocity and direction of flow information which can be 
derived from color Doppler. Off-line software has been developed 
which uses 2D color Doppler images to determine the velocity, flow 
rate, and flow volume in any given region of the heart49. Extension 
of this technology to 3D color Doppler volume sets is now possible 
and allows rapid, accurate, and reproducible quantitation of relative 
stroke volumes50,51. Thavendiranathan et al.51 used the velocity infor-
mation encoded in the volume color Doppler data, targeting the appro-
priate region of interest by using the simultaneous 3D imaging of the 
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mitral annulus and left ventricular outflow tract. Color Doppler 
velocity is multiplied by a known area of this cross-section (a voxel 
area), and the resulting spatially averaged flow rates are used to 
generate flow-time curves that resemble those obtained by mag-
netic resonance imaging. The temporal integration of the flow-time 
curve generates the stroke volume. There was excellent correla-
tion between the automated measured mitral inflow and aortic 
stroke volumes, and magnetic resonance imaging stroke volume  
(r = 0.91, 95% confidence interval [CI], 0.83–0.95, and r = 0.93, 
95% CI, 0.87–0.96, respectively, P<0.001) and very low interob-
server variability. Automation of the measurement process allowed 
calculations of mitral inflow and aortic stroke volumes to be per-
formed very rapidly. This methodology will likely become the 
standard for measurement of regurgitant volumes in the future.

Structural heart disease interventions
TAVR has become an acceptable alternative treatment for high-risk 
or inoperable patients with severe symptomatic aortic stenosis52–55. 
Three-dimensional echocardiography has been shown to improve 
sizing of the transcatheter valve56–58. RT3D TEE is comparable to 
computed tomography for annular assessment and prediction of 
paravalvular regurgitation due to oversizing59,60, as well as meas-
urement of coronary artery height61. RT3D TEE has been shown 

to provide superior spatial visualization and anatomic orientation, 
optimizing procedural performance, and RT3D TTE can be used to 
assess the severity of paravalvular regurgitation following TAVR62. 
Further study of this technique for quantifying regurgitant severity 
is warranted in addition to a unified scheme for grading paravalvu-
lar regurgitation following TAVR63. Newer devices, with features 
such as external skirts or the ability to reposition, may reduce the 
incidence of post-TAVR complication.

Three-dimensional TEE may also improve procedural success and 
shorten procedure time for the MitraClip™ device (Abbott Vascu-
lar Structural Heart, Menlo Park, CA) (Figure 1)64–66. Altiok et al.65 
performed a structured analysis to compare information and guid-
ance capability provided by RT3D TEE compared to 2D TEE and 
found 3D TEE advantageous in 9 of 11 steps of the percutaneous 
mitral repair procedure, including optimizing trans-septal puncture 
site, guidance of the clip delivery system, precise positioning of 
the clip delivery system simultaneously in anterior-posterior and 
lateral-medial direction, valvular regurgitation jet position, adjust-
ment and visualization of the clip position relative to the valvular 
orifice, and assessment of remaining regurgitant jets65. Follow-
ing MitraClip, assessment of residual regurgitation could also be 
assessed by 3D color Doppler43. A >50% reduction in regurgitant 

Figure 1. Three-dimensional echocardiography during a transcatheter mitral repair procedure. Panel A shows the baseline mitral valve 
morphology with a very large prolapsing and partially flail P2 (middle) scallop (red arrows). Panel B shows positioning of the MitraClip device 
(blue arrow). Panel C is a dual plane three-dimensional image (ventricular and atrial views) of the final, 2-clip (yellow arrows) resulting double 
orifice. There was trivial residual mitral regurgitation.
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volume using the product of vena contracta areas defined by direct 
planimetry of RT3D color Doppler and velocity time integral using 
continuous-wave Doppler was associated with greater left atrial and 
ventricular remodeling.

Strain imaging
Recent American Society of Echocardiography Chamber Quantifi-
cation guidelines strongly recommend routine assessment of ven-
tricular systolic function by quantification of ventricular volumes 
and calculation of ejection fraction (EF)2. Cardiac mechanics, how-
ever, can now be assessed with the use of both tissue Doppler and 
speckle tracking for the measurement of myocardial displacement67. 
The measurement of myocardial deformation or “strain” is the frac-
tional change in the length of a myocardial segment (expressed as a 
percentage of the baseline length). Strain rate is the rate of change 
in strain. The deformation of the myocardium is directional: length-
ening would be represented by positive strain, and shortening by 
negative strain. Systolic strain can be measured along the anatomic 
coordinates of the cardiac chambers: longitudinal (negative strain), 
radial (positive strain), and circumferential (negative strain). The 
strengths and weaknesses of strain measurement have been well 
described67; however, the recent standardization of strain Digital 
Imaging and Communications in Medicine (DICOM) format will 
reduce inter-vendor variability which, along with improved soft-
ware analysis and automation packages, will likely increase the 
clinical acceptability and use of this powerful technique.

Aortic valve disease
Numerous studies have shown the utility of strain imaging for assess-
ing left ventricular function in aortic valve disease. In the presence of 
normal EF, increasing severity of aortic stenosis was associated with 
reduced global longitudinal strain (GLS)68,69. Subclinical improve-
ment in global and regional systolic function by tissue Doppler and 
speckle strain also occurs following TAVR (Figure 2)70–72. In low 
flow, low gradient, severe aortic stenosis with normal EF, strain 
parameters improved following TAVR, even in the absence of signif-
icant change in EF73. Regional strain abnormalities in patients with 
severe aortic stenosis may be able to further sub-stratify patients 

with concomitant infiltrative diseases, such as amyloid as well as 
coronary disease. In patients with cardiac amyloid, relative apical 
sparing (with preserved apical longitudinal strain) was sensitive 
(93%) and specific (82%) in differentiating amyloid from controls, 
some of whom had severe aortic stenosis. In patients with moder-
ate or severe aortic stenosis and concomitant coronary disease, on 
the other hand, worse apical and mid longitudinal strain parameters 
were predictive of significant coronary artery stenosis74.

Because mortality is significantly associated with symptom devel-
opment75, strain has been postulated as a possible early marker of 
ventricular dysfunction in asymptomatic patients with severe aortic 
stenosis and thus may be a useful tool in determining the timing of 
intervention in this population. In fact, Carasso et al.76 showed that 
longitudinal strain was low in asymptomatic patients with severe 
aortic stenosis with supernormal apical circumferential strain and 
rotation. In symptomatic patients, however, longitudinal strain was 
significantly lower with no compensatory circumferential myocar-
dial mechanics. Other investigators suggest that, after adjusting for 
aortic stenosis severity and EF, only basal longitudinal strain (and 
not GLS) was an independent predictor of symptomatic status77. In 
fact, following TAVR, the improvement in GLS may be a result of 
basal and mid segment improvement only78.

Strain imaging may be particularly useful in predicting outcomes 
in patients with severe aortic stenosis. In patients with low flow, 
low gradient, aortic stenosis with normal EF, a recent study showed 
both stroke volume index (≤35 ml/m2) and GLS (>-15%) are inde-
pendently associated with worse survival79. In patients with low 
flow, low gradient, aortic stenosis with reduced EF, GLS is inde-
pendently associated with mortality and dobutamine stress GLS 
may provide incremental prognostic value beyond GLS measured 
at rest80. Three-dimensional GLS may be a better predictor of out-
come compared to 2D strain81. Finally, Kusunose et al.82 studied 
395 patients with moderate-severe aortic stenosis (aortic valve area 
<1.3 cm2) and found that GLS was an independent predictor of 
mortality in this population. A GLS >-12% was associated with the 
lowest survival82.

Figure 2. Strain imaging during transcatheter aortic valve replacement (TAVR). Panel A shows a global circumferential strain (GCS) 
of -11% prior to TAVR. Panel B shows a GCS of -18% following TAVR. This represents an improvement (greater shortening) in ventricular 
mechanics.
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Deformation characteristics have also been studied in patients with 
aortic regurgitation83–87. In a prospective study of young patients 
(<18 years old) with aortic regurgitation, the only significant pre-
dictor of progression of disease on multi-variable analysis was 
GLS (P=0.04, cut-off value of >-19.5%, sensitivity of 77.8%, spe-
cificity of 94.1%, and area under the curve of 0.89)83. Prospective 
studies of adult patients have also shown that strain parameters by 
speckle-tracking could detect early myocardial systolic and diastolic 
dysfunction, and lower strain values were associated with disease 
progression in medically managed patients, or impaired outcomes in 
surgically treated patients85. A systolic radial strain rate of <1.82/sec 
was a good predictor of postoperative left ventricular dysfunction86. 
Finally, in a prospective study, 60 patients with chronic aortic regur-
gitation were followed for 64 months and global longitudinal strain 
(four-chamber view only) was an independent predictor of mortality 
(hazard ratio 1.313, 95% CI 1.010-1.706, P=0.042)87.

Mitral valve disease
Chronic mitral regurgitation is associated with complex left ven-
tricular adaptive remodeling, eccentric hypertrophy, and, eventually, 
reduced EF. Current guidelines recommend intervening on severe, 
asymptomatic mitral regurgitation in the setting of reduced EF 
because of a high incidence of persistent or worsening  dysfunction88. 
In chronic severe degenerative mitral regurgitation, numerous stud-
ies have shown that a reduced baseline GLS signifies a maladap-
tive preload-related change that is associated with a reduction in 
left ventricular EF immediately after mitral valve repair89–91. A GLS 
cutoff of >-19.9% was a strong independent predictor of long-term 
left ventricular dysfunction and may become an appropriate indica-
tion for intervention in the setting of normal EF90.

Intra-cardiac echocardiography
Although TEE imaging is well established and provides excep-
tional images, particularly for intra-procedural guidance, it most 

commonly requires general anesthesia and may be associated with 
intermittent obstruction of fluoroscopic viewing92. With the cur-
rent move toward conscious sedation for structural heart disease 
interventions, intra-cardiac echocardiography (ICE) may be an 
acceptable alternative in some patients with no other adequate 
intra-procedural imaging options. Evidence that ICE guidance 
can improve safety and outcome of interventional procedures is 
still lacking; however, ICE imaging for paravalvular leak closure 
has been reported to be feasible and advantageous32,93. A reduc-
tion in contrast use has also been reported with 2D ICE when 
used in TAVR (Figure 3)94. The recently introduced AcuNav® V 
catheter (Siemens Inc. Mountain View, USA) represents the only 
commercially available RT3D ICE system. The 10F catheter car-
ries a matrix transducer providing a 22° × 90° real-time volume 
image. This small volume represents the main limitation, partic-
ularly in near field applications, such as structural heart disease 
interventions.

Fusion imaging
Combining images from two or more different imaging tech-
niques, or fusion imaging, has been accomplished most recently 
with real-time echocardiography and fluoroscopy95–97. This tech-
nology, which co-registers the TEE probe position with the inter-
vention table and the angulation of the fluoroscopy C-arm, allows 
for relatively accurate placement of the TEE image onto the fluor-
oscopic image. This integration eliminates the need for two dif-
ferent image display monitors and the mental integration of two 
very different imaging datasets by the operator of structural heart 
disease interventions.

The ability to define targets on echocardiographic images (whether 
2D or 3D), and co-register these targets onto the fluoroscopic images, 
should improve guidance of structural heart disease interventions 
(Figure 4). This technology has been shown to be safe and feasible 

Figure 3. Intra-cardiac echocardiography (ICE) during transcatheter aortic valve replacement (TAVR). Panel A is the two-dimensional 
ICE image with panel B showing the simultaneous three-dimensional volume during positioning of the transcatheter aortic valve (yellow 
arrows).
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Figure 4. Hybrid/fusion imaging during paravalvular regurgitation closure. After coregistration of the transesophageal echocardiographic 
probe with the fluoroscopic image, the two images can be fused to allow a more comprehensive understanding of anatomy. Localizing the 
regurgitant orifice on transesophageal echo imaging can then be translated to the corresponding position on the fluoroscopic image.

for the transcatheter mitral repair procedure with the MitraClip™ 
device (Abbott Vascular Structural Heart, Menlo Park, CA) and 
shows a trend towards reduction of fluoroscopy and procedure 
time98.

Conclusion
Echocardiography is the primary imaging modality for the diagnosis 
and management of patients with valvular heart disease. Improve-
ment in surgical outcomes and advances in interventional tech-
niques require further refinements in echocardiographic imaging. 
Three-dimensional echocardiography, strain imaging, intracardiac 
echocardiography, and fusion imaging have significant application 
in advancing our understanding of pathophysiology and anatomy, 
as well as the diagnosis and management of patients with valvular 
heart disease.
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