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Abstract: The two erythropoietin (EPO) receptor forms mediate different cellular responses to
erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue
protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system,
EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular
mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone
metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that
exclusively binds the heteromeric receptor. CIB is administered either alone or in combination
with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular
(~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five
consecutive days to female mice that concurrently received EPO on days one and four, reduced the
number of osteoclast progenitors, defined by flow cytometry as Lin−CD11b−Ly6Chi CD115+, by
42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO
inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment,
or in combination with EPO, as an appealing candidate for the treatment of the bone loss that
accompanies EPO treatment.

Keywords: erythropoietin; cibinetide; osteoclasts; bone marrow derived macrophages (BMDM);
EPOR; CD131

1. Introduction

Erythropoietin (EPO) is a glycoprotein hormone that is produced mainly by the
kidneys and plays a crucial role in regulating erythropoiesis [1]. The secreted hormone acts
by binding to the EPO receptor (EPOR) on erythroid progenitor cells in the bone marrow
(BM), and stimulates their proliferation, differentiation, and survival. [2]

Recombinant human EPO (rHuEPO) is administered clinically for the treatment of
anemia that is secondary to chronic kidney disease, or for certain hematological malignan-
cies [3–6].
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In addition to hematopoietic cells, EPOR has also been detected in many other cell
types and is associated with cytoprotective effects in these non-hematopoietic tissues [7–12].
While erythropoiesis is mediated by the canonical EPOR homodimer, the tissue protective
effects of EPO are thought to act through the heteromeric innate repair receptor (IRR) [13,14],
which is composed of EPOR and the β-common receptor subunit (βcR, CD131). This
subunit is also used for signaling by other type 1 cytokine receptors, such as GM-CSF, IL-3,
and IL-5 [15–17].

A number of non-hematopoietic EPO analogs have now been developed that selec-
tively activate the IRR and confer tissue protection without a measurable effect on the
EPOR-EPOR homodimer and, consequently, without eliciting erythropoiesis or the po-
tential associated adverse effects [18]. One promising candidate is Cibinetide (pHBSP;
ARA 290) which is an 11-amino acid peptide that is modeled from the three-dimensional
structure of helix B of the EPO molecule [19]. Cibinetide interacts with the IRR and has
demonstrated efficacy in a number of animal models of angiogenic potential, autoimmune
diseases, neuropathy, and organ transplantation [20–25].

Bone is a highly dynamic tissue that undergoes continuous remodeling throughout
life in a process involving the concerted actions of monocyte-derived osteoclasts that resorb
mineralized tissue, and mesenchymal osteoblasts that deposit new bone [26–28].

The tight regulation of the osteoblastic and osteoclastic lineages is thus crucial for the
control of bone turnover [29–32].

The discovery that EPO has pleiotropic roles in non-hematopoietic tissues has prompted
an investigation of the role of EPO in bone homeostasis [33,34]. This is due to the proximity
of the bone and hematopoietic cells in the bone marrow milieu as well as the documented
crosstalk between the hematopoietic and skeletal systems [35,36]. In that respect, we, and
others, have shown that high EPO levels (both exogenously administered as well as a result
of over-expression) lead to a dramatic bone loss in mouse models [37–42].

In accordance with these results, a growing body of evidence now links high EPO
levels to bone loss in humans [43,44].

Monocyte differentiation into osteoclasts is driven by the receptor activator for nuclear fac-
tor kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, and macrophage
colony stimulating factor (M-CSF, CD115) [45]. In the bone marrow, these preosteoclast
macrophages express EPOR and recent studies from our lab indicate that EPO stimulates
osteoclastogenesis by acting directly on osteoclast precursors [38]. However, the underlying
molecular mechanism that is responsible for EPO-induced bone loss is still unknown.

This study was designed to investigate the role of the EPO-R forms in bone metabolism.
For this purpose, we used the non-erythropoietic EPO analog Cibinetide, which acts
exclusively on the EPOR/CD131 complex.

Here we present data suggesting that Cibinetide treatment in murine models is associ-
ated with a bone-preserving effect when injected as a single agent. Moreover, Cibinetide
counteracts the stimulatory effect of EPO on preosteoclasts, making it a very promising
anti resorptive agent, either when given alone or in combination with EPO.

2. Results
2.1. Cibinetide (CIB) Inhibits Osteoclastogenesis In Vitro, in a Dose Dependent Manner, without
Cytotoxic Effects

As the first step, we examined the effect of Cibinetide on the differentiation of bone
marrow derived macrophages (BMDM) into osteoclasts as mediated by M-CSF and RANKL,
which are both essential for osteoclast differentiation. TRAP staining was used to evaluate
the area that was covered by osteoclasts, with treatment with EPO as the positive control
for increased osteoclastogenesis [38]. Cibinetide suppressed osteoclastogenesis in a dose-
dependent manner. At low Cibinetide levels (3 µM), osteoclastogenesis was similar to that
which was observed in the control (M-CSF and RANKL only) cultures (Figure 1a,b). To
exclude the possibility that inhibition of osteoclastogenesis by Cibinetide was due to the
reduced viability of the osteoclast precursors, we examined the viability by MTT assay. The
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results confirmed that Cibinetide has no cytotoxic effects at concentrations that effectively
inhibited osteoclast differentiation (Figure 1c).
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0, and were treated with Cibinetide (150 μM) at different times between days 0 and 4, as 
shown in the schematic representation (Figure 2a). Inhibition of osteoclastogenesis was 
most effective when Cibinetide was introduced into the cultures at day 0. Reduction of 
osteoclastogenesis by Cibinetide was far less pronounced when the compound was added 
at a later time point. These findings support the notion that the anti-osteoclastogenic effect 
of Cibinetide is manifested most strongly in the initial stages of osteoclast differentiation 
(Figure 2b,c). 

Figure 1. Cibinetide (CIB) attenuates osteoclast differentiation in vitro. BMDM were treated with
Cibinetide in the presence of RANKL (50 ng/mL) and M-CSF (20 ng/mL). TRAP staining (images
and TRAP+ area) of osteoclasts are shown at the end of differentiation (4–5 days). (a) Representative
micrographs of TRAP+ osteoclasts. Original magnification at 2×. (b) Quantification of the total area
of TRAP+ multinucleated cells. (c) BMDMs were cultured in the presence of different concentrations
of Cibinetide (3, 30, 300 µM). After 48 h, MTT reagent was added to each well and the absorbance was
measured at 560 nm. Data from at least three independent experiments are shown as mean ± SEM.
* p < 0.05, **** p < 0.0001.

2.2. Cibinetide (CIB) Exerts Its Inhibitory Effects in the Early Stages of Osteoclastogenesis

To determine the stage at which Cibinetide inhibits osteoclastogenesis, BMDM that
were previously cultured with M-CSF only were also supplemented with RANKL at Day 0,
and were treated with Cibinetide (150 µM) at different times between days 0 and 4, as
shown in the schematic representation (Figure 2a). Inhibition of osteoclastogenesis was
most effective when Cibinetide was introduced into the cultures at day 0. Reduction of
osteoclastogenesis by Cibinetide was far less pronounced when the compound was added
at a later time point. These findings support the notion that the anti-osteoclastogenic effect
of Cibinetide is manifested most strongly in the initial stages of osteoclast differentiation
(Figure 2b,c).
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Figure 2. Cibinetide (CIB) inhibits osteoclastogenesis during the early stage of osteoclast differentia-
tion in vitro. (a) Schematic representation of the experimental layout. (b) BMDM were treated with
Cibinetide (150 µM) at four different time points (indicated by red lines) in the presence of RANKL
(50 ng/mL) and M-CSF (20 ng/mL). After four days, TRAP staining was performed. (c) Quantifica-
tion of the total area of TRAP+ multinucleated cells. Data from three independent experiments are
shown as mean ± SEM. ** p < 0.01, *** p < 0.001.

2.3. Cibinetide (CIB) Suppresses the Expression of Osteoclast-Related Genes

To further examine the inhibitory effects of Cibinetide on osteoclastogenesis in re-
sponse to RANKL, we examined the expression of the well-known osteoclast-related genes,
Cathepsin K (CTSK), OSCAR, OC-STAMP, DC-STAMP, and NFATC1 [46]. The results
(Figure 3) indicated that Cibinetide significantly inhibited the expression of all these osteo-
clast marker genes. These results are in accordance with the inhibitory effect of Cibinetide
on osteoclastogenesis, as presented in Figures 1 and 2. Collectively, these results confirm
that Cibinetide suppresses osteoclastogenesis in vitro.
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Figure 3. Cibinetide (CIB) downregulates osteoclast-specific genes’ expression. PCR analysis of
osteoclast-specific gene expression in BMDMs stimulated with MCSF + RANKL for five days with
or without Cibinetide (150 µM). The expression of Cathepsin K(CTSK), OSCAR, DC-STAMP, OC-
STAMP, and NFATC1 were normalized to the housekeeping gene HPRT and then to the mean of the
control group. The data are expressed as mean ± SEM of three independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.

2.4. Cibinetide (CIB) Overrides the Pro-Osteoclastogenic Effects of LPS and EPO

To determine whether the anti osteoclastogenesis effect of Cibinetide can counter
enhanced osteoclastogenesis, such as that which is conferred by EPO or LPS, Cibinetide
was added to BMDM together with EPO or LPS as follows: BMDMs were treated with
M-CSF and RANKL (50 ng/mL) together with EPO (10 U/mL) and/or Cibinetide (150 µM).
On the second day, LPS (10 ng/mL) was introduced to the RANKL+M-CSF or to the
RANKL+M-CSF+ Cibinetide cultures. On the fourth day, multinucleated osteoclasts were
stained for TRAP. The results demonstrate that Cibinetide inhibits osteoclastogenesis even
in the presence of LPS or EPO (Figure 4a,b).
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Figure 4. Cibinetide (CIB) counteracts the effect of EPO on preosteoclasts in vitro. BMDMs were treated
with RANKL (50 ng/mL) along with EPO (10 U/mL), Cibinetide (150 µM), or EPO + Cibinetide. On the
second day, LPS (10 ng/mL) was introduced to the RANKL or to the RANKL + Cibinetide cultures. On
the fourth day, the multinucleated osteoclasts were stained for TRAP. (a) Representative micrographs
of TRAP+ osteoclasts. Original magnification at 2×. (b) Quantification of the total area of TRAP+

multinucleated cells that were normalized to the values of the control group (RANKL). The data are
mean ± SEM of three independent experiments. * p < 0.05, ** p <0.01, **** p < 0.0001.

2.5. Cibinetide (CIB) Increases Tissue Mineral Density (TMD) in Both Cortical and Trabecular Bone

To investigate the effect of Cibinetide on bone density, we injected 12-week-old female
C57BL/6J mice with Cibinetide (120 µg/kg × 3/week for 4 weeks). At the end of the
fourth week, hemoglobin levels were measured and the femurs were analyzed by µCT. As
expected, Cibinetide treatment did not have any effect on hemoglobin levels (Figure 5a).
However, it did cause a 5.8% increase in the cortical TMD and a 5.2% increase in the
trabecular TMD, while the trabecular bone fraction (BV/TV) was unchanged (Figure 5b,c).
To gain more insight into the effect of Cibinetide on bone, we analyzed the expression level
of OPG and RANKL in the whole bones of Cibinetide-treated and untreated mice. In line
with the observed increase in TMD, Cibinetide treatment resulted in a significant 52.4%
increase in the expression of OPG in the whole bone, with no change in the expression of
RANKL (Figure 5d).

2.6. Cibinetide (CIB) Modulates Alkaline Phosphatase (ALP) and CD115 Expression on CD11b−
Bone Marrow Cells

As the next stage, we assessed the effect of Cibinetide on the percentage of pre-
osteoblasts (CD11b−ALP+) as well as preosteoclasts (CD11b−CD115+) in the bone mar-
row [47]. The results (Figure 6a), indicate that Cibinetide treatment did not affect the
percentage of these two cell populations in the bone marrow. Importantly, Cibinetide
treatment resulted in a 25.59% increase in ALP expression and a 17.79% decrease in CD115
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expression on the surface of the CD11b− bone marrow cells (Figure 6b,c). These results
further support a Cibinetide-mediated increase in osteoblast mineralizing activity and
a decrease in the potential for osteoclast differentiation and are in accordance with our
findings that are presented in Figure 5.
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Figure 5. Cibinetide (CIB) increases tissue mineral density (TMD) in both cortical and trabecular
bone. (a) Hemoglobin levels in Cibinetide versus diluent injected mice. (b) µCT analysis in the mid-
diaphyseal cortical and distal trabecular femoral bone of diluent and Cibinetide injected 12-week-old
female mice with respective representative images (c). Box plots represent median, quartiles and
extremes. In (c), the color spectrum reflects the mineral density gradient across the section of the
cortical bone. The upper limit of the scale (3.5/cm) corresponds to 1764 mg HA/cm3. (d) OPG and
RANKL mRNA expression levels in whole bone from diluent vs. Cibinetide treated mice. In (d) ∆∆CT
values are normalized to the diluent group; values are mean ± SEM. N = 9–10 mice in each group.
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Figure 6. In vivo effects of Cibinetide (CIB) on bone cell precursors. Flow cytometry analysis of
osteoblast (CD11b− ALP+) and osteoclast precursors (CD11b−CD115+) of total bone marrow from
diluent and Cibinetide injected mice. (a) Percentage of cells in the bone marrow. (b) Surface expression
(mean fluorescence intensity (MFI)) of ALP and CD115 on CD11b− cells in Cibinetide vs. diluent
treated mice. (c) Representative overlay histograms of ALP and CD115 expression on CD11b− cells.
The data are mean ± SEM. N = 9–10 mice in each group.

2.7. Cibinetide (CIB) Overrides the Pro-Osteoclastogenic Effects of EPO In Vivo

To evaluate the capacity of Cibinetide to counteract the effect of EPO on osteoclasts
in vivo, we performed a short-term experiment in which 13-week-old female mice were
administered Cibinetide (300 µg/kg) for 5 consecutive days, with 2 injections of 120 U EPO
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on days 1 and 4. These mice were compared to mice that were receiving either Cibinetide
or EPO and also to untreated control mice.

Flow cytometry analysis revealed an 81.06% increase in the number of osteoclast
progenitors, defined as Lin−CD11b−Ly6ChiCD115+ [48–51], in the EPO injected mice.
However, this was reduced by 42.8% in the EPO + Cibinetide-injected mice compared
to the EPO-injected mice, without any change in the numbers of osteoblast precursors
(Figure 7a). Moreover, Cibinetide treatment downregulated CD115 expression on the
osteoclast precursors both when given alone and in combination with EPO, while EPO
had no effect (Figure 7b). As the next step, we performed an ex vivo osteoclastogenesis
assay where a fixed number of BM cells that were collected from mice in each treatment
group were cultured in the presence of M-CSF + RANKL. The number of osteoclasts that
were measured in this assay reflects the proportion of osteoclast progenitors in the mice
at the end of the treatment. The results indicated that cultures that were derived from
the EPO-treated mice exhibited a higher degree of osteoclastogenesis than the control
cultures, although the difference did not reach statistical significance. Of note, a single
injection of EPO at a higher dose (180 U) resulted in an increase both in the proportion of
osteoclast progenitors and in the level of CD115 surface expression, as measured after 48 h
(Supplementary Materials, Figure S1)). Importantly, the level of osteoclastogenesis in cells
from the Cibinetide and EPO + Cibinetide-injected mice was significantly lower than that
from either the control or EPO groups (Figure 7c).
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Figure 7. Reduced osteoclast progenitor numbers in combined EPO + Cibinetide (CIB) treatment.
(a) Flow cytometry analysis of osteoclast progenitors-containing population Lin− (CD3ε−, B220−,
Ly6G−, and TER119−)CD11b− Ly6ChiCD115+ cells, and osteoblast precursors CD11b−ALP+. The data
are mean ± SEM of values that are normalized to the diluent group. (b) Surface expression (mean
fluorescence intensity (MFI)) of CD115 and ALP in diluent vs. EPO, Cibinetide or EPO + Cibinetide-
treated mice. (c) Total area of multinucleated TRAP+ osteoclasts grown ex vivo with M-CSF and RANKL
from non-adherent bone marrow cells that were isolated from mice treated with either diluent, EPO,
Cibinetide, or EPO + Cibinetide. Right, representative images acquired at ×2 magnification. All data are
mean ± SEM. N = 7 in each group. * p < 0.05, ** p < 0.01, *** p < 0.001.
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With this short-term treatment, no changes in the bone parameters were detected by
µCT in any of the treatment groups (Supplementary Materials, Figure S2).

2.8. EPO Maintains Erythropoietic Activity in the Presence of Cibinetide (CIB)

To exclude the possibility that Cibinetide antagonizes the erythropoietic effects of EPO
on erythroid cells, we measured hemoglobin levels and spleen weights. In addition, we
evaluated the levels of TER119+ erythroid progenitor cells in the spleen and bone marrow
by flow cytometry. As expected, the EPO treatment resulted in a significant increase in all
these parameters and none of the erythropoietic changes that were mediated by EPO were
affected by Cibinetide (Figure 8).
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Figure 8. Cibinetide (CIB) does not interfere with the erythropoietic response to Erythropoietin.
(a) Hemoglobin levels. (b) Average weights of the spleens with respective representative photographs
from untreated, EPO, Cibinetide, EPO + Cibinetide-treated mice. (c,d) Flow cytometry analysis of
TER119+ erythroid progenitors in the bone marrow (c) and in the spleen (d). Values on the Y axis
represent the normalized ratio of the Ter119+ cells in each treatment group relative to the diluent
control. Values are mean ± SEM. N = 7 mice in each group. **** p < 0.0001.

3. Discussion

While the beneficial anti-inflammatory effects of Cibinetide, a selective IRR agonist,
have been well-documented in multiple systems for over a decade now [52], there is no
record of the effect on the skeletal system, which is one of the most studied targets of EPO.

This study is the first to address the in vitro and in vivo effects of Cibinetide on bone
metabolism, either alone or in combination with EPO.
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Our results reveal that Cibinetide can counteract the stimulatory effects of EPO on
the monocytic-lineage by decreasing the pool of osteoclast precursors that were defined as
Lin− CD11b−Ly6ChiCD115+ in the bone marrow, and by further decreasing the expression
of CD115 in this population. The observation that this is achieved without interference
with the erythropoietic activity of EPO, reflects the specificity of the effect on osteoclast
progenitors in the bone marrow.

The finding that Cibinetide acts in the early stages of osteoclast differentiation is
evidenced by the downregulation of the key transcription factor NFATC1, as well as
suppression of the osteoclast differentiation-related genes CTSK, OSCAR, DC-STAMP, and
OC-STAMP. Interestingly, EPO has previously been reported by us [38] and others [53,54]
to have an osteoclast stimulatory effect.

These seemingly opposing effects of the two EPOR ligands on preosteoclasts in vitro
motivated us to examine the interplay between the two ligands during osteoclastogenesis.
Importantly, the results revealed that the inhibitory effect of Cibinetide could negate the
stimulatory effect that was induced by EPO.

Considering the potent anti-inflammatory activities of Cibinetide in LPS-activated
macrophages [24,55,56], and the fact that LPS is a potent inducer of inflammation and
inflammatory bone loss [57], our finding that Cibinetide mitigates LPS-induced osteoclasto-
genesis may have significant clinical applications, for example in inflammation-induced
osteolysis (e.g., [58–60]). It should be noted that the components of the heteromeric EPOR
and CD131 complex are usually intracellular in the non-inflammatory state and typically
are not expressed by healthy tissues although they are rapidly induced under stress condi-
tions [61]. The robust in vitro anti-osteoclastogenic effects of Cibinetide (in the presence
of RANKL and M-CSF), prompted us to investigate whether Cibinetide can also confer a
bone preserving effect in vivo, in healthy mice.

The administration of Cibinetide to wild-type female mice resulted in a significant
increase in TMD, which is an important contributor to bone mineral density (BMD) in
cortical and trabecular bone, while the BV/TV remained unchanged after Cibinetide
treatment. TMD is a measure of the mineral content inside the trabecular and cortical bone
whereas BV/TV measures the amount of trabecular and cortical bone over the total volume
of the region of interest. At the resolution that was employed here (10 µm), TMD will thus
reflect the mineral density as well as the microscopic porosity (pores of <10–15 µm) as the
measured bone volume will include these small voids that cannot be detected due to the
resolution. This microscopic porosity includes osteocyte lacunae [62]. In our study, the
Cibinetide-induced increase in TMD may result from increased mineralization of the bone
tissue and/or narrowing of the osteocyte lacunae. BMD combines both TMD and BV/TV.
It should be noted that despite the seemingly low increase in TMD (~5%), this is a clinically
relevant finding since a 5–10% decline is associated with approximately 50–100% higher
fracture rates [63].

Interestingly, the Cibinetide results are very different from the effect that was observed
after exogenous EPO administration in mice, where a massive decrease in trabecular bone
fraction is evident albeit with no effect on TMD (data not shown).

The increased expression levels of OPG in the bone tissue of Cibinetide treated mice,
are a possible mechanism for the reduced osteoclastogenesis, reduced bone resorption and
increased TMD.

This assumption is further supported by a recent study reporting that EPOR regulates
OPG expression in osteo-progenitors and regulates osteoblast function and osteoblast-
mediated osteoclastogenesis via the RANKL/OPG axis [42]. The question of whether EPO
acts on osteoblasts via the EPOR/CD131 heterodimer remains to be addressed.

Despite the similar proportions of preosteoblasts and preosteoclasts in the bone mar-
row of Cibinetide-injected mice, we found an increased surface expression of alkaline
phosphatase, an early osteogenic marker of bone formation and mineralization on pre-
osteoblasts. In addition, there was a decrease in the expression of CD115, one of the
receptors for osteoclastogenic factors which acts as a potent stimulator of RANK expression



Int. J. Mol. Sci. 2022, 23, 55 12 of 18

on preosteoclasts [64]. In line with these findings, the downregulation, blockade, or deple-
tion of CD115 has been shown to suppress the formation and activity of osteoclasts and to
attenuate the pathological bone resorption that is seen in inflammatory bone destruction
and osteoporosis [65–68]. Similarly, TLR ligands mediate the downregulation of CD115
from the cell surface and suppress osteoclastogenesis [69].

Taken together, our data provide evidence that Cibinetide acts on preosteoblasts to
increase bone formation and also reduces bone resorption capacity by suppressing the
differentiation of preosteoclasts to osteoclasts.

Another cytokine receptor that shares the β chain (CD131) of the heteromeric complex
is IL-3. In one study, IL-3 was shown to decrease the expression of CD115 glycoprotein
and mRNA in a murine myeloid precursor cell line [70] and in another study, it was
found to inhibit human osteoclastogenesis and bone resorption through downregulation of
CD115 and diverting the cells to the dendritic cell lineage [71]. These findings raise certain
questions regarding the role of the CD131 subunit in bone remodeling.

In this context, it is interesting that CD131 knockout mice exhibit normal development,
although they develop pulmonary peribronchovascular lymphoid infiltrates and areas
resembling alveolar proteinosis [72], and the numbers of eosinophils are reduced in the
peripheral blood and bone marrow. Notably, the tissue-protective properties of EPO do not
function in these animals although they display normal hematopoiesis [13,55]. In another
study, the very challenging conditional deletion of CD131 in a specific subpopulation
through the myeloid lineage CCR2+Ly6Chi was achieved and used to study experimental
autoimmune encephalomyelitis (EAE) [73].

In the future, we predict that a similar approach of generating osteoclast-specific and
osteoblast-specific conditional CD131 knockout may strengthen our conclusion that the
heteromer EPOR/CD131 mediates the effects of EPO and Cibinetide in these bone cells.

The current study used only a short-term treatment of the combination of Cibinetide
and EPO. Our choice of a five-day treatment regimen was based on our findings of a very
early and rapid increase in osteoclast progenitors two days after a single EPO injection
(2.25-fold increase vs. untreated). With our short duration of treatment, we could not detect
any changes in bone microarchitecture in any of the treated groups, but we did observe
significant differences in the osteoclast lineage, in line with the skeletal effects of CIB that
were observed (Figure 5).

The findings that are reported here add more complexity to the notion that the two
ligands induce similar tissue protective activities and differ only in their erythropoietic
capacity. To our knowledge, this is the first scenario in which Cibinetide and EPO have
opposing effects. Whether this is due to different pharmacokinetics or to diverging signaling
pathways remains to be elucidated.

In this context, it should be noted that although Cibinetide has a short plasma half-life
(~2 min) [74], it has sustained biological effects [52], even when injected with EPO, which
is a molecule with a long half-life (4–6 h) [52].

In light of the fact that all of the currently used anti-resorptive drugs for the treat-
ment of osteoporosis have adverse side effects, an intense focus has been directed toward
developing new therapeutic agents that can inhibit bone resorption and enhance bone
formation [75].

Our data introduce Cibinetide as an appealing candidate for the treatment of bone loss
either as a stand-alone therapy for osteolytic pathologies ranging from cancer to rheumatoid
arthritis and osteoporosis, or in combination with EPO for patients with anemia or cancer.
The results that are presented here suggest that treatment with Cibinetide and EPO may
prevent or attenuate bone loss while preserving the erythropoietic actions of EPO.

4. Materials and Methods
4.1. Materials

Alpha-MEM and fetal bovine serum (FBS), were purchased from Rhenium (Modiin,
Israel) and culture plates were from Corning (New York, NY, USA). LPS from the E. coli
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strain 0127:B8 (Sigma) was reconstituted in sterile double distilled water (DDW) as a
1 mg/mL stock solution and kept at −20 ◦C. Dulbecco’s Phosphate Buffered Saline (DPBS)
was purchased from Biological Industries. As a source of M-CSF, we used supernatant
from CMG 14-12 cells containing 1.3 µg/mL M-CSF [38,76]. RANKL was purchased from
R&D Systems, Minneapolis, MN, USA. The peptide Cibinetide was kindly provided by
Araim Pharmaceuticals, Inc. (Ossining, NY, USA). Erythropoietin (EPO) was obtained from
GMP-manufactured sterile syringes containing rHuEPO (Epoetin alfa, Eprex®) as used
for patient care. These were kindly provided by Janssen Cilag, Israel, and were employed
throughout this study.

4.2. Animals

Female wild-type mice of the inbred strain C57BL/6J-RccHsd, aged 8–13 weeks, were
purchased from Envigo (Jerusalem, Israel) and housed at the Tel-Aviv University animal
facility. Animal care and all procedures were in accordance with, and with the approval of, the
Tel Aviv University Institutional Animal Care and Use Committee (Permit number 01-19-032).

4.3. Cell Culture

In vitro osteoclastogenesis: Bone marrow cells were harvested from the femurs and
tibias of 8- to 13-week-old female mice. The cells were seeded on tissue-culture treated
plates in standard medium (α-MEM supplemented with 10% fetal bovine serum). On the
following day, the non-adherent cells were seeded in non–tissue culture-treated plates
in standard medium supplemented with 100 ng/mL M-CSF [77], which induces cell
proliferation and differentiation into preosteoclasts.

For the osteoclastogenesis assay, preosteoclasts were plated in 96-well plates (8000 cells
per well) with standard medium that was supplemented with 20 ng/mL M-CSF and
50 ng/mL RANKL (R&D Systems), which was replaced every 2 days. Treatments in culture
(EPO, Cibinetide, LPS) were added together with RANKL, as indicated. On the 4–5th day,
the multinucleated osteoclasts [78] were stained using a tartrate-resistant acid phosphatase
(TRAP) [79] kit (Sigma-Aldrich, St Louis, MO, USA) and the relative TRAP-positive surface
was measured using ImageJ software.

Ex vivo osteoclastogenesis: The bone marrow cells were harvested from the femurs
and tibias of 13-week-old female mice and were then seeded into tissue culture-treated
plates in standard medium and allowed to attach overnight. Non-adherent cells were
plated into 96 well plates in standard medium that was supplemented with M-CSF (in the
form of 2% v/v culture supernatant from CMG 14–12 cells), and 50 ng/mL recombinant
murine RANKL. The medium was replaced every other day. After 6–7 days, the cells
were stained for tartrate-resistant acid phosphatase (TRAP) and the relative TRAP-positive
surface was measured using ImageJ software.

4.4. Microcomputed Tomography (microCT)

The femurs (one per mouse) were examined using the µCT50 system (Scanco Medical
AG, Wangen-Brüttisellen, Switzerland) [80,81]. Briefly, scans were performed at a 10 µm
resolution, 90 kV energy, 114 mA intensity, and 1100 msec integration time. The mineralized
tissues were segmented by a global thresholding procedure following Gaussian filtration
of the stacked tomographic images [82]. Trabecular bone parameters were measured
in the secondary spongiosa of the distal femoral metaphysis. Cortical parameters were
determined in a 1 mm height ring in the mid-diaphyseal region.

4.5. Hemoglobin Levels

Hemoglobin (Hgb) levels were measured in venous blood (that was drawn from the
facial vein) by means of a “Mission Plus” hemoglobin/hematocrit meter (Acon, San Diego,
CA, USA).
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4.6. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Assay

Cell viability was determined using an MTT assay, essentially as described previ-
ously [83]. The bone marrow-derived macrophages (BMDM) were seeded into 96-well
plates (1× 104 cells/well) and then incubated with 100 ng/mL M-CSF in the presence of
various concentrations of Cibinetide. After 48 h of incubation, MTT (0.5 mg/mL) was
added to each well for 3 h. At the end of the incubation, the insoluble formazan products
were dissolved in acidic isopropanol, and absorbance at 560 nm was measured to assess
the number of viable cells (proliferation and cytotoxicity).

4.7. Flow Cytometry

The bone marrow (BM) cells were flushed from the femurs or tibias, and the red blood
cells were lysed using ACK lysis buffer (Quality Biological, Gaithersburg, MD). The cells
were then stained for 20 min at 4 ◦C with conjugated anti-mouse antibodies (see Table 1
for a list of the antibodies that were used). After this time, cells were washed with PBS
containing 1% FBS and analyzed by either Gallios or Cytoflex flow cytometers and Kaluza
or CytExpert software (all from Beckman Coulter, Indianapolis, Indiana 46268, USA).

Table 1. Antibodies used for flow cytometry analysis.

Antibody Source Identifier

TER-119-APC BioLegend Cat#: 116211
CD71-PE BioLegend Cat#: 113807

CD11b-APC BioLegend Cat#:101211
CD115-PE Miltenyi Biotec Cat#:130112828
LY6G-FITC BioLegend Cat#: 127605

TER119-FITC BioLegend Cat#: 116205
CD3ε-FITC BioLegend Cat#: 100305
B220-FITC BioLegend Cat#:103205

LY6C- PerCP/Cy5.5 BioLegend Cat#: 128011
Alkaline Phosphatase (ALPL) R&D systems Cat#: AF2910

CD115-APC eBioscience Cat#: 14115282
Goat IgG (H+L)-PE R&D systems Cat#: F0107

4.8. Real-Time RT PCR

Total RNA was extracted from BMDM using the TriRNA Pure kit (Cat#TRPD200,
Geneaid, New Taipei City, Taiwan) and cDNA was synthesized using the qScript cDNA
synthesis kit (Quantabio, MA, USA). “Real-time” quantitative PCR (RQ-PCR) was per-
formed on a StepOnePlus instrument using the SYBR Green reagent (both from Applied
Biosystems, CA, USA). The relative gene expression was calculated using the ∆∆CT method
following normalization to the expression of HPRT as a housekeeping gene.

The primers that were used for PCR were as follows: (F, forward; R, reverse):
DC-STAMP, F TCCTCCATGAACAAACAGTTCCAA; DC-STAMP, R AGACGTG-

GTTTAGGAATGCAGCTC; OC-STAMP, F TTGCTCCTGTCCTACAGTGC; OC-STAMP, R
GCCCTCAGTAACACAGCTCA; NFATC1, F GAGTACACCTTCCAGCACCTT; NFATC1,
R TATGATGTCGGGAAAGAGA; HPRT, F TCCTCCTCAGACCGCTTTT; HPRT, R CCTG-
GTTCATCATCGCTAATC; OSCAR, F CGTGCTGACTTCACACCAAC; OSCAR, R GGT-
CACGTTGATCCCAGGAG; Cathepsin K, F GATACTGGACACCCACTGGGA; Cathep-
sin K, R CATTCTCAGACACAATCCAC; RANKL, F CATTCTCAGACACAATCCAC;
RANKL, R ACATCCAACCATGAGCCTTC; OPG, F GAGACACAGCTCACAAGAGCAA;
OPG, R GCTTTCACAGAGGTCAATGTCTT.

4.9. Statistical Analysis

The values are expressed as mean ± SEM (standard error of the mean). A Student’s
t-test was used for calculating the statistical significance when comparing two groups of
variables. In experiments with >2 groups of variables, a one-way ANOVA was applied. The
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level of statistical significance was set at p ≤ 0.05. Asterisks between bars indicate significant
differences between two groups (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001).
All statistical analyses were performed using Prism 9 (GraphPad).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23010055/s1.
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