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Bioinspired supramolecular 
nanosheets of zinc chlorophyll 
assemblies
Sunao Shoji   1,3, Tetsuya Ogawa2, Shogo Matsubara1 & Hitoshi Tamiaki   1

Two-dimensional sheet-like supramolecules have attracted much attention from the viewpoints of their 
potential application as functional (nano)materials due to unique physical and chemical properties. 
One of the supramolecular sheet-like nanostructures in nature is visible in the self-assemblies of 
bacteriochlorophyll-c–f pigments inside chlorosomes, which are major components in the antenna 
systems of photosynthetic green bacteria. Herein, we report artificial chlorosomal supramolecular 
nanosheets prepared by the self-assembly of a synthetic zinc 31-methoxy-chlorophyll derivative having 
amide and urea groups in the substituent at the 17-position. The semi-synthetic zinc chlorophyll 
derivative kinetically formed dimeric species and transformed into more thermodynamically stable 
chlorosomal J-aggregates in the solid state. The kinetically and thermodynamically formed self-
assemblies had particle-like and sheet-like supramolecular nanostructures, respectively. The resulting 
nanosheets of biomimetic chlorosomal J-aggregates had flat surfaces and well-ordered supramolecular 
structures. The artificial sheet-like nanomaterial mimicking chlorosomal bacteriochlorophyll-c–f 
J-aggregates was first constructed by the model molecule, and is potentially useful for various 
applications including artificial light-harvesting antennas and photosyntheses.

Two-dimensional sheet-like nanostructures have been made by organic and/or inorganic materials, for exam-
ple, graphene, supramolecules, polymers, covalent organic frameworks, metal organic frameworks, and hexag-
onal boron nitride, and interested in wide fields such as electronics, optoelectronics, catalysts, energy storage, 
energy generation, sensors, separation, and biomedicines due to their unique physical and chemical proper-
ties1–3. Supramolecular assembling systems are progressive strategy for preparing well-ordered nanostructures4–6. 
In nature, one of the supramolecular sheet-like nanostructures have been observed in major light-harvesting 
antenna systems of photosynthetic green bacteria, called chlorosomes7–9. Chlorosomes are egg-like, ellip-
soidal, extramembranous antenna apparatuses (Fig. 1a), and one of the most efficient photofunctional nan-
odevices in nature, which have attracted attention from the viewpoints of their functions with photophysical 
properties, supramolecular structures, and nanostructures10–13. A single chlorosome contains a large amount of 
bacteriochlorophyll-c, d, e, and f pigments (Fig. 1b), magnesium complexes of 31-hydroxy-131-oxo-chlorin, which 
are surrounded by lipid monolayers and form J-aggregates in hydrophobic environments without any protein 
assistance14,15. Their self-assembly is mainly organized by coordination bonding (31-O∙∙∙Mg), hydrogen bonding 
(31-O–H∙∙∙O=C-13), and π–π stacking of chlorin skeletons16,17. Their supramolecular (nano)structures are still 
in discussion, but suggested to be rods, tubes, and/or lamellar sheets.

Model compounds of such chlorosomal bacteriochlorophyll-c–f pigments have been synthesized from natu-
rally occurring chlorophyll-a18,19. Their rod-, tube-, and/or lamellar-shaped supramolecular nanostructures have 
been prepared using model molecules in solution and solid states as well as on substrates (Fig. 1c)20–24. Recently, 
we have reported that a zinc 31-hydroxy-131-oxo-chlorin having amide and urea groups in the 17-substituent 
self-assembled to form rod-like supramolecular nanostructures with a spacing of 1.4 nm25. In this study, we syn-
thesized zinc 31-methoxy-chlorophyll derivatives lacking the 31-hydroxy group, which was requisite for chloroso-
mal J-aggregation through specific hydrogen bonding (31-O–H∙∙∙O=C-13). The zinc 31-methoxy-131-oxo-chlorin 
having amide and urea groups in the 17-substituent gradually formed chlorosomal J-aggregates in the solid state, 
and the supramolecular nanostructures of the resulting solids were mainly nanosheets that mimic the natural 
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bacteriochlorophyll-c–f supramolecules in chlorosomes. This is the first report of biomimetic supramolecular 
nanosheets of chlorosomal J-aggregates being prepared from a synthetic zinc chlorophyll derivative.

Results and Discussion
Zinc chlorophyll derivatives Zn-1 and Zn-2 (Fig.  2a) were synthesized from methyl 3-devinyl-3- 
methoxymethyl-pyropheophorbide-a, which was prepared from naturally occurring chlorophyll-a extracted 
from commercially available Spirulina powders according to reported procedures (see synthetic details and spec-
tral data in Supporting Information). The Zn-1 and Zn-2 molecules have ester and amide/urea groups, respec-
tively, in the substituents at the 17-position, which are designed as without and with hydrogen bonding moieties. 
The UV-Vis absorption spectra of Zn-1 and Zn-2 in tetrahydrofuran (THF) at a concentration of 10 μM showed 
their monomeric states with Qy/Soret maxima at 649/426 nm (Fig. 2b, black line). The self-assembly of the zinc 

Figure 1.  Natural and artificial chlorosomal systems. (a) Schematic of photosynthetic apparatuses in 
photosynthetic green bacteria. (b) Molecular structures of bacteriochlorophyll-c–f molecules. (c) Synthetic 
chlorophyll derivatives reported as models of bacteriochlorophyll-d.

Figure 2.  Supramolecular assembly of zinc 31-methoxy-chlorophyll derivatives. (a) Molecular structures of Zn-
1 and Zn-2. (b) UV-Vis-NIR absorption and (c) CD spectra of Zn-2 (10 μM) in THF (black), and THF/hexane 
(1:99, vol/vol) (blue). (d) UV-Vis-NIR absorption and (e) CD spectra of Zn-2 solids prepared from THF/hexane 
(5:95, vol/vol) (100 μM) just after preparation (blue) and after standing in solution for 1 week (red).
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31-methoxy-chlorins in a hydrophobic hexane-based solution was examined. A solution of the zinc chlorin in 
THF was added to 99-times the volume of hexane (total concentration: 10 μM). The UV-Vis-NIR absorption 
spectrum of Zn-2 exhibited red-shifted Qy/Soret maxima at 667/439 nm (Fig. 2b, blue line), which are ascribable 
to dimeric species, while Zn-1 gave only a monomeric state similar to its THF solution. Additionally, excitonically 
coupled circular dichroism (CD) signals were observed in the Qy region for the hexane-based solution of Zn-2 
(Fig. 2c, blue), indicating that the molecular dipole moments of the chlorin π-systems were aligned along the 
y-axis. These results indicate that Zn-2 primarily form the dimeric species by intermolecular hydrogen bonding 
of its amide and urea groups in the 17-substituent, which readily induce stacking of the chlorin π-systems as well 
as coordination of the 31-O and central zinc in a dimer.

At a 10-fold higher concentration (100 μM) in THF/hexane (5:95, vol/vol), Zn-2 was precipitated immedi-
ately, while Zn-1 was dissolved in the solution as the monomeric state (Fig. S1). The resulting Zn-2 solids just 
after preparation were adsorbed on a quartz substrate. The UV-Vis-NIR absorption spectrum exhibited Qy/Soret 
maxima at 667/437 nm (Fig. 2d, blue line), which was similar to that diluted in the hexane-based solution (Fig. 2b, 
blue line). After standing the precipitates in the above mixed solvent for 1 week in the dark at room temperature, 
the color of the Zn-2 solids was changed to dark green from blue-green, while Zn-1 was still dissolved in the 
mixed solvent to give no color change (Fig. S1). The resulting dark green solids were adsorbed onto a quartz 
substrate. The UV-Vis-NIR absorption spectrum showed further red-shifted Qy/Soret maxima at 728/439 nm 
(Fig. 2d, red line), and the excitonically coupled CD signals in the Qy region were enhanced (Fig. 2e, red line). 
These spectroscopic data indicate that the Zn-2 solids were gradually transformed from dimeric or small oligo-
meric species into chlorosomal J-aggregates, in which the molecular dipole moments of the Zn-2 molecules were 
arranged along the y-axis in a well-ordered manner. Thus, Zn-2 molecules form dimeric species kinetically and 
transform into more thermodynamically stable J-aggregates in the solid states. The resulting Zn-2 chlorosomal 
J-aggregates on a quartz substrate exhibited a 752-nm fluorescence emission peak at the excitation of the Soret 
band (Fig. S2).

The Zn-2 solids produced in THF/hexane (5:95, vol/vol) after standing for one week were dispersed by ultra-
sonication and the resulting suspension was drop-cast onto a substrate to analyze their supramolecular nanostruc-
tures using tapping-mode atomic force microscopy (AFM). The AFM height image of the Zn-2 self-assemblies 
on a highly oriented pyrolytic graphite (HOPG) substrate showed sheet-like supramolecular nanostructures with 
heights of 15–25 nm (Figs. 3a and S3a). The cross-sectional analysis showed that the surface of the nanosheet 
was flat over a submicrometer range (Figs. 3b and S3b–e). The nanosheet had a step of 6 nm (Fig. 3b), suggesting 
a cleavage of a single layer of the nanosheet. The Zn-2 solids produced in THF/hexane (5:95, vol/vol) just after 
preparation were also examined using tapping-mode AFM. The AFM images showed mainly particle-like nano-
structures with heights of 1–25 nm and partially nanosheets with heights of 13–21 nm (Fig. 4). Thus, the results 

Figure 3.  Supramolecular nanosheets of Zn-2 self-assemblies formed upon standing in THF/hexane (5:95, vol/
vol) for one week. Tapping-mode AFM analysis of Zn-2 J-aggregates on an HOPG substrate, (a) AFM height 
image and (b) cross-section analysis. Cryo-TEM analysis of Zn-2 on a carbon-coated copper grid, (c) and (d) 
cryo-TEM images and (e) electron beam diffraction.
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indicate that nanosheets of Zn-2 J-aggregates are more thermodynamically stable nanostructures and that they 
are gradually formed from amorphous particle-like aggregates of kinetically favored dimeric species.

The aforementioned suspension of Zn-2 J-aggregates was similarly drop-cast onto a carbon-coated copper 
grid, and analyzed using cryo-transmission electron microscopy (cryo-TEM). Cryo-TEM images also mainly 
showed supramolecular nanosheets (Fig. 3c) similarly as in AFM analysis (rod-like nanostructures were partially 
visible in the cryo-TEM images of Zn-2 J-aggregates in Figs. 3c and S4). Moreover, black stripes with a spacing 
of 2.9 nm were visible in the magnified cryo-TEM image (Figs. 3d and S5). Taking a closer look at this image, it 
can be seen that one black stripe consists of a pair of black lines (Fig. 3d, inset). Since the cryo-TEM image was 
obtained without stain, the black lines in the Fig. 3d image were based on the zinc atoms of Zn-2 molecules. The 
electron beam diffraction of the nanosheet showed an orthogonal pattern (Fig. 3e). Assuming an orthorhombic 
unit cell (a = 6 nm, b = 2.9 nm, c = 0.69 nm) from Fig. 3e as well as Fig. 3b, there is a systematic absence of 00 l (l: 
odd) reflections by extinction rule. This indicates the presence of the 21 screw axis along the c-axis. The 0.69-nm 
distance between adjacent zinc chlorophyll molecules was similar to previously reported results for microcrys-
talline of a cadmium BChl-d analog26 as well as self-assemblies of Zn-325 (Fig. 1c, bottom), the 31-hydroxylated 
analog of Zn-2. Zn-3 formed a large rod-shaped supramolecular nanostructure through intermolecular hydro-
gen bonding between 31-OH and 13-C=O, and its striped orientation was parallel to the long axis of the rod. In 
the present study, 31-methoxylated Zn-2 forms no hydrogen bonding between 31-OCH3 and 13-C=O and also 
weakens the coordination ability of 31-O to central zinc due to the sterically bulky 32-methyl group, inducing less 
chlorosomal J-aggregation and relatively enhancing the intermolecular hydrogen bonding of the amide and urea 
groups in the 17-substituents. The balance of intermolecular interactions is the driving force for the slow growth 
of two-dimensional Zn-2 J-aggregates as major supramolecular nanostructures under the present conditions.

The two-dimensional Zn-2 nanosheets were investigated in terms of their anisotropy to further elucidate their 
supramolecular structure. The solid Zn-2 nanosheets were drop-cast onto a quartz optical waveguide and their 
Vis-NIR absorption spectra were measured using polarized light, perpendicular (p-light) and parallel (s-light) to 
the surface (Fig. 5a). The Vis-NIR absorption spectrum of the nanosheet without polarization showed Qy/Soret 
maxima at 736/446 nm (Fig. 5b, black line), which was similar to those measured using conventional transmis-
sion mode (Fig. 2d, red line). The p- and s-light absorption spectra showed Qy/Soret maxima at 733/441 and 
743/454 nm, respectively (Fig. 5b, blue and red lines). These observations revealed that the molecular dipole 
moments of Zn-2 molecules along the y-axis were arranged in two situations with both vertical and horizontal 
fashions. The Qy and Soret absorption peaks of the nanosheets under s-light were observed at longer wavelength 
regions than those under p-light, indicating that Zn-2 molecules stacked more strongly in parallel direction to 
the optical waveguide surface than that in perpendicular one. This suggests that Zn-2 molecules form linearly 
stepped oligomers favorably orientated parallel to the quartz surface. It is consistent with the microscopic anal-
yses, which reveal a striped orientation in the nanosheet parallel to the surface of the substrate. Thus, a single 
striped layer is ascribable to the linearly stepped oligomeric Zn-2 molecules.

The self-assembly of Zn-2 molecules is schematically represented in Fig. 6. The Zn-2 molecules kinetically 
formed a dimeric species based on its intermolecular hydrogen bonding of amide and urea groups in a hydro-
phobic environment (Fig. 6, step i). The dimeric species immediately formed nanoparticles (Fig. 6, step ii)23,24, 
which gradually transformed into the more thermodynamically stable supramolecular nanosheets of chlorosomal 
J-aggregates (Fig. 6, step iii). Appropriate crystal structure model of Zn-2 molecules in nanosheets consistent 
with the cryo-TEM data and the extinction rule is shown in middle and bottom of Fig. 6. Two arrays of zinc 
atoms along c-axis in bc-plane (a-axis projection) corresponds to the black lines in cryo-TEM image (Fig. 3d). It 

Figure 4.  A tapping mode AFM height image of Zn-2 just after preparation in THF/hexane (5:95, vol/vol, 
100 μM); the sample was dispersed by ultrasonication and drop-cast on an HOPG substrate.
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Figure 5.  Vis-NIR absorption spectra of Zn-2 nanosheets using optical waveguide. (a) Schematic of the 
measurement and (b) Vis-NIR absorption spectra of Zn-2 nanosheets on an optical waveguide using p- (blue) 
and s-light (red) as well as non-polarized light (black).

Figure 6.  Schematic drawing of the Zn-2 chlorosomal J-aggregation process.
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is noted that the supramolecular structures of bacteriochlorophyll-c–f assemblies are still in discussion23,24,27–29, 
and the supramolecular structure of Zn-2 molecules in the nanosheet and the ligation of the central zinc (α or β) 
as well as the configuration between the 31-methoxy moiety and 17-methylene group [syn (same side) and anti 
(opposite side)] are unclear. The Zn-2 supramolecular nanosheets had a striped pattern, which is reminiscent 
of a lamellar sheet nanostructure of natural chlorosomal bacteriochlorophyll assemblies. A natural chlorosome 
consists of epimeric mixtures of bacteriochlorophyll-c–f homologs and a variety of carotenoids, quinones, and 
waxes, which are surrounded by a lipid monolayer. Although all these components should affect their supramo-
lecular nanostructures of bacteriochlorophyll-c–f assemblies, their essential supramolecular (nano)structures are 
controlled by themselves. For the present Zn-2 J-aggregates, supramolecular nanosheets are simply constructed 
by intermolecular interactions of coordination (31-O∙∙∙Zn) and hydrogen bonding (C=O∙∙∙H–N) as well as π–π 
stacking of the chlorins in the solid state.

Conclusion
Zinc 31-methoxy-chlorophyll derivatives Zn-1 and Zn-2 were synthesized from naturally occurring chlorophyll-a. 
Zn-2 having amide and urea groups in the 17-substituent kinetically formed a dimeric species that gradually 
transformed into the more thermodynamically stable chlorosomal J-aggregates in the solid state, while Zn-1 
bearing a dodecyl at the 17-propionate residue formed neither dimers nor large aggregates. The dimerization and 
J-aggregation of Zn-2 molecules are driven by its intermolecular hydrogen bonding of amide and urea moieties in 
the 17-substituents as well as the coordination (31-O∙∙∙Zn) and π–π stacking of chlorin π-systems. The structural 
transformation of the chlorophyll supramolecules was first observed in the solid state using spectroscopy. The 
major supramolecular nanostructures of the more thermodynamically stable Zn-2 J-aggregates were nanosheets, 
which were first constructed. The present two-dimensional nanomaterial photophysically and nanostructurally 
mimics chlorosomal bacteriochlorophyll-c–f J-aggregates. The supramolecular nanosheets (the present study) 
and nanotubes20–22, which are reminiscent of covalently-bonded graphene and carbon nanotube, respectively, 
could be prepared using zinc chlorophyll derivatives. The bioinspired supramolecular nanosheets of chlorosomal 
J-aggregates have various potential applications, such as artificial light-harvesting antennas and photosynthesis, 
dye-sensitized solar cells, catalytic reactions, and photodynamic therapy.

Methods
Samples.  Chlorophyll-a was extracted from commercially available cyanobacterial spirulina powders 
(DIC LIFETEC). Synthetic procedures and spectral data for Zn-1 and Zn-2 are described in Supplementary 
Information. The samples in a solution at 10 μM for UV-Vis-NIR absorption measurements were prepared as 
follows. The samples were weighed on Ultra-Microbalance XPR2UV (Mettler Toledo), and dissolved in THF, 
then an aliquot of the solution was dried in vacuo. The residue (20 nmol) was dissolved in only THF (2 mL), or 
first dissolved in THF (0.02 mL) that was then added to hexane (1.98 mL) in a 1-cm quartz cuvette. The samples 
at 100 μM were prepared as follows. The samples (1 μmol) were first dissolved in THF (0.5 mL) and diluted with 
hexane (9.5 mL). The resulting suspension of Zn-2 in THF/hexane (5:95, vol/vol) was stored at room temperature 
in the dark for one week to prepare two-dimensional nanosheets. The solid samples of Zn-2 in THF/hexane (5:95, 
vol/vol) were dispersed using ultrasonication, and a quartz plate was dipped in this suspension and then dried 
more than 10 times to adsorb self-assemblies of Zn-2 onto the quartz surface for UV-Vis-NIR absorption mea
surements performed using conventional transmission mode. The Zn-2 solids were drop-cast onto a quartz opti-
cal waveguide (System Instrument) for the measurement of Vis-NIR absorption spectra in total reflection mode 
in air. For AFM measurements, the solid samples of Zn-2 in the above hexane-based solution were dispersed by 
ultrasonication for 30 seconds and the resulting suspensions were drop-cast onto HOPG substrates (Bruker) and 
dried immediately by purging nitrogen gas. For the cryo-TEM measurements, a suspension of Zn-2 was drop-
cast onto a carbon coated copper grid. The solvents used for the optical and microscopic measurements were 
purchased from Nacalai Tesque as reagents prepared specifically for spectroscopic experiments.

UV-Vis-NIR absorption spectroscopy.  UV-Vis-NIR absorption spectra in transmission mode were 
measured at room temperature on a Hitachi U-3500 spectrophotometer. Vis-NIR absorption spectra in a total 
reflection mode using an optical waveguide were measured at room temperature with a System Instruments SIS-
50 spectrophotometer.

CD spectroscopy.  CD spectra were measured at room temperature on a Jasco J-720W spectropolarimeter.

AFM.  AFM was performed with a Bruker Multimode 8 system in tapping mode in air. An HOPG substrate was 
freshly cleaved before drop-casting the samples. A silicon cantilever (Bruker, MPP-11100–10) was used.

Cryo-TEM.  Cryo-TEM was performed with a JEOL JEM-2100F (G5) microscope operated at the acceleration 
voltage of 200 kV and measured at liquid helium temperature (4.2 K).

Open access.  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this license, visit http://creativecommons.org/licenses/by/4.0/.
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Data Availability
The data that support the findings of this study are available within the article and its Supplementary Information 
files.
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