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Abstract Hosts and viruses are constantly evolving in response to each other: as a host

attempts to suppress a virus, the virus attempts to evade and suppress the host’s immune system.

Here, we describe the recurrent evolution of a virulent strain of a DNA virus, which infects multiple

Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral

titer in infected individuals, with similar differences observed in multiple species. Our analysis

suggests that one of the viral types recurrently evolved at least four times in the past ~30,000

years, three times in Arizona and once in another geographically distinct species. This recurrent

evolution may be facilitated by an effective mutation rate which increases as each prior mutation

increases viral titer and effective population size. The higher titer viral type suppresses the host-

immune system and an increased virulence compared to the low viral titer type.

Introduction
Antagonistic coevolution between hosts and their parasites is nearly ubiquitous across the diversity

of life (Burt and Trivers, 2006). As a result, genes involved in immune defense are among the fastest

evolving genes in host genomes (Nielsen et al., 2005; Sackton et al., 2007; Enard et al., 2016;

Shultz and Sackton, 2019). Viruses are a particular fitness burden on hosts; for viruses to persist

within populations, they must successfully invade the host organism, contend with the host-immune

system, replicate and then transmit the newly produced particles to a new host (Holmes, 2007; Gif-

ford, 2012). Once successfully established in a population, natural selection acts to modulate the

rate the virus propagates relative to its virulence, optimizing the ratio of virulence to transmission

(Williams and Nesse, 1991; May and Nowak, 1995; Lipsitch et al., 1996). Due in part to their ele-

vated mutation rate and large population sizes, viruses can accomplish this, and often co-opt or

manipulate host-pathways in the process (Burgyán and Havelda, 2011; Davey et al., 2011;

Palmer et al., 2019).

Given the strong selective pressures viruses exert on their hosts (and hosts on viruses), it would

be useful to assess how the two players behave in replicate evolutionary experiments. Experiments

examining the evolution of pathogens and hosts are common in the lab (Perron et al., 2006;

Paterson et al., 2010; Bull et al., 2011; Martins et al., 2014; Scanlan et al., 2015) and even in

patients (Pennings, 2012; Pennings et al., 2014; Feder et al., 2019), but difficult in natural settings

(Souza et al., 2002; Grubaugh et al., 2015), so we are rarely able to observe the coevolutionary

dynamics between a virus and its host in replicate populations to examine natural coevolution and

identify if evolution repeats itself. These studies are necessary as they frequently help characterize

the pathways viruses have evolved to escape or suppress the host-immune system, and whether the

same host pathways are common targets of the same virus (Sabin et al., 2010).

Several studies of viruses in natural populations highlight that the same initial virus can follow the

same adaptive path in multiple replicate samples. This results in parallel or convergent evolution of a

virus better optimized to the host, possible due to the relatively high viral mutation rate and viral

population size (Bull et al., 1997; Casino et al., 1999; Crandall et al., 1999; van Mierlo et al.,
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2012). However, in other systems, the same initial virus can evolve divergently in a host or location-

dependent manner. Specifically, virulence and the diversity of mutations can differ dramatically

based on differences in the host environment, the extremely strong selective pressures acting on the

virus, and the unpredictability of some viruses due to their elevated mutation rate (Martinez-

Picado et al., 2002; Cuevas et al., 2003; Real et al., 2005; Grubaugh et al., 2015). Characterizing

how viruses adapt to their long-term hosts in naturally structured populations will help broaden and

expand our understanding of how hosts and pathogens evolve in response to each other, and how

repeatable evolution is in the face of minor environmental differences.

We took advantage of a natural host/DNA virus infection model involving populations separated

by hundreds of kilometers to study how viruses evolve with their hosts in replicate populations with

limited gene flow. Drosophila innubila is a mycophagous species that lives in montane forests in the

‘Sky islands’ in southwestern North America. They are commonly infected with a double-stranded

DNA virus, the Drosophila innubila Nudivirus (DiNV) (Hill and Unckless, 2018). A previous study

examined the rates of evolution of DiNV (Hill and Unckless, 2018), finding the envelope and replica-

tion machinery to be rapidly evolving in DiNV, suggesting its importance in viral propagation

(Hill and Unckless, 2018). Additionally, a viral suppressor of Toll was identified in the genome of a

closely related virus and DiNV, suggesting that components of the Toll pathway (perhaps antimicro-

bial peptides – AMPs) interact with the virus, which these viruses have then evolved to suppress

(Palmer et al., 2019). Consistent with this, genes in the Toll pathway and Toll-regulated AMPs are

rapidly evolving in D. innubila (Hill et al., 2019). A more thorough examination of the natural evolu-

tion of both the host and virus is necessary to understand how DiNV and D. innubila interact with

each other beyond this suppressor protein.

eLife digest Animals constantly evolve to protect themselves against viruses, and in turn, viruses

evolve to escape their host’s new defenses. As a result, genes involved in this arms’ race are some

of the fastest evolving in nature. A better understanding of how host-virus evolution works could

help in the search for treatments for many human and animal diseases.

Repetition is one of the gold standard requirements for biological experiments. Watching

different groups of animals and viruses evolve under the same conditions makes it possible for

researchers to work out whether certain changes are more likely than others. This is easy to do in

the laboratory, where conditions can be controlled, but much more complicated to accomplish in

the wild. Wild populations are rarely completely isolated, and often face different environmental

conditions. One animal-virus pair for which this is not the case is made up of the fly Drosophila

innubila, and its virus Drosophila innubila nudivirus. They live in the ’sky islands’ of North America,

patches of forests surrounded by hundreds of kilometers of desert. These islands are like natural test

tubes, isolated ecosystems each with its own separate fly and virus populations and limited gene

flow between populations.

To understand how this virus-host pair evolves, Hill and Unckless sequenced the genomes of flies

and viruses from four different populations. While the fly genomes did not show evidence of strong

differences between populations, the virus genomes did. There were two distinct types of virus, one

of which was a lot more effective than the other at infecting flies, possibly because it was better at

blocking the fly’s immune defenses. Unexpectedly, this virus type had evolved more than once,

emerging separately on at least four different occasions. Hill and Unckless suggest that the natural

interactions between flies with similar genomes and the virus guide evolution down the same path

time and time again.

This work on wild populations contributes to the understanding of the evolution of viruses and

their hosts. One question left unanswered is why both types of virus (one more effective at infecting

the flies and the other less so) persist in each population when one is better at blocking the fly’s

immune response? Future work using isolated populations like these could shed more light on the

pressures that shape the evolution of viruses and their hosts, potentially helping in the study of

human viruses, like HIV.
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We surveyed natural genetic variation in DiNV in four replicate populations to infer its co-evolu-

tionary history with D. innubila. To this end, we (a) estimated how long DiNV has infected D. innu-

bila, (b) inferred the evolutionary history of the host and virus among the populations, including

signatures of selection and recombination (c) examined host and virus genetic variation associated

with viral titer within individual hosts, and (d) characterized gene expression differences associated

with that genetic variation. We identified two viral multilocus genotypes that differ by 11 focal SNPs

and found that these viral types are maintained within the same host population and across multiple

isolated host populations. These SNPs are tightly linked, likely brought together by a combination of

recurrent mutation and recombination, and this linkage appears to be maintained by strong selec-

tion. One viral type is associated with 100-fold higher viral titer and increased virulence compared to

the other. Further, we found evidence that the SNPs associated with the high titer type have evolved

independently in at least three geographically-isolated viral populations infecting the sympatric D.

innubila and D. azteca, and a geographically separate population of viruses infecting D. falleni.

Together, these results suggest rapid evolutionary dynamics of host–virus interactions, due to recur-

rent evolution of a highly virulent haplotype that interacts with multiple host pathways.

Results

DiNV segregates for linked variants strongly associated with viral titer
To characterize the evolutionary dynamics of wild Drosophila innubila Nudivirus (DiNV) in its host (D.

innubila), we sequenced wild-caught individuals from four populations with the expectation that

some (~40% in previous samples) individuals would be infected (Hill and Unckless, 2020). We con-

sidered strains to be infected with DiNV if they had at least 10x coverage for 95% of the genome.

We confirmed the infection of a subsample of these using PCR for the presence of a DiNV specific

gene (Supplementary Table 1). In total, we used sequencing information for 57, 92, 92, and 92 indi-

viduals from the Huachucas (HU), Santa Ritas (SR), Chiricahuas (CH), and Prescott (PR) populations

with infection rates 26, 44, 71, and 79%, respectively (Supplementary file 1 - Table 1). We also

sequenced 35 individual males collected in the Chiricahuas in 2001 (52% infected with DiNV) and 80

individual males collected in the Chiricahua’s in 2018 (Supplementary file 1 - Table 2, 40 infected

with DiNV and 40 uninfected determined before sequencing using PCR).

We isolated and sequenced DNA from these samples, quality filtered reads, mapped to the

genome, and called genetic variation in the viral genomes to assess the extent of adaptation in each

viral population. Consistent with an arms-race between host and virus, envelope and novel virulence

(GrBNV-like) genes have a significantly higher proportion of substitutions fixed by adaptive evolu-

tion, compared to other viral genes (McDonald-Kreitman-based statistic Direction of Selection

[Stoletzki and Eyre-Walker, 2011] and Selection Effect [Eilertson et al., 2012; Figure 4—figure

supplement 1], DoS >0, GLM t-value >1.31, p-value<0.05).

Recurrent adaptive evolution in viral proteins known to interact with the host-immune system sug-

gests an arms-race between D. innubila and DINV. To better understand the interactions between

host and virus, we performed an association study between viral titer and natural genetic variation in

both host and virus. We consider viral titer a proxy for virulence. For each virus-infected individual,

we quantified viral titer (as the logarithm of the viral genome coverage normalized to host autosomal

genome coverage) and performed an association study across both host and virus variable sites to

identify variants significantly associated with viral titer using PLINK (Purcell et al., 2007).

Of 5283 viral SNPs in the 155kbp DiNV genome, 1,403 SNPs are segregating in at least five

infected host individuals (five was our minor allele threshold for inclusion in the association study).

Of those 1,403 SNPs, 78 are significantly associated with viral titer after multiple testing correction

(FDR < 0.01, Significantly associated SNPs p<0.001 over 1000 permutations, Figure 1A). Of these,

16 are less than 2000 bp upstream of the start site of a gene, 18 are coding nonsynonymous, 11 are

coding synonymous and 33 are intergenic. The SNP with the absolute lowest p-value for association

with viral titer was also the only significantly associated SNP that seemed to segregate within individ-

uals. In fact, the frequency of the derived allele in this nonsynonymous polymorphism in the active

site of Helicase-2 shows a negative linear relationship with the log of viral titer (Figure 1—figure

Supplement 2, GLM t-value = �20.516, p-value=5.55e-21). However, when we ranked samples by
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Figure 1. Viral genome-wide association study for DiNV titer in wild D. innubila. (A) Manhattan plot for each DiNV SNP and the significance of its

association with DiNV titer. SNP point, shape and color denotes if they are upstream (black upward arrow), downstream (black downward arrow),

intergenic (gray cross), synonymous (blue circle), non-synonymous (red square) or nonsense (green asterisk) mutations. Named SNPs are either part of

the significantly associated viral haplotype or, if a smaller size and italicized, are in or near other genes of interest (e.g. Helicase-2). The FDR-corrected

Figure 1 continued on next page
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viral titer, we found the derived SNP frequency exhibited an almost bell-shaped curve when plotted

against rank (Supplementary Figure 2).

We also identified a striking association between viral titer and eleven strongly linked polymor-

phisms found across the DiNV genome (Figure 1A & D, highlighted SNPs, Table 1, Figure 1—fig-

ure supplements 1–3, Sig. SNPs). These SNPs were significantly associated in every population

when performing the association study on individual populations, or as a single group with popula-

tion as a covariate. We binned strains with one of the two complete sets of alleles and referred to

them as the ‘High Type’ and ‘Low Type’ (Figure 1B, only contains individuals infected by viruses

with a complete set of ‘High’ or ‘Low’ Type SNP variants). This multilocus genotype includes three

non-synonymous SNPs, five SNPs in the UTRs of known virulence factor genes and three intergenic

SNPs (Table 1). Viral titer is, on average, 100-fold higher in individuals infected with the full High

Figure 1 continued

p-value cutoff of 0.01 is shown as a dashed line (multiple testing correction for 1403 tests), while the permutation-based genome-wide significance

threshold of p=0.01 is shown as a dotted line (based on 1000 permutations). (B) Viral titer for individual wild-caught flies infected with Low and High

DiNV haplotypes (containing all 11 High type alleles). The middle bar represents median value, upper and lower bars represent 25th and 75th percentile

and whiskers represent a 95% confidence interval. (C) Association between the number of High type SNP variants and the viral titer of a sample. (D)

Across five populations, the frequency of the High type is correlated with the frequency of the virus infection. (E) Linkage disequilibrium heatmap

between the eleven focal haplotype SNPs pairwise, and with the Helicase-2 SNP. Tiles are colored by the estimated linkage between SNPs, from red

(highly linked, r2 = 1) to white (unlinked, r2 = 0).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Frequency of each significantly associated SNP within each individual, with individuals ranked by viral titer (left = lowest,

right = highest), to show the strong linkage of SNPs and little evidence of co-infection among the high and low haplotype SNPs.

Figure supplement 2. Permutation test for association test for viral virulence.

Figure supplement 3. Linkage disequilibrium between SNPs in DiNV as a heatmap generated in LDheatplot.

Table 1. Candidate viral SNPs associated with viral titer with associated genes and the functional category of that gene.

SNP locus

Nearest gene

SNP functional annotation
Nearest gene
functional annotation p-value (FDR-corrected)

G14249T 19K/PIF-4 Non-synonymous Per OS Infectivity factor
envelope protein,
required for oral infection

3.49e-15 (4.89e-12)

C41210T LEF-4 Non-synonymous RNA polymerase subunit
for RNA modification

7.99e-12 (1.12e-09)

G42389T gp83 Upstream Suspected virulence factor
which suppresses Toll activity

6.73–14 (9.44e-11)

A59194G gp51 Intergenic Suspected virulence factor 2.96e-12 (4.15e-09)

C59275A PIF-6 Upstream Per OS Infectivity factor
envelope protein,
required for oral infection

1.65e-18 (2.31e-15)

T59276C PIF-6 Upstream Per OS Infectivity factor
envelope protein,
required for oral infection

1.65e-18 (2.31e-15)

G66615A gp19 Non-synonymous Suspected virulence factor 3.49e-15 (4.89e-12)

C78978T gp94 Intergenic Suspected virulence factor 5.93e-17 (8.32e-14)

G78991A gp94 Intergenic Suspected virulence factor 1.12e-16 (1.57e-13)

C126118A ODV-E56-2 Upstream Occlusion-derived virus
envelope protein
required for particle formation

1.43e-18 (2.01e-15)

A132593C Helicase-2 Non-synonymous Unwinds DNA and is
critical for DNA replication

1.11e-09 (1.56e-06)

T140117C PIF-3 Upstream Per OS Infectivity factor
envelope protein,
required for oral infection

2.96e-15 (4.15e-12)
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type virus compared to the ancestral Low type (Figure 1B). When comparing the ‘High’ and ‘Low’

viral type to Helicase-2 allele frequency, we found that viral titer increases with Helicase-2 SNP fre-

quency in the Low type (and some intermediate types), while titer decreases with Helicase-2 SNP fre-

quency for most intermediate and High types, suggesting some form of negative interaction

between the High type SNP variants and the Helicase-2 SNP (Supplementary Figure 2). Consistent

with this, we found a negative interaction between Helicase-2 SNP frequency and the presence of

High type on viral titer (GLM Log10(titer) ~Helicase-2 SNP * Haplotype: t-value = �7.815, p-val-

ue=6.39e-14).

Since these 11 SNPs are almost perfectly linked (Figure 1E), if one SNP were a false positive

result, all would be false positives. We sought to address this in two ways. First, these SNPs are sig-

nificantly associated with viral titer in every population when performing the association test sepa-

rately or as a group with population as a covariate. Therefore, the likelihood of the same SNP(s)

being false positives in three independent tests is quite small (p<1E-09 over 3 iterations of 1000 per-

mutations). Second, we permuted the titer among all individuals within populations and performed

the association test (100,000 total permutations). For each permutation, we took the SNP with the

lowest p-value from each permutation test and the 10 other SNPs most strongly linked to it. We

then compared the viral titer in those with this permuted ‘High’ haplotype to those with the ‘Low’

haplotype. In no case were the permuted differences between High and Low haplotypes as large as

those observed from the real data (Figure 1—figure supplement 2A, 100,000 permutations), and

the distribution of true p-values diverges dramatically from the permuted null expectation (Fig-

ure 1—figure supplement 2B, black). We found this divergence from the null expectation of p-val-

ues disappears when including viral haplotype as a covariate (Figure 1—figure supplement 2B,

red), suggesting that the High type drives most of the signal seen in the association study.

Though we found few strains with an intermediate number of SNPs (intermediate types), viral titer

appears to increase as the number of High type SNPs increases (Figure 1C, GLM t-value = 34.971,

p-value=5.912e-16), but the rate of increase slows as the number of High type SNPs increases sug-

gesting diminishing returns (Figure 1C). Some of these polymorphisms are associated with known

virulence factors, or are related to the formation of the viral envelope co-opting the host vesicle traf-

ficking system and are rapidly evolving in nudiviruses (e.g. 19K, ODV-E56, PIF-3) (Rohrmann, 2013;

Hill and Unckless, 2017; Hill and Unckless, 2018). Additionally, several are associated with genes

exclusive to a few nudivirus genomes thought to be novel virulence factors, including gp83, a gene

that downregulates Toll-induced antimicrobial peptides (AMPs) and upregulates those induced by

IMD (Palmer et al., 2019). Both the Toll and IMD pathway may interact with DNA viruses

(Zambon et al., 2005; Costa et al., 2009; Merkling and van Rij, 2013; Ferreira et al., 2014;

Lamiable et al., 2016; Palmer et al., 2019).

Among populations, we found a positive correlation between the frequency of the High type and

overall DiNV infection frequency (Figure 1D, GLM logistic regression z-value = 6.104,

p-value=0.00883), suggesting that the High type may have a higher transmission rate than the Low

type, resulting in a larger number of new individuals infected per DiNV-infected individual. We also

found both viral types in collections from 2001 and 2017, with the High type significantly more com-

mon in the 2017 collection (Fisher Exact Test p-value=0.0167, Figure 1D).

It is possible that mutations could segregate within individuals, but this is relatively rare overall,

and we found no evidence of the 11 haplotype SNPs segregating within any individual fly (Supple-

mentary Figure 2). In fact, no individual fly contains more than two significantly associated SNPs seg-

regating within the sample, suggesting that hosts are either infected completely with Low type or

High type virus particles.

The high DiNV viral type more effectively suppresses the Drosophila
immune system
Given the striking difference in viral titer between High and Low type viruses, we sought to further

characterize the differences in infection dynamics between the types, focusing on the differences in

expression between viral types. We sequenced mRNA from 80 wild D. innubila males collected in

2018 (Supplementary file 1 - Table 2, 40 infected with DiNV, 40 uninfected) and performed a differ-

ential expression analysis between infected and uninfected individuals. Few genes were differentially

expressed (DE) between infection states in D. innubila, but these DE genes were enriched for several

interesting categories. Specifically, we found IMD-induced antimicrobial peptides (AMPs) were
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upregulated upon DiNV infection, while one Toll-induced AMP, and several chorion and heat shock

protein genes were downregulated (Figure 2—figure supplement 1A). We also compared these

results to a laboratory experiment in D. melanogaster of differential expression after infection with a

close relative of DiNV (Palmer et al., 2018). These same genes tend to also be differentially

expressed in D. melanogaster. Of the 12 genes which are differentially expressed in the same direc-

tion in both species, five are AMPs and five are chorion genes (Figure 2—figure supplement 1B).

This suggests that even with significant evolutionary divergence in both host and virus, the transcrip-

tional response to infection is similar in both hosts. It was unexpected that chorion proteins are dif-

ferentially expressed upon infection by DiNV and Kallithea virus (Figure 2, Figure 2—figure

supplement 1), especially as DiNV is thought to infect the Drosophila gut (Unckless, 2011) and

these samples are male. This suggests DiNV may infect more tissues than just the gut, and that cho-

rion proteins are expressed in the germline of both D. innubila sexes, potentially fulfilling different

roles in different sexes/species.

To determine how the High and Low type differ in their ability to infect D. innubila, we compared

gene expression between D. innubila infected with the two types from this same collection (exclud-

ing intermediate types, which also showed a significant difference in viral titer between High

type and Low type, p-value=0.0000143). We found 17 host genes and nine viral genes differentially

expressed between types (after we controlled for virus copy number as FPKM/titer for viral genes

Figure 2A, FDR-corrected p-value<0.01). Specifically, three Toll-regulated immune peptides (IM33,

Bomanins BomBC2, and BomT2) and one JAK-STAT regulated immune peptide (Listericin) have

reduced expression in High type infected individuals compared to the Low type (Figure 2, Fig-

ure 2—figure supplement 2). Viral genes of interest (PIF-3, 19K, gp83) have higher expression per

viral particle (FPKM/titer) in the High type compared to the Low type. gp83 also increases in expres-

sion per viral particle (FPKM/titer) as the number of High type alleles increases (Figure 2B, t-value =

13.732, p-value=3.36e-15). Together these results suggest that the High type has increased expres-

sion of key virulence factors, which in turn, manipulate the expression of host genes involved in

immune defense to result in the observed differences in viral titer. Specifically, higher gp83 expres-

sion may cause the lower Toll-mediated AMP expression (Palmer et al., 2019). We reasoned that if

the High type is suppressing the host Toll pathway, Myd88, the Toll signaling protein upstream of

AMPs would also have lower expression. We did find Myd88 expression is lower in strains infected

with the High type (Figure 2A, though no significantly so), which in turn might prevent the host from

enacting a proper immune response to DiNV infection (Figure 2, Figure 2—figure supplement 1).

Experimental infections recapitulate differences in viral type virulence
To assess if the virulence differs between virus types, we performed experimental infections of D.

innubila males using viral filtrate of strains infected with one of the two types of DiNV. Before injec-

tions, we used qPCR to identify the viral titer of each sample and dilute all samples to the same viral

concentration. In these experiments, as viral titer increases, the survival of infected flies decreases,

regardless of viral type (Figure 3—figure supplements 1 and 2, ANOVA residual deviance = 3.536,

p-value=2.454e-07, Cox Hazard Ratio z-value >2.227, p-value<0.02592). In both types viral titer also

increased for the first 3 days of infection (GLM t-value = 9.817, p-value=3.6e-14). This established

that viral titer is a reasonable proxy for virulence and that DiNV is virulent in D. innubila.

For a set of four High type and four Low type-infected individuals, we isolated viruses, diluted to

roughly equal concentrations of viral particles and performed infections for replicates of 10 males

with microneedles dipped in one of the filtrate samples. Survival is significantly lower for flies

infected with High type viruses when compared to either flies pricked with sterile media (Figure 3A,

Cox Hazard Ratio z-value = 3.671, p-value=0.000242) or those pricked with Low type virus

(Figure 3A, Cox Hazard Ratio z-value = 4.611, p-value=4.02e-06). Flies pricked with Low type virus

show a non-significant reduction in survival compared to control flies (Cox Hazard Ratio

z-value = 1.353, p-value=0.176). We also measured viral titer over time using qPCR, and found titer

increases through time in flies infected with either type (Figure 3B, GLM Log10(titer) ~days + type +

vial | strain, days t-value = 9.912, p-value=1.76e-14). Flies infected with High type virus have signifi-

cantly higher viral titer compared to flies infected with Low type virus (Figure 3B, GLM

Log10(titer) ~days + type + vial | strain, type t-value = 3.934, p-value=0.000211). These results sug-

gest that the higher viral titer observed in the High Type is also associated with higher virulence.
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Figure 2. DIfferential expression between two viral haplotypes. (A) Differential expression of D. innubila and DiNV genes between D. innubila infected

with either the Low type or High type DiNV multilocus genotypes. For host genes, the log-fold change of mRNA fragments per million fragments is

compared, while for viral genes the log-fold change of viral mRNA fragments per million fragments per viral particle is compared. Genes are colored/
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Figure 2 continued on next page
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DiNV types are under strong selection in the host
We next tested whether genes likely to be involved in host/virus interaction show signs of recurrent

natural selection. Using McDonald-Kreitman based statistics for estimating the proportion of substi-

tutions fixed by selection (McDonald and Kreitman, 1991; Stoletzki and Eyre-Walker, 2011;

Eilertson et al., 2012), we tested whether genes that are associated with the High and Low types

exhibited different signatures of natural selection compared to other viral genes. We calculated the

Selection Effect, the proportion of substitutions fixed by adaptive evolution, weighted by the total

number of substitutions in the genome (Eilertson et al., 2012). We found that genes associated

with SNPs in the initial association study for viral titer, which defined the High and Low types (listed

in Table 1 and including 19K, PIF-3 and LEF-4) have significantly higher rate of substitutions being

fixed due to selection than background genes across all categories (Figure 4¸ type-associated genes

versus all other, t-value = 2.718, p-value=0.00068). When separating the polymorphisms from the

substitutions, we found that envelope genes have a significant excess of functional substitutions per

site compared to other genes (Figure 4—figure supplement 2A, GLM t-value = 3.62,

p-value=0.00107), while genes of unknown function have a significant excess of non-synonymous

polymorphisms (Figure 4—figure supplement 2A, GLM t-value = 2.33, p-value=0.02241) and a

Figure 2 continued

genes of interest, such as Myd88, are also named. The FDR-corrected significance cut-off of 0.01 (10,320 tests) is shown as a dashed line. (B) Expression

(in FPKM per viral particle) of gp83 increases with the number of High type SNPs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Volcano plot of changes in gene expression between D. innubila infected with DiNV and uninfected controls.

Figure supplement 2. Expression changes (shown as transcript fragments per 1 million reads per 1kbp of exon) of antimicrobial peptides between

strains infected with High type DiNV, Low type DiNV or not infected.
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Figure 3. Effect of viral type in experimental infections. (A) Survival curves of D. innubila infected with high and low viral types compared to control

flies pricked with sterile media, for 15 days post-infection. Survival 5 days post-infection separated by strain is shown in Figure 3—figure supplement

2. (B) qPCR copy number of viral p47 relative to tpi in D. innubila infected with DiNV filtrate of high and low types.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effect of differences in viral type and titer in experimental infections.

Figure supplement 2. Survival of flies following infection with different titers and types of DiNV.
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deficit of non-synonymous substitutions (Figure 4—figure supplement 2A, GLM t-value = �3.894,

p-value=9.93e-05), which will lower the average selection effect of background genes, suggesting

that the relative excess adaptation seen in some genes is in part due to an excess of variation in

genes on unknown function.

We also performed an association study using the host polymorphism and found 13 significantly

associated SNPs, after controlling for the viral haplotype (Figure 4—figure supplement 3, p<0.01),

but found no significant enrichments (p-value>0.05) or genes of interest (e.g. those involved in Toll

signaling or antiviral pathways). We therefore looked for enrichments in genes associated with the

top 100 significantly associated SNPs versus all other genes and found piRNA genes enriched (GO

enrichment = 3.44, p-value=0.035, FDR-corrected). Given that siRNA genes are not highly ubiqui-

tously expressed in D. innubila (Hill et al., 2019), that DiNV reduces host fecundity (Unckless, 2011),

and that a close relative of DiNV infects the host ovaries (Palmer et al., 2018), DiNV could interact

with chorion proteins during oogenesis, and piRNAs could be suppressing DiNV (Lewis et al.,

2018). Consistent with the arms race model, host genes we suspect are interacting with DiNV (such
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. McDonald-Kreitman based statistics for each gene in population of Drosophila innubila Nudivirus, with viral envelope and

GrBNV potential virulence factors shown separately.

Figure supplement 2. The ratio of nonsynonymous to synonymous polymorphisms and substitutions for both DiNV and D. innubila, used to generate

Figure 4.

Figure supplement 3. Host genome-wide association study for DiNV titer in wild D.innubila.
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as the association study hits, AMPs, chorion genes, piRNA genes, and extracellular genes) show ele-

vated levels of substitutions fixed by selection compared to background genes in D. innubila (Fig-

ure 4 and Figure 4—figure supplement 1, GLM p-value<0.05) (Hill and Unckless, 2020). Finally,

differentially expressed chorion genes, extracellular genes and AMPs have significantly more adap-

tive substitutions than non-differentially expressed genes in the same categories (Figure 4, blue

dots, differentially expressed versus all other T-test: D. innubila t-value = 4.755, p-value=0.000671).

When separating the polymorphisms from the substitutions, we found an excess of functional substi-

tutions per site in AMPs (Figure 4—figure supplement 2B, GLM t-value = 4.776, p-value=1.81e-06),

driving their excess of adaptive substitutions compared to other genes. Overall, these results sug-

gest strong selection is acting on both the host to suppress viral activity and the virus to escape this

suppression.

Recombination in DiNV may facilitate the evolution of the high type
We were interested in examining the genetic variation of DiNV to determine the relationship of the

host and the two putative types of DiNV. To determine the appropriate approaches for measuring

these patterns, we first need to determine the effective rate of recombination in the virus. Though

recombination is necessary for proper nudivirus replication (Kelly, 1982; Kamita et al., 2003; Rohr-

mann, 2013), often these recombination events will be between nearly identical viral particles result-

ing in no detectable signature of recombination across the genome (Rohrmann, 2013). For

recombination to leave its signature in genetic variation, two divergent viruses must coinfect the

same cell – we refer to this as effective recombination. It is unclear how common such recombination

is in nudiviruses.

We used three methods to examine rates of effective recombination across the DiNV genome:

First we used GARD to identify the number of recombination breakpoints across samples

(Kosakovsky Pond et al., 2006). Second, we screened for recombination events by finding all four

combinations of alleles between two SNPs. Third we calculated the linkage disequilibrium pairwise

between all SNPs (Shin et al., 2006). We found recombination is relatively common in DiNV (Fig-

ure 1—figure supplement 3), with 307 potential recombination events genome-wide in recent his-

tory (based on combinations of alleles across our samples), and that the genome has relatively low

linkage disequilibrium (Figure 1—figure supplement 3, Figure 5—figure supplements 1 and 2). In

DiNV, the eleven SNPs significantly associated with viral titer (the High and Low types), are spread

across the ~155 kilobase pair genome, yet are nearly perfectly linked to each other but not to other

SNPs (Figure 1—figure supplement 3, Figure 5—figure supplements 1 and 2).

We wanted to examine if it was possible that the High type was generated by recombination of

SNPs onto the same background, under the assumption that if the High type was formed via recom-

bination we would expect to find recombination events each side of each significantly associated

SNP. Using GARD and the four-allele test, six of the significantly associated SNPs show evidence of

a recombination event on one side of the SNP, while three have evidence of a recombination event

on each side of the significantly associated SNP (Figure 5—figure supplement 3, Supplementary

Data). This suggests that recombination could have aided in the formation of the multilocus geno-

type, by recombination between two intermediate types to form the High type. However, we found

no evidence of recombination between individuals in different populations (e.g. no recombinant

haplotypes that are ½ CH and ½ PR), suggesting little movement of one or more significantly associ-

ated SNPs between populations. We also found no evidence of recombination between the com-

plete High and complete Low types. This suggests that the initial SNPs for the High type have

evolved on separate backgrounds in all three populations, though recombination between interme-

diate strains may have allowed for the formation of the complete High type, or for the generation of

other intermediate types. For this to happen, each SNP may have recurrently evolved in each popu-

lation, even if not sequentially.

The high viral type of DiNV evolved repeatedly in three D. innubila
populations
We next sought to understand the evolutionary origin of the two putative types. Given that both

types are found in all populations surveyed (Figure 1D) with no evidence of recombination between

populations, we hypothesized that this could occur one of three ways: First, the derived haplotype
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was present ancestrally and has been maintained since before geographic isolation occurred. Sec-

ond, the derived haplotype evolved following geographic isolation and has spread via migration

between locations. Third, the derived haplotype has recurrently evolved in each location.

To distinguish between these possibilities and determine the timeframe of divergence, we used

the site frequency spectrum of silent DiNV polymorphism to estimate effective population size back-

wards in time for all populations (Liu and Fu, 2015). We found that the three populations (CH, HU

and SR) expanded from a single viral particle (Ne = 1) to millions of particles during the last glacial

maximum (30–100 thousand years ago) when D. innubila settled its current range (Figure 5—figure

supplement 4; Hill and Unckless, 2020). This supports a single invasion event during a host-range

change for each location. PR appears to expand between 1 and 10 thousand years ago, suggesting

a much more recent bottleneck during the range expansion in PR (Figure 5—figure supplement

4; Hill and Unckless, 2020).

We aligned genomic regions containing SNPs to two related nudiviruses, Kallithea virus and

Oryctes rhinoceros Nudivirus (OrNV) (Wang et al., 2008; Hill and Unckless, 2018; Palmer et al.,

2018). The High type alleles are not present in either Kallithea or OrNV, and are not found in short

read information for wild D. melanogaster infected with Kallithea virus (Webster et al., 2015), sug-

gesting they are derived in DiNV.

We generated consensus DiNV sequences for each infected D. innubila individual and created a

whole-genome phylogeny to infer geographic diffusion of samples using BEAST2 (Bouckaert et al.,

2014). We then performed ancestral reconstruction of the presence of the High type across the phy-

logeny using APE (Paradis et al., 2004). Our samples grouped as three populations (with HU and

SR forming one population) and, consistent with our expectation, the Low type is the ancestral state

(Figure 5A). Interestingly we found PR is nested within HU/SR, based on five SNPs which segregate

in the Low type HU/SR but are fixed in all PR samples (Figure 5A), consistent with the expansion of

DiNV north over time. Surprisingly, the High type appears to have evolved repeatedly and conver-

gently within each population, forming separate groups within each population (Figure 5A). The

High type also clusters within each population in a phylogeny or principal component analysis of all

viral SNPs (Figure 5—figure supplement 1C), and when repeating these analyses while excluding

the eleven focal SNPs.

We next surveyed each background SNP (e.g. SNPs not associated with the High or Low type) to

determine if the general background supports one of the three outlined ways in which the High type

evolved and spread in each location. We grouped SNPs by their presence in just the High type or

Low type (supporting a single origin and spread by migration) or if they were unique to a single pop-

ulation but shared between the High and Low types. In total, 341 SNPs (24% of SNPs surveyed) are

unique to a single population yet are still shared between both High and Low types (Figure 5 and

Figure 5—figure supplement 1), compared to 23 SNPs (including the 11 High type SNPs) shared

between locations but exclusive to High type samples. This is consistent with the lack of recombina-

tion between individuals in different populations, suggesting the High type associated SNPs are

derived recurrently in each population on different backgrounds. Consistent with this, using Tree-

Time we found that the eleven significantly associated SNPs could have recurrently evolved across

our samples, after accounting for recombination and mutation rate (Kosakovsky Pond et al., 2006;

Sagulenko et al., 2018).

We identified 341 SNPs (161 for CH, 127 for HU and SR, and 53 for PR), are present in all High

type samples of a single population but a variable proportion of Low types for that population

(between 19 and 94%) and are unique to that population. This pattern fits with the High type recur-

rently evolving on a single background (a different background in each location), supporting recur-

rent evolution of the High type, and against two ancestrally maintained viral types. The population-

specific background SNPs are spread throughout the DiNV genome, with little evidence of recombi-

nation with the High type SNPs, making it unlikely that these SNPs recombined onto different back-

grounds, and were instead present when the High type first evolved in each population (Figure 5—

figure supplements 1 and 2). We found little evidence of gene conversion producing this back-

ground signature (Figure 5—figure supplement 3). While we identified recombination events

between background SNPs in the Low type, we found no evidence of this occurring due to their

fixed states in the High type, likely because the High type has swept to higher frequencies within

individuals before recombination can occur.
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The elevated DiNV mutation rate associated with increased titer allows
the high type to recurrently evolve in each population
Though there is strong linkage between the High type SNPs, they are not perfectly associated with

each other (Figure 5—figure supplements 1 and 2). Using this slight disassociation and APE

(Paradis et al., 2004), we performed ancestral reconstruction of SNP origins in each population

(assuming recurrent evolution) and found that, excluding three variable SNPs, the evolution of these

SNPs was a similar order in each population (Figure 5B).

The recurrent evolution of these mutations in a specific order is feasible as the mutation rate is

high and the waiting time between mutations should decrease as titer increases. Logically, if the

wait time for the appearance of a beneficial mutation is 1/(2Ne*m*s), increasing Ne (with titer) should

decrease the wait time for the appearance of the High type mutations (Gillespie, 2004). To deter-

mine if this recurrent evolution is plausible in our estimated timeframe (~10,000 years), we simulated
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Figure 5. The evolution and maintenance of two viral types. (A) Phylogeographic reconstruction of the spread of DiNV through D. innubila, rooted on

the Kallithea virus reference sequence, including a reconstruction of the High type evolution (with strains containing all 11 High type variants shown in

purple, strains with an intermediate number of high type variants are shown in pink, and strains with no high type variants are shown in black). Branches

are colored when the SNPs found in the background for each High haplotype are present in the population, showing that the background differs per

population. Black branches show states where branch tips do not contain all the shared High/Low population specific background SNPs. (B) Order of

mutations in the viral haplotype appearing in each population. Apart from three mutations the order is consistent between locations. SNP order has

been bootstrapped across multiple sample phylogenies, SNPs with bootstrap support of >95% are labelled with a *. (C) The number of generations

needed for ‘High titer’ mutations to evolve in simulated populations, given that each mutation increases the mutation rate. The number of generations

between each mutation appearing decreases as titer increases.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. SNP association in the viral haplotype and principle component analysis of viral samples.

Figure supplement 2. Linkage (r2) between different types of SNPs in each population of DiNV, and across all samples.

Figure supplement 3. Associations of significantly associated SNPs and their neighboring SNPs, to attempt to determine if gene conversion is the

cause of the recurrent evolution of the viral haplotype.

Figure supplement 4. Effective population size backwards for each population of DiNV going backwards in time, estimated using StairwayPlot.
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viral populations using a discrete susceptible-infectious model implemented in deSolve

(Soetaert et al., 2010) using estimated baculovirus mutation rates, recombination rates, ranges of

viral titer taken our samples and estimated population sizes for each viral population (parameters

described in the methods). In this model we used an effective mutation rate scaled to viral titer, con-

sidering the mutation rate per particle, so total mutations per generation increase with viral titer. For

simplicity, we limited these simulations to the first five mutations as these are mutations of largest

effect and appear to be necessary for the remaining six mutations to appear. We also included epis-

tasis which reduces the increase in titer for each subsequent mutation (titer
ffiffiffiffiffiffiffiffiffiffiffiffi

no: muts
p

), as a similar

reduction is seen in our samples (Figure 1C). The simulations suggest that waiting time for the first

mutation that increases titer is highly variable between replicates but usually occurs within 1000 gen-

erations (~200 years at most, assuming the virus is transmitted from adult hosts to larval hosts via

feces, with a 5 host generations per year as a conservative minimum estimate of viral generations

per year, in >99.93% of replicates, Figure 5C). The average wait time for each subsequent mutation

decreases monotonically (GLM t-value = -2.389, p-value = 0.03686). In most cases, the next mutation

appears in the background of the previous high titer mutation (Figure 5C) due to the elevated effec-

tive mutation rate and increased basic reproduction number (R0). In 34 of 1000 simulations, when a

mutation does appear on a different background, recombination facilitates the generation of the full

complement of mutations. Given that effective mutation rate is much higher than the effective

recombination rate following the appearance of the first mutation (as recombination does not scale

with titer in nudiviruses and baculoviruses Kamita et al., 2003), this likely accounts for the mutation

rates dominance in our simulations, though recombination likely does play a role in recombination

between intermediate strains. The accumulation of mutations occurs at close to a geometric

(approximately exponential) rate. Additionally, the standard deviation of time wait times also

decreases with each new mutation (GLM t-value = -2.441, p-value = 0.04241), increasing the cer-

tainty that the entire multilocus genotype will appear in a population rapidly once the initial muta-

tions appear. This chain reaction of adaptation could easily facilitate the repeated evolution of the

virulent High type independently in three populations, with all eleven mutations fixing in a popula-

tion within 6000 generations (~1200 years maximum) in all replicates (3372 generations on average,

~675 years maximum), a plausible amount of time given our estimated timeframe.

Both viral types are found in two other Drosophila species and have
also evolved in a geographically distinct population
Since we found two types of DiNV are present in all D. innubila populations, and that other species

are infected with DiNV (Unckless, 2011), we hypothesized that another species could be a reservoir

for the less virulent Low type. We chose to study D. azteca from the Chiricahuas since it is frequently

infected with DiNV (~33% infection), overlaps with D. innubila, and is genetically divergent (40–60

million years) which could mean a very different genetic interaction between host and virus

(Unckless, 2011). We also examined DiNV-infected D. falleni (a close relative of D. innubila with non-

overlapping geographic range, collected in Athens, Georgia) as an outgroup. We sequenced 36 D.

azteca and 56 D. falleni. Both viral types are present in both additional species, but the High type is

rare in D. azteca (Figure 6B). The High type has a significantly higher titer than the Low type in both

cases (Figure 6A,D. azteca GLM t-value = 6.71, p-value=0.0056, D. falleni GLM t-value = 8.12,

p-value=0.000371). Viral titer is not significantly different across species for either High or Low type

(Figure 6A, GLM t-value = �1.351, p-value=0.179). We also found the D. azteca samples cluster

with CH D. innubila samples and contain the CH background SNPs (Figure 5—figure supplement

1C), suggesting no differentiation in the virus infecting different species. D. falleni DiNV, on the

other hand, clusters completely separately from the other samples, likely due to its geographic sepa-

ration. However, the D. falleni samples still have a derived cluster of High type virus, suggesting a

fourth independent evolution of the High type in Georgia. Despite the lack of divergence between

viruses infecting the two species in Arizona, a lower proportion of the D. azteca population is

infected with DiNV, and the High Type is less common than the Low type DiNV (Figure 6B). Per-

haps, even though the relative differences in titer are preserved between the two species, the Low

Type is favored in D. azteca because this reduced virulence leads to a greater basic reproductive

rate for the virus in D. azteca. Thus, the two types of the virus may be maintained in both host
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species because though they have become specialized to maximize fitness in one host, transmission

between host species could lead to their continued presence in both hosts.

We repeated our association study in D. azteca, D. falleni, and each D. innubila population sepa-

rately. In all cases we found the 11 High type SNPs are associated with higher viral titer (GLM

t-value >4.28, p-value>0.0001 in all cases). This was not the case for the Helicase-2 SNP (despite its

presence in D. falleni) nor any other SNPs shared between populations. After controlling for the

High type, we found no other significant DiNV SNPs in D. azteca associated with viral titer. For DiNV

infecting D. falleni, we found 478 significantly associated SNPs (FDR-corrected p-value<0.01),

though none of them with as large an effect as the High type associated SNPs.
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Discussion
Viruses are constantly evolving not just to propagate within a host, but also to optimize their infec-

tion across hosts. This optimization involves the relationship between their ability to infect an individ-

ual and to transmit to others, tempered by the pathogenic effects on infected hosts caused by viral

activity (May and Nowak, 1995; Lipsitch et al., 1996; Alizon and van Baalen, 2008). Since the host

is also evolving in response to the virus, an evolutionary arms-race often ensues (Dawkins and

Krebs, 1979; Kaltz and Shykoff, 1998; Daugherty and Malik, 2012). DNA viruses have large

genomes and often recombination, placing them as a somewhat transitionary pathogen between

RNA viruses, bacteria and eukaryotic pathogens and parasites. Here, to work towards expanding

our understanding of the co-evolution of viruses and their hosts, we examine the population dynam-

ics of Drosophila innubila Nudivirus (DiNV), a DNA virus infecting D. innubila (Unckless, 2011).

Within our set of viral samples, we found two DiNV types which differ by 11 SNPs (Figure 1, named

High and Low types). One haplotype (the High type) is associated with higher viral titer, likely due to

an increased manipulation of the host-immune system and increased expression of viral factors

(Figure 2).

The derived High type has likely recurrently evolved in each population since the last glacial maxi-

mum (~10,000 years ago). The two types appear to not co-infect individuals, and mutations appear

in a similar order as if navigating an epistatic fitness landscape (Dobzhansky, 1937;

Kondrashov et al., 2002; Gavrilets, 2004). Finally, despite the higher titer and transmission rate of

the High type compared to the Low type, we found the two types in all sampled populations. Thus,

a fundamental question is: why are there two haplotypes? Possible explanations are (a) that the two

haplotypes are neutral and coexist due to genetic drift, (b) we caught High type amid a selective

sweep, or (c) the two haplotypes are adaptively maintained due to a tradeoff.

Given the immense differences in titer and survival between High and Low types and the rest of

the preponderance of evidence presented above, we find it implausible that the two haplotypes are

associated with equal viral fitness and therefore evolving under a model of genetic drift

(Gillespie, 2004).

It is possible we caught the High type DiNV in the middle of a selective sweep in each population.

Differing basic reproduction numbers (R0) would result in changes in the ratio of types over time (as

seen between 2001 and 2017, Figure 1D). As we only have two time points, we could be witnessing

a selective sweep of the High type spreading to fixation (Nielsen, 2005), with recombination causing

the observed differences in the background. As we found the High type appears to have evolved

recurrently, it would be unlikely that we have caught intermediate sweeps in all four populations

sampled (Figure 1D). Using the frequency of the High type between 2001 and 2017 CH samples, we

can calculate the selection coefficient for the High type if increasing at an exponential rate (which is

likely if mid-selective sweep given the intermediate frequency at both time points). D. innubila is

active during the monsoon season if Arizona (late July to early September, 10 weeks with a genera-

tion time of 2–3 weeks) (Patterson and Stone, 1949). If we assume five generations per year (the

minimum number of viral generations per year, limited by the host generation time) and an increase

among infected individuals from 52% on 2001 to 71% in 2017, the selection coefficient = 0.0055,

which suggests the High type would take ~350 years maximum to fix in a population once it has

arisen (from a frequency 1/Ne to one in the viral population). Given the coalescence time of the two

types is close to the expansion time of the two viruses (2–30 thousand years), this does not fit with

our results, suggesting the two types are more likely to be adaptively maintained and not amid a

selective sweep. Further, if the High type was sweeping, it would be remarkable for us to catch these

sweeps occurring in all four populations sampled, given the lack of gene flow between populations,

our estimated time to fixation of 350 years, and estimated initial infection ~30 thousand years ago.

Finally, two viral types could be maintained because of a tradeoff between the two virus types.

We can imagine several scenarios for such a tradeoff. First, within a single population of genetically

identical hosts, two viral types could coexist if they had equal basic reproduction numbers (R0)

(Nowak and May, 1994; May and Nowak, 1995). The basic reproduction number in a simple epi-

demiology model is the ratio of the transmission rate of the pathogen to its virulence. So, while

we’ve observed that virulence is higher for the High type virus compared to the Low type, it may be

also true that transmission is also higher in the High type (inferred from Figure 1D) and those differ-

ences are perfectly balanced creating equal R0. We find this unlikely but a useful starting point for
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considering the adaptive maintenance of the two types. A more likely second scenario is one where

in a single population of a given species, different host genotypes favor different viral type and that

the interaction between optimal R0 among the viral genotypes and susceptibility of the host geno-

types creates a stable equilibrium for both host genotypes and viral genotypes (Anderson and May,

1981). These host genotypes could also be different host species. In fact, in the Chiricahuas, D. innu-

bila was more likely to be infected with the High type virus and D. azteca was more likely to be

infected with the Low type virus (Figure 6) even though the two species are sympatric and the differ-

ences in viral titer between the High and Low types were qualitatively similar. Therefore, R0 might

be higher for the High type in D. innubila and higher for the Low type in D. azteca with some trans-

mission between host species. These community dynamics could maintain both viruses in both spe-

cies. The second broad category of tradeoffs involves environmental heterogeneity, which could also

create the conditions for the maintenance of both viral types. Furthermore, differing environmental

conditions (such as differences in population densities) could affect the frequencies in each location

(Anderson and May, 1981). Finally, different viral types could also preferentially infect different tis-

sues, and have different titers due to limitations of the given infected tissues. Previous work in nudi-

viruses identified nudivurses that infect different tissues including the gut, fat body and ovaries

(Jackson et al., 2005; Burand et al., 2012; Palmer et al., 2018). Two DiNV strains infecting differ-

ent tissues may also help explain the lack of recombination between High and Low types, as viral

particles cannot exchange information if they segregate to different tissues. However, this would

ignore the fact that we found no evidence of coinfection and viruses infecting two tissues could

more easily coinfect.

It is possible that the High type has not recurrently evolved in each population and instead the

two viral types are maintained by selection in the face of ongoing gene conversion. However, this

would not explain the shared background variants which are fixed in the High type and population

exclusive, or the evidence of recurrent evolution in the assembled phylogeny (Figure 5). It is entirely

possible however that within each population, selection is maintaining the High type due to the fit-

ness deficits of intermediate types, while gene conversion erodes the association of the eleven hap-

lotype SNPs, which is possible given the recombination events found around the significantly

associated SNPs (Figure 3—figure supplement 1).

Studies of different viruses have found that they can undergo speciation-like events through the

accumulation of genetic incompatibilities (Matsubara and Otsuji, 1978; Rokyta and Wichman,

2009; Meyer et al., 2016). In these cases, the two viral types cannot recombine and produce viable

viral progeny. This may be occurring in DiNV if infection by one viral type limits the ability of the

other type to infect the same cell – akin to prezygotic reproductive isolation (Coyne and Orr, 2004).

Alternatively, coinfection could happen but generate inviable recombinant particles (Meyer et al.,

2016) – akin to postzygotic reproductive isolation. For example, the fourth mutation might only be

favored when in the presence of the derived allele of the third mutation because the third mutation

causes a conformational change in protein A that allows the conformational change in protein B

caused by the fourth mutation to produce infective viral particles (Orr, 1995). The fact that 19K is

known to form a complex with other PIF proteins and other membrane proteins suggests it could

play the central role in the formation of this incompatibility system (Wang et al., 2007; Rohr-

mann, 2013). If incompatibilities are present between types, they are likely in rapidly evolving vital

nudivirus genes (Hill and Unckless, 2017; Hill and Unckless, 2018). As well as being rapidly evolv-

ing across baculoviruses and nudivurses, we found these genes also have high rates of adaptive evo-

lution (Figure 4) and are associated with SNPs that distinguish the High and Low DiNV strains

(Figure 1), further supporting the idea that the few genes are key to nudivirus replication are targets

of host-suppression and locked in arms-races across the entire nudivirus/baculovirus phylogeny

(Hill and Unckless, 2017).

DNA viruses such as DiNV have complicated replication cycles and large genomes. This makes

them a sort of evolutionary intermediate between RNA viruses (small genomes, high mutation rates)

and eukaryotes (large genomes, low mutation rates) and tangential to bacteria and archaea (interme-

diate genomes, low recombination rates) (Rohrmann, 2013). However, adaptation appears to occur

through changes in a few key proteins (Hill and Unckless, 2017; Hill and Unckless, 2018). Here we

found the evolution of two competing viral types that differ in variants near these few key genes,

which cause the strains to differ in virulence and titer. Overall our results suggest that the high muta-

tion rates and extremely high levels of selection can result in the repeated and convergent evolution
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of novel host-virus interactions. Additionally, we found that these host-virus interactions for large

DNA viruses can be much more complicated than previous models suggest (Dolan et al., 2018;

Feder et al., 2019).

Materials and methods

Fly collection, DNA isolation, and sequencing
In this study, we used previously collected and sequenced D. innubila (Hill and Unckless, 2020).

Briefly we collected these flies across the four mountainous locations in Arizona between the 22nd

of August and the 11th of September 2017. Specifically, we collected at the Southwest research sta-

tion in the Chiricahua mountains (~5400 feet elevation, 31.871 latitude �109.237 longitude), Prescott

National Forest (~7900 feet elevation, 34.540 latitude �112.469 longitude), Madera Canyon in the

Santa Rita mountains (~4900 feet elevation, 31.729 latitude �110.881 longitude) and Miller Peak in

the Huachuca mountains (~5900 feet elevation, 31.632 latitude �110.340 longitude). Baits consisted

of store-bought white button mushrooms (Agaricus bisporus) placed in large piles about 30 cm in

diameter, at least five baits per location. We used a sweep net to collect flies over the baits in either

the early morning or late afternoon between one and three days after the bait was set. Flies were

sorted by sex and species at the University of Arizona and were flash frozen at �80˚C before being

shipped on dry ice to the University of Kansas in Lawrence, KS. During these collections we also

obtained D. azteca which we also sorted by species and sex and flash frozen. D. falleni were col-

lected using a similar method in the Smoky Mountains (~6600 feet elevation) in Georgia in 2017 by

Kelly Dyer, these flies were then sorted at the University of Georgia in Athens GA and shipped on

dry ice to the University of Kansas in Lawrence, KS.

For collected CH D. innubila, D. falleni and D. azteca, we attempted to assess the frequency of

DiNV infection using PCR, looking for amplification of the viral gene p47. Using primers from

Unckless, 2011, P47F: 50–TGAAACCAGAATGACATATATAACGC and P47R: 50–TCGGTTTCTCAA

TTAACTTGATAGC. We used the following conditions: 95˚C 30 s, 55˚C 30 s, 72˚C 60 s per cycle for

35 cycles. We chose the cutoff for viral infection based these PCR infection results. We compared

the PCR positives with the fold coverage in the genome and found that fly samples with 10x cover-

age of the viral genome for 90% of the viral genome also had PCR positive results, so we chose this

as our cutoff.

We sorted 343 D. innubila flies, 60 DiNV positive D. falleni and 40 DiNV positive D. azteca which

we then homogenized and used to extract DNA using the Qiagen Gentra Puregene Tissue kit (USA

Qiagen Inc, Germantown, MD, USA). We prepared a genomic DNA library of these 343 DNA sam-

ples using a modified version of the Nextera DNA library prep kit (~350 bp insert size, Illumina Inc,

San Diego, CA, USA) meant to conserve reagents. We sequenced the D. innubila libraries on two

lanes of an Illumina HiSeq 4000 run (150 bp paired-end) (Data to be deposited in the SRA). We

sequenced the D. falleni and D. azteca libraries on a separate run of a lane of an Illumina HiSeq 4000

(150bp paired-end).

For 80 male Drosophila innubila collected in 2018 (indicated in Supplementary file 1 - Table 2),

we split the sample homogenate in half, isolated DNA from half as described above and isolating

RNA using the Direct-zol RNA Microprep protocol (R2061, ZymoResearch, Irvine, CA, USA). We

then polyA-selected on these samples to isolate mRNA and prepared a cDNA library for each of

these 80 RNA samples using a modified version of the Nextera TruSeq library prep kit meant to con-

serve reagents and sequenced these samples on a NovaSeq NS6K SP 100SE (100 bp single end).

We also sequenced DNA for these samples, with DNA isolated and prepared as above, also

sequenced on a NovaSeq NS6K SP 100SE (100 bp single end).

Sample filtering, mapping, and alignment
Following sequencing, we removed primer and adapter sequences using cutadapt (Martin, 2011)

and Scythe (Buffalo, 2018) and trimmed all data using Sickle (-t sanger -q 20 l 50) (Joshi and Fass,

2011). We masked the D. innubila reference genome (Hill et al., 2019), using D. innubila TE sequen-

ces and RepeatMasker (Smit and Hubley, 2008; Smit and Hubley, 2013). We then mapped short

reads to the masked genome and the Drosophila innubila Nudivirus genome (DiNV) (Hill and

Unckless, 2018) using BWA MEM (Li and Durbin, 2009) and sorted using SAMtools (Li et al.,
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2009). Following this we added read groups, marked and removed sequencing and optical dupli-

cates, and realigned around indels in each mapped BAM file using GATK and Picard, 2020 (http://

broadinstitute.github.io/picard; McKenna et al., 2010; DePristo et al., 2011). We considered lines

to be infected with DiNV if at least 95% of the viral genome is covered to at least 10-fold coverage.

This most significantly overlaps with our CH D. innubila PCR results (c2 = 71.791, p-value=2.392e-

17). Additionally, index-switching at a rate of 0.0001 from the highest titer sample to an uninfected

sample would still leave the uninfected with ~5.2-fold coverage of the viral genome, and so still con-

sidered as uninfected.

We then filtered for low coverage and mis-identified species by removing individuals with low

coverage of the D. innubila genome (less than 5-fold coverage for 80% of the non-repetitive

genome), and individuals we suspected of being misidentified as D. innubila following collection.

This left us with 318 D. innubila wild flies with at least 5-fold coverage across at least 80% of the

euchromatic genome, of which 254 are infected with DiNV (Supplementary file 1 - Table 1). We

also checked for read pairs which were split mapped between the DiNV genome and the D. innubila

genome using SAMtools.

For D. falleni we used a previously generated D. innubila genome with D. falleni variants inserted

(Hill et al., 2019). We masked the genome with Repeatmasker (Smit and Hubley, 2013) and

mapped short reads to the masked genome, the repeat sequences and the DiNV genome using

BWA MEM and SAMtools (Li and Durbin, 2009; Li et al., 2009). Then, as with D. innubila we filtered

for low coverage and mis-identified species by removing individuals with low coverage (less than

fivefold coverage for 80% of the non-repetitive genome) leaving us with 56 D. falleni samples

infected with DiNV.

For D. azteca, we downloaded the genome from NCBI (Accession: GCA_005876895.1) which we

then called repeats from with RepeatModeler (Smit and Hubley, 2008). We masked the genome

with Repeatmasker (Smit and Hubley, 2013) and mapped short reads to the masked genome, the

repeat sequences and the DiNV genome using BWA MEM and SAMtools (Li and Durbin, 2009;

Li et al., 2009). As with D. innubila we then filtered for low coverage and mis-identified species by

removing individuals with low coverage of the D. azteca genome (less than 5-fold coverage for 80%

of the non-repetitive genome), which left us with 37 D. azteca samples infected with DiNV. We then

called DiNV variation using LoFreq (Wilm et al., 2012).

Calling nucleotide polymorphisms across the population samples
For the 318 sequenced samples with reasonable coverage, for host polymorphism, we used the pre-

viously generated multiple strain VCF file, generated using a standard GATK HaplotypeCaller/

BCFTools pipeline. We used LoFreq (Wilm et al., 2012) to call polymorphic viral SNPs within each of

the 254 DiNV-infected samples, following filtering using BCFtools to remove sites below a quality of

950 and a frequency less than 5%. We then merged each VCF to create a multiple strain VCF file,

containing 5,283 SNPs in the DiNV genome. The LoFreq VCF (Wilm et al., 2012) output contains

estimates of the frequency of each SNP in DiNV in each sample, to confirm these frequencies, in

SAMtools (Li et al., 2009) we generated mPileups for each sample and for SNPs of interest (related

to viral titer), we counted the number of each nucleotide to confirm the estimated frequencies of

these nucleotides at each position in each sample. To confirm that there are no coinfections of types,

we also subsampled samples and randomly merged Low and High type samples and again gener-

ated mPileup files, for SNPs of interest we again counted the number of each nucleotide at each

position and confirmed these matched our expected counts in the merged files. We then compared

these artificial coinfections to actual samples to confirm the presence or absence of coinfections,

finding no samples consistent with coinfections. We then used SNPeff to identify the annotation of

each SNP and label synonymous and non-synonymous (Cingolani et al., 2012). We extracted the

synonymous site frequency spectrum to estimate the effective population size backwards in time

using StairwayPlot (Liu and Fu, 2015).

Using the viral VCF and the genetics r package we calculated r2 measure of linkage disequilib-

rium. We visualized the linkage between the eleven focal SNPs, and between the eleven focal SNPs

and 1000 random SNPs using LDheatmap (Shin et al., 2006). We also sorted r2 scores by the types

of SNPs the measure is between, if it is between the focal type SNPs, the SNPs found on each popu-

lations High type background, and other SNPs.
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For 100,000 permutations, we randomized the viral titer associated with each strain. For each per-

mutation, we binned individuals into high and low artificial haplotypes based on the allele for the

SNP at 126118 (the most significantly associated SNP) and the 10 SNP most strongly linked to this

SNP. Finally, we found the difference between the two artificial bins and compared this to the differ-

ence between the viral titer of the two haplotypes. We then counted the proportion of the 100,000

permutations with a difference lower than the true difference.

Identifying signatures of adaptive evolution using McDonald-Kreitman-
based tests
We filtered the total viral VCF with annotations by SNPeff and retained only non-synonymous

(replacement) or synonymous (silent) SNPs. We also mapped reads from Kallithea virus (dS ~ 0.133)

and Orcytes rhinoceros Nudivirus (OrNV, dS ~ 0.279) to the DiNV genome to identify the ancestral

state at each site and polarize SNPs to specific branches (Hill and Unckless, 2018). Specifically, we

sought to determine sites which are derived polymorphic in DiNV and which are substitutions fixed

on the DiNV branch of the phylogeny. After removing singletons, we used the raw counts of fixed

and polymorphic silent and replacement sites per gene to estimate McDonald-Kreitman-based sta-

tistics, specifically direction of selection (DoS) (McDonald and Kreitman, 1991; Smith and Eyre-

Walker, 2002; Stoletzki and Eyre-Walker, 2011). We also used these values in SnIPRE

(Eilertson et al., 2012), which reframes McDonald-Kreitman based statistics as a linear model, taking

into account the total number of non-synonymous and synonymous mutations occurring in user

defined categories to predict the expected number of these substitutions and calculate a selection

effect relative to the observed and expected number of mutations (Eilertson et al., 2012). We calcu-

lated the SnIPRE selection effect for each gene using the total number of mutations on the chromo-

some of the focal gene.

For the host, we repeated this process using the SNPeff annotated VCF in the SnIPRE pipeline to

identify signatures of adaptation in the host genome.

We then calculated the difference in each statistic between each gene and the median of all other

viral genes, to identify how much that gene deferred from the genomic background. We repeated

this for the host genome, limiting the comparison to nearby genes (within 100kbp on the same

chromosome).

Identifying differentially expressed genes between DiNV-infected and
uninfected Drosophila innubila
For 100 male Drosophila innubila collected in 2018 (indicated in Supplementary file 1 - Table 2), we

homogenized each fly separately in 100 mL of PBS. We then split the sample homogenate in half, iso-

lated DNA from half as described above and isolating RNA using the Direct-zol RNA Microprep pro-

tocol (R2061). Using the isolated DNA, we tested each sample for DiNV using PCR for P47 as

described previously, using 40 DiNV-infected samples and 40 uninfected samples. We then prepared

a cDNA library for each of these 80 RNA samples using a modified version of the Nextera TruSeq

library prep kit meant to conserve reagents and sequenced these samples on a NovaSeq NS6K SP

100SE (100 bp single end). We also sequenced DNA for these samples, with DNA isolated and pre-

pared as above, also sequenced on a NovaSeq NS6K SP 100SE (100 bp single end). The DNA

sequenced here was mapped as described above, with variation called as described above for other

DNA samples.

Following trimming and filtering the data as described in the methods, we mapped all mRNA

sequencing data to a database of rRNA (Quast et al., 2013) to remove rRNA contaminants. Then

we mapped the short read data to the masked D. innubila genome and DiNV genome using GSNAP

(-N 1 -o sam) (Wu and Nacu, 2010). We estimated counts of reads uniquely mapped to D. innubila

or DiNV genes using HTSEQ (Anders et al., 2015) for each sample. Using EdgeR (Robinson et al.,

2010) we calculated the counts per million (CPM) of each gene in each sample and counted the

number of samples with CPM > 1 for each gene. We find that over 70.3% of genes have a CPM > 1

in at least 70 samples. For the remaining genes, we find these genes are expressed in all samples of

a subset of the strains (e.g. DiNV uninfected, DiNV-infected, DiNV-high infected, DiNV-low infected).

This supports the validity of the annotation of D. innubila, given most genes are expressed in some

Hill and Unckless. eLife 2020;9:e58931. DOI: https://doi.org/10.7554/eLife.58931 20 of 29

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.58931


manner, and suggests our RNA sequencing samples show expression results consistent with the

original annotation of the D. innubila genome.

We attempted to improve the annotation of the D. innubila genome to find genes expressed only

under infection. We extracted reads that mapped to unannotated portions of the genome and com-

bined these for uninfected samples, samples infected with High type DiNV and samples infected

with Low type DiNV as three separate samples. We then generated a de novo assembly for each of

these three groups using Trinity and Velvet (Schulz et al., 2012; Haas et al., 2013). We then

remapped these assemblies to the genome to identify other transcripts and found the consensus of

these two for each sample. Using the Cufflinks pipeline (Ghosh and Chan, 2016), we mapped reads

to the D. innubila genome and counted the number of reads mapping to each of these putative

novel transcript regions, identifying 15,676 regions of at least 100 bp, with at least one read map-

ping in at least one sample. Of these, 717 putative genic regions have at least 1 CPM in all 80 sam-

ples, or in all samples of one group (DiNV uninfected, DiNV-infected, DiNV-low infected, DiNV-high

infected). We next attempted to identify if any of these genes are differentially expressed between

types, specifically between uninfected strains and DiNV-infected strains, and between Low-type

infected and High-type infected strains. Using a matrix of CPM for each putative transcript region in

each sample, we calculated the extent of differential expression between each type using EdgeR

(Robinson et al., 2010), after removing regions that are under expressed, normalizing data and esti-

mating the dispersion of expression. We find that 26 putative genes are differentially expressed

between infected and uninfected types, and 69 putative genes are differentially expressed between

High and Low types. We took these regions and identified any homology to D. virilis transcripts

using blastn (Altschul et al., 1990). We find annotations for 37 putative genes are either expressed

in all samples, or differentially expressed between samples. Of the 14 putative genes expressed in

all samples, nine have the closest blast hit to an rRNA gene, and five have hits to unknown genes.

For 23 differentially expressed putative genes with blast hits, three genes are like antimicrobial pep-

tides (IM1, IM14, IM3), these genes are significantly downregulated upon infection, like other Toll-

regulated AMPs, and have significantly lower expression in strains infected with High type DiNV

compared to Low types. The remaining 20 genes all have similarity to genes associated with cell

cycle regulation, actin regulation and tumor suppression genes.

Identifying genes associated with viral titer in Drosophila innubila
As the logarithm of viral titer was normally distributed (Shapiro-Wilk test W = 0.05413,

p-value=0.342), we used PLINK (Purcell et al., 2007) to associate nucleotide polymorphism to loga-

rithm of viral titer in infected samples. We first generated a relationship matrix for the viral samples

using PLINK. This kinship matrix allows us control for pairs of individuals who, on average, have simi-

lar alleles and which, on average, have dissimilar values. We then fit a linear model in PLINK includ-

ing population, sex, Wolbachia presence, the date of collection and the distance matrix for

relationship of each sample (inferred using PLINK, shown as relationship[strain]).

Before performing the association study, we removed host SNPs found in fewer than five samples

and merged SNPs in perfect linkage within 10kbp of each other, filtering down from 5283 viral poly-

morphisms to 1403 viral polymorphisms. We then identified associations between the logarithm of

viral titer and the frequency of the viral polymorphism in each individual sample, resulting in the fol-

lowing model:

Log10 viral titreð Þ~ SNPþ hsþwþ pþ dcþ SNP � hsð Þþ
SNP � pð Þþ SNP �wð Þþ relationship strain½ �

Where hs = host sex, p=population of collection, w = Wolbachia presence, dc = date collected,

relationship[strain]=distance matrix. Following model fitting, performed a posthoc analysis to deter-

mine if any clumped SNPs were significant and if they should be assessed separately, we also identi-

fied covariates which seemed to show little or no effect on viral titer (p-value>0.1) using an ANOVA

in R (R Development Core Team, 2013), and removed these, refitting the model. This was done

step-wise, resulting in the following model:

Log10 viral titreð Þ~ SNPþ hsþ pþ SNP � hsð Þþ relationship strain½ �

Following this we also performed an association study using PLINK (Purcell et al., 2007) in the
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host, using previously called host variation, and considering viral haplotype as an additional covari-

ate. Before we performed this analysis, we clumped SNPs that are strongly linked (r2 >0.99) within

10kbp of each other.

Log10 viral titreð Þ~ SNPþ hsþ pþ SNP � hsð Þþ vhþ relationship strain½ �

Whereas previous, and with vh = viral haplotype. Using GOrilla (Eden et al., 2009), we found no

gene categories enriched in the significant SNPs (Figure 4—figure supplement 3).

We repeated this analysis for DiNV variants in D. azteca and D. falleni separately. We performed

the association study twice, first using the original model, then including viral haplotype as an addi-

tional covariate.

Because we are performing multiple correlated tests, we next determined the genome-wide sig-

nificance threshold for the association between a SNP and the viral titer by permutation. We per-

muted the viral titer information randomly across samples and repeated the genome-wide

association studies as described above. We recorded the minimum p-value across the genome from

1000 permutations to generate a null distribution. To identify if the SNPs involved in the High type

are more likely to appear together than expected, we again used a permutation test to identify the

frequency that these combinations occur across 1000 permutations, where a P of 0.01 = 7.987812e-

10.

Estimating viral titer using qPCR
Following the identification of the viral haplotype associated with viral titer we sought to determine

the effect of viral haplotypes in actual infections. For 20 samples with fly homogenate, we determine

the viral titer and haplotype following filtration with a 0.22 mM filter.

We performed qPCR for the viral gene p47 (Forward 5-TCGTGCCGCTAAGCATATAG-3, Reverse

5-AAAGCTACATCTGTGCGAGG-3) on 1 mL of fly filtrate per sample and compared the estimated

Cq values across three replicates to estimated viral copy number to confirm viral concentration (pro-

tocol: 2 min at 95˚C, 40 cycles of 95˚C for 30 s and 59˚C for 20 s, followed by 2 min at 72˚C). Follow-

ing this we diluted samples to similar Cq values, relative to the sample with the highest Cq value.

We confirmed this by repeating qPCR with p47 primers of 1 mL of each sample.

For each filtrate sample we performed infections on 30 D. innubila males 4–5 days following

emergence using pricks with sterile needles dipped in viral filtrate. We recorded survival of each fly

each day and removed dead flies. Finally, we took samples 1, 3, and 5 days post infection and mea-

sured viral copies of p47 relative to tpi at each time point.

Phylogeography of DiNV infection and the evolution of the different
viral haplotypes
For each DiNV-infected D. innubila sample, we reconstructed the consensus DiNV genome infecting

them using GATK AlternateReferenceMaker and the VCF generated for each strain (McKenna et al.,

2010; DePristo et al., 2011). We used BEAST2 with the SkyLine package (Stadler et al., 2013) to

build the phylogeny of DiNV genomes using 100 million iterations with a burn in of 1 million, sam-

pling every 1000 trees (Bouckaert et al., 2014). After generating a set of phylogenies in BEAST2,

we checked that convergence had occurred across the samples using Tracer and generated a final

consensus phylogeny using TreeAnnotator (Bouckaert et al., 2014). For each High type SNP, we

reconstructed the evolution of the SNP as character states across the BEAST2 phylogenies to infer

the SNP appearance order. We used the all different rates (ARD) discrete model in APE

(Paradis et al., 2004) on 1000 randomly sampled converged BEAST2 phylogenies to infer SNP

states at each branch and calculated the bootstrap support for the order of appearance for each

mutation in each population. To independently identify recurrent mutations across the DiNV phylog-

eny, we also used TreeTime (Sagulenko et al., 2018). Finally, we created a matrix of SNPs present

in at least two viral samples and used this matrix in a principal component analysis in R

(R Development Core Team, 2013), labeling each sample by their viral type in the PCA (based on

the presence or absence of the significant 19K SNP).
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Simulating the evolution of the high and low viral haplotypes
We sought to simulate the infection of DiNV in D. innubila when considering the evolution of a high

titer viral haplotype, specifically if two viral types can be maintained against each other at stable fre-

quencies, and if the high viral haplotype with five shared mutations could evolve recurrently in the

given time period given realistic parameters. We used the R package DeSolve (Soetaert et al.,

2010) to simulate infection dynamics in an SI model. We did not include the resistance class, under

the assumption that flies won’t live long enough to clear the infection. Therefore, the proportion of

population infected per generation is as follows:

dInfected

dTime
¼ Susceptible � Infected � bð Þ� Infected � gð Þ

Where b = infection parameter (e.g. the increased likelihood an infected individual spreading its

infection before dying) and g = virulence parameter (e.g. the increased likelihood an infected individ-

ual has of dying before it can spread its infection). Infected = The proportion of the population

infected with DiNV.

Susceptible = the proportion of the uninfected population.

We attempted to assess if the ‘high titer’ viral haplotype could possibly evolve recurrently in each

population in the time scale seen in our findings. We again used the SI model, this time discrete with

population sizes set to 1 million individuals, based on StairwayPlot estimates (LIU AND FU 2015), start-

ing with 1 infected individual (1/Ne). We reasoned that if the wait time between beneficial mutations

is 1/(2Ne*u*s), and increasing viral titer also increases Ne, then the increased titer also decreases the

wait time between the appearance of mutations. For each infected individual in the population, we

tracked the viral titer and also recorded the presence of absence of five mutations, with each muta-

tion increasing the titer of infection, but each further mutation having successively smaller increases

in viral titer (titer
ffiffiffiffiffiffiffiffiffiffiffiffi

no: muts
p

), representing the epistatic interaction of high titer associated mutations

seen in the viral haplotype. Viral titer did not increase if a mutation occurs before the preceding

mutation was present occurred, to matching the order of appearance of mutations seen in DiNV. In

all simulations, we assumed 5 viral generations per year, based on the assumption of 5 host genera-

tions per year being the minimum number of viral generations (likely much higher), and so useful to

conservatively estimate the amount of time required for the recurrent evolution of the High type.

In the simulations, we multiplied the infection parameter, mutation parameter and virulence

parameter by viral titer, under the assumption that viral titer increases both infection and death rate,

and the mutation rate is per viral particle (Maeda et al., 1993; Kamita et al., 2003). We considered

a per site mutation rate of 10�6 mutations per generation, based on estimated baculovirus mutation

rate (Rohrmann, 2013; Chateigner et al., 2015), with a specific mutation rate for each of the high

titer variants of 3.3e-7 (1e-6 mutations per base per generation * 1/3 for the correct mutation) * viral

titer, where each mutation occurs independently (so all five could arise in one generation at a rate of

(3.3e-7)5 = 4.12e-33). We then simulated populations in replicate 1000 times for 100,000 generations

with a starting infection frequency of 10% for the ‘low titer’ haplotype, recording the frequency of

the virus in a population, the frequency of the haplotype and the time that each ‘high titer’ mutation

reaches high enough frequency to escape stochastic behavior and behave deterministically under

selection (Gillespie, 2004). We also factored in recombination between each variant site a rate of

2% per site-window per generation (Kamita et al., 2003). Specifically, we randomly paired viral

genomes and in 2% of pairs we randomly recombined the variant combinations. We did not increase

recombination rate as titer increased as this was not observed in nature (Kamita et al., 2003).

To estimate the possible selection coefficient for DiNV in the CH population, we assumed an

exponential distribution and five host generations per year (80 host generations between 2001 and

2017). We then solved the following equation:

P2017 ¼ P2001 � 1þ sð Þt

Where P2017 = the frequency of the High type among viral samples in 2017 (71%), P2001 = the fre-

quency of the High type among viral samples in 2001 (52%), s = the selection coefficient and t = the

number of generations (80). We then used this estimated selection coefficient in the same equation

to find the number of generations (t) to go from 1/2Nes (0.0000714, assuming an Ne of 1000000) to

fixation (0.99):
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0:99¼ 0:0000714 � 1þ 0:0055ð Þt

Experimental infections of Drosophila innubila with DiNV
We chose D. innubila samples infected with DiNV and with sequenced genomes, four infected with

the High type DiNV and four infected with the Low type. For these samples we estimated their viral

copy number per host genome as described previously. We used qPCR on p47 and tpi to find the

differences in Cq values to calculate the concentration of each sample relative to the lowest concen-

tration sample and diluted 50 mL of filtrate for each sample to match the concentration of each sam-

ple to the samples with the lowest titer (IPR07). For a separate 50 mL of the IPR01 sample, we

performed 1 in 10 serial dilutions to give 45 mL of filtrate at full concentration, 1 in 10 concentration,

1 in 100 concentration and 1 in 1000 concentration. Using these sets of samples (matched titer and

serial dilutions) we next performed experimental infections.

We transferred 50 D. innubila (of roughly equal sex ratio) to new food and let them lay eggs for 1

week, following this we collected male offspring aged 2–5 days for experimental infections.

Across four separate days in the mornings (between 9am and 11am), we infected the collected

male flies with each sample. For flies in batches of 10, we performed pricks with microneedles

dipped in the prepared viral filtrate. For each day we also had two control replicates of 10 flies

pricked with microneedles dipped in sterile media. Following infections, we checked on each vial of

10 flies one-hour post infection and removed dead flies (likely killed by the needle instead of the

virus). We also checked each vial each morning for 15 days, removing dead flies (freezing to deter-

mine the viral titer), and flipping flies to new food every 3–4 days. Checking at 10am each day, we

recorded the day that each fly died, what filtrate they had been infected with, and what replicate/

infection day set they belonged to. We next looked for differences in survival over time compared to

sterile wound controls using a Fit proportional hazards regression model in R (R Development Core

Team, 2013; Kassambara et al., 2017), considering titer, viral isolate (nested in haplotype) and rep-

licate/vial as co-variates (day of death ~ [titer or haplotype | strain] + infection date).

For a second set of experimental infections (performed as described above, stabbed with diluted

filtrate from different strains), we also removed three living flies 1 hr, 1 day, and 5 days post infec-

tion. Using qPCR, we found the difference in p47 log-Cq and tpi log-Cq to estimate the viral copy

number for each sample over time.
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