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Extending schizophrenia diagnostic model to predict
schizotypy in first-degree relatives
Sunil Vasu Kalmady 1,2✉, Animesh Kumar Paul1,3, Russell Greiner1,3,4, Rimjhim Agrawal5, Anekal C. Amaresha6,
Venkataram Shivakumar7,8, Janardhanan C. Narayanaswamy5,7, Andrew J. Greenshaw 4, Serdar M. Dursun4 and
Ganesan Venkatasubramanian5,7✉

Recently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and
healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-
state functional magnetic resonance imaging. In this study, we apply this learned model to first-degree relatives of schizophrenia
patients, who were found to not have active psychosis or schizophrenia. We observe that the participants that this model classified
as schizophrenia patients had significantly higher “schizotypal personality scores” than those who were not. Further, the “EMPaSchiz
probability score” for schizophrenia status was significantly correlated with schizotypal personality score. This demonstrates the
potential of machine-learned diagnostic models to predict state-independent vulnerability, even when symptoms do not meet the
full criteria for clinical diagnosis.
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INTRODUCTION
Genetic inheritance plays a strong role in the etiology of
schizophrenia, representing ~80% of the liability for the illness,
based on numerous twin and adoption studies1–3. Recent studies
demonstrated that first-degree relatives of schizophrenia patients
are more likely to exhibit associated intermediate phenotypes or
“endophenotypes”, than the general population, even when they
do not (or do not yet) present with a full set of clinical symptoms4.
Numerous endophenotypes have been proposed in schizophre-
nia, including brain structural or functional patterns, sensory
processing measures, neuromotor and neuropsychological mea-
sures, minor physical anomalies5,6. As such endophenotypic
signatures can enable prediction systems that are neurobiologi-
cally consistent, it is important to investigate how such popula-
tions would be classified by a machine-learned model that is
capable of distinguishing schizophrenia from healthy controls
based on resting-brain activation patterns. Moreover, such
explorations can shed light on the role of machine-learning
models in identifying clusters of personality traits or subclinical
symptoms in the general population. Motivated by this idea, this
study examines whether a schizophrenia diagnosis model, learned
using schizophrenia and normal functional magnetic resonance
imaging (MRI) data sets, can identify higher schizotypal scores in
first-degree relatives without schizophrenia.
Schizophrenia spectrum disorders (SSD) present a challenge in

categorizing disease phenotypes, owing to a wide range of
overlapping symptoms and the heterogeneous illness course at
the individual level. The origin, development, and heterogeneity
of SSD can be understood through the concept of “schizotypy”7,
which is a multidimensional construct that encompasses several
facets of personality organization, spanning from healthy variation
to psychotic disorder8. Understanding the components of

schizotypy holds great potential for early diagnosis and under-
standing of disease processes in SSD9. In recent years, several
studies have examined neural correlates of schizotypy using
resting-state fMRI (Supplementary Table 1). Further, there is
increased interest in learning models from functional neuroima-
ging to predict schizotypy–with unfortunately limited general-
izability owing to small training samples and lack of independent
validation (for review, see ref. 9).
The current study explores an alternative approach for

predicting the degree of schizotypal expression in unaffected
first-degree relatives of schizophrenia patients. We applied the
machine-learned diagnostic model that was trained on an
independent resting-state fMRI data set of 81 antipsychotic-
naive schizophrenia patients and 93 healthy controls. Given the
strong evidence for familial aggregation of higher schizotypy
expression in SSD10, we hypothesize that the first-degree relatives
who were predicted by the model to have “schizophrenia” status,
i.e., false positives (FP) will have significantly higher schizotypal
scores, versus those who are predicted as non-schizophrenia
status, i.e., true negatives (TN) by machine learning.
This model classified 14 out of 57 subjects as FP, whereas the

remaining 43 were classified as TN, based on the default
threshold level of schizophrenia prediction probability >0.5. We
found that the FP group had a significantly higher total
Schizotypal Personality Questionnaire—Brief (SPQ-B)11 score
than that of TN (two-tailed t= 2.67, p= 0.01, Fig. 1a); similarly,
there was a significant positive correlation between the
probability of schizophrenia class and total SPQ-B score
(Pearson’s r= 0.28, p= 0.03, Fig. 1b). FP and TN subjects did
not differ significantly on age (two-tailed t= 1.02, p= 0.31) or
sex distribution (χ2= 0.32, p= 0.57).
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To understand the effect of this machine classification further
in relation to the latent structure of the SPQ-B questionnaire, we
conducted a principal component analysis (PCA) of the 22 SPQ
items. Figure 1c shows the biplot of two components of PCA (PC1
and PC2) along with the loadings of individual items as
numbered arrows and the ellipses corresponding to FP or TN
groups. In general, we observed that FP tended to show higher
scores on PC1 comprising of items such as “unable to get close to
people” (item-18), “people find me aloof and distant” (item-1),
“often pick up hidden threats” (item-9) and “tend to keep my
feelings to myself” (item-22); strikingly, these items relate more
towards the negative schizotypy12,13. Review of studies on factors
predicting the psychosis conversion suggests these items are
amongst the significant predictors14. We have provided the full
and summarized data on demographic, SPQ-B and the Structured
Interview for Psychosis-risk Syndromes (SIPS)15 scores for the
study participants (Supplementary Data 1 and 2, Supplementary
Table 2) as well as some information on normative SPQ scores
(Supplementary Table 3).
Schizotypy, especially the negative component13 is considered

as a marker of vulnerability for schizophrenia that runs within
families10. Furthermore, it provides a useful framework to
investigate the etiological factors of SSD16. This study, for the
first time, demonstrates a cross-application of a machine-learned
schizophrenia diagnostic model in identifying subjects with high
levels of negative schizotypy. However, whether similar prediction
performance holds for a larger population without familial
association remains to be explored. Further application of this
approach holds significant promise for exploring related and
comorbid symptom clusters in psychiatry.

METHODS
Subjects
This study examined 57 first-degree relatives of schizophrenia patients (M:F
= 42:15) based on the following inclusion and exclusion criteria. We included
siblings or children of schizophrenia patients, without any axis-1 disorder as
evaluated by the Mini International Neuropsychiatric Interview (MINI) Plus17.
Probands of these participants were patients attending the clinical services
of the National Institute of Mental Health & Neurosciences (NIMHANS), India,
who fulfilled DSM-IV criteria for schizophrenia. The SIPS scale15 was
administered to ascertain that these participants were unaffected by active
psychosis. All except two subjects met criteria for “Genetic Risk and
Deterioration Prodromal Syndrome”, while one subject met criteria for
“Attenuated Positive Symptom Prodromal Syndrome” and another for “Brief
Intermittent Psychotic Symptom Prodromal Syndrome”. We recruited only
right-handed subjects to avoid potential confounds of differential

handedness. No study subjects had contraindications to MRI or medical
illness that could significantly influence brain structure/function, such as
seizure disorder, cerebral palsy, or history suggestive of delayed develop-
mental milestones. There was no history suggestive of DSM-IV psychoactive
substance dependence or of head injury associated with loss of conscious-
ness longer than 10min. No participant had abnormal movements as
assessed by the Abnormal Involuntary Movements Scale. Pregnant or
postpartum females were not included. The age range was 17–38 years
(27.2 ± 5.25 years). A 22-item self-reported screening measure of schizotypal
personality traits—Schizotypal Personality Questionnaire—Brief (SPQ-B)11—
was used to assess the schizotypal personality score as an estimator of
schizotypal expression for each participant (range of total score: 0–22). The
catchment area for the subject recruitment involved the southern states of
India. We obtained informed written consent after providing a complete
description of the study to all the subjects. The NIMHANS ethics committee
reviewed and approved the original research protocol. The Research Ethics
Board at the University of Alberta, Edmonton approved the secondary
analysis of archived data.

Image acquisition
MRI was done in a 3.0 Tesla scanner (Magnetom Skyra, Siemens). Resting-
state fMRI: blood oxygen level dependent-sensitive echo-planar imaging
was obtained using a 32-channel coil for a duration of 5 min 14 s, yielding
153 dynamic scans. The scan parameters were: TR= 2000msec; TE= 30
msec; flip angle= 78 degrees; slice thickness= 3mm; slice order:
descending; slice number= 37; gap= 25%; matrix= 64 × 64 × 64mm3,
FOV= 192 × 192, voxel size= 3.0 mm isotropic. Subjects were asked to
keep their eyes open during the scan. For intra-subject co-registration,
structural MRI: T1 weighted three-dimensional high-resolution MRI was
performed (TR= 8.1 msec, TE= 3.7 msec, nutation angle= 8 degree, FOV
= 256mm, slice thickness= 1mm without inter-slice gap, NEX= 1, matrix
= 256 × 256) yielding 165 sagittal slices.

Image pre-processing
We visually inspected the acquired images for artifacts such as incomplete
brain coverage or ghosting; then re-orientated the origin to the anterior
commissure in structural MRI and fMRI images. Then, for each subject, we
discarded the first 10 volumes of each functional time-series before
reaching steady magnetization and for allowing participants to adapt to
scanning noise. Images were then pre-processed with slice-timing
correction and image realignment to correct for motion. Functional
images were co-registered with the structural image and then normalized
to MNI space resampled to 3 × 3 × 3mm3. Further, we performed nuisance
regression to denoise signal induced by head motion using 24 regressors
derived from the parameters estimated during motion realignment,
scanner drift using a linear term, as well as global fMRI signals from white
matter and cerebrospinal fluid segments using SPM’s new segment
method18. Finally, we smoothed, detrended and band-pass filtered
(0.01–0.08 Hz) the normalized images. Software packages used for pre-
processing and feature extraction are Statistical parametric mapping

Fig. 1 Relationship between schizophrenia prediction and SPQ-B score. a Bar graph shows significant mean difference in SPQ-B between
predicted groups (error bars indicate standard error of mean); b scatter plot shows positive correlation between schizophrenia prediction
probability and SPQ-B (gray band indicate 95% confidence interval); c PCA biplot with scores for study participants in predicted groups
overlaid with loadings indicating influence of individual SPQ-B components on the principal components 1 and 2.
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(SPM8, http://www.fil.ion.ucl.ac.uk/spm), Data Processing Assistant for
Resting-State fMRI19, and nilearn python package20.

Machine-learned prediction
We applied the learned EMPaSchiz model21 to classify each participant
either as schizophrenia patient, i.e., FP or healthy individual, i.e., TN; and
examined if there is a class difference, between the FP and TN individuals,
in the distribution of SPQ-B11 scores. Note that none of the subjects in this
study were in the training set used to produce the EMPaSchiz model (as a
schizophrenia patient or healthy control).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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