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Background: Genetic deficiency of the muscle CLC-1 chloride channel leads to myotonia,
which is manifested most prominently by slowing of muscle relaxation. Humans experi-
ence this as muscle stiffness upon initiation of contraction, although this can be overcome
with repeated efforts (the “warm-up” phenomenon).The extent to which CLC-1 deficiency
impairs exercise activity is controversial. We hypothesized that skeletal muscle CLC-1
chloride channel deficiency leads to severe reductions in spontaneous exercise. Method-

ology/Principal Findings: To examine this quantitatively, myotonic CLC-1 deficient mice
were provided access to running wheels, and their spontaneous running activity was quan-
tified subsequently. Differences between myotonic and normal mice in running were not
present soon after introduction to the running wheels, but were fully established during
week 2. During the eighth week, myotonic mice were running significantly less than normal
mice (322 ± 177 vs 5058 ± 1253 m/day, P = 0.025). Furthermore, there were considerable
reductions in consecutive running times (18.8 ± 1.5 vs 59.0 ± 3.7 min, P < 0.001) and in the
distance per consecutive running period (58 ± 38 vs 601 ± 174 m, P = 0.048) in myotonic
compared with normal animals. Conclusion/Significance: These findings indicate that
CLC-1 chloride deficient myotonia in mice markedly impairs spontaneous exercise activity,
with reductions in both total distance and consecutive running times.
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INTRODUCTION
There is a diversity of chloride channels in mammalian tissues,
including (a) CLC chloride channels, which are often voltage gated,
(b) GABAA and glycine receptors, which are ligand gated, and
(c) the cystic fibrosis transmembrane conductance regulator. The
CLC chloride channel family in turn consists of many subtypes,
including CLC-1 through CLC-7 plus CLC-Ka and CLC-Kb. These
channels differ in cellular location, with CLC-1, CLC-2, CLC-Ka,
and CLC-Kb residing on the plasma membrane, and the others on
intracellular membranes. Genetic defects in these channels cause a
number of human diseases, including myotonia congenita, Bartter
syndrome III, Dent’s disease, osteopetrosis, and possibly seizures
(Jentsch et al., 2005).

CLC-1 is found predominantly in skeletal muscle (Steinmeyer
et al., 1991a). Myotonia congenita in humans results from over 80
different mutations in the CLCN1 gene on chromosome 7. Two
clinical forms are recognized, autosomal dominant Thomsen’s
and autosomal recessive Becker’s myotonia congenita (Koch et al.,
1992; Ptacek et al., 1993; Kleopa and Barchi, 2002; Pusch, 2002;
Jentsch et al., 2005; Puljak and Kilic, 2006). Mutations of this gene
with impaired CLC-1 chloride channel function are also found
in goats and mice (Heller et al., 1982; Watkins and Watts, 1984;
Mehrke et al., 1988; Reininghaus et al., 1988; Steinmeyer et al.,
1991b; Gurnett et al., 1995; Beck et al., 1996; Jentsch et al., 2005).
Reduced chloride channel conductance leads to membrane hyper-
excitability, which in turn leads to repetitive electrical discharges

following muscle activation. The net result is a slowing of muscle
relaxation as a result of the continued electrical activity (Entrikin
et al., 1987; Reininghaus et al., 1988). The myotonia diminishes
with repeated muscle contractions, but returns quickly following
a period of inactivity (Entrikin et al., 1987; van Lunteren et al.,
2004). In humans this is experienced as increased muscle stiff-
ness which interferes with exertion. Goats with myotonia develop
intermittent muscle stiffening causing them to fall over especially
after being startled, whereas mice demonstrate a prolonged stiff leg
extensor posture after shaking the cage or dropping the animals
from a small height. Some but not all studies have also reported
weakness in the intact animal as well as impaired muscle contrac-
tile performance when studied experimentally (Heller et al., 1982;
Watkins and Watts, 1984; Entrikin et al., 1987; Reininghaus et al.,
1988; van Lunteren et al., 2007a,b).

The extent to which CLC-1 chloride channel deficiency affects
exercise performance is controversial. Descriptions of human dis-
ease typically mention impairment of exercise performance, in
particular at or near the onset of exercise, although there are
also reports of subjects who engage in vigorous exercise (Entrikin
et al., 1987; Burnham, 1997; Weinberg et al., 1999; Stimson, 2001;
Colding-Jorgensen, 2005) – however controlled quantitative data
are scant. The original report of myotonic mice notes that the
animals walk almost normally, albeit more slowly and slightly
stiffly, and are able to swim albeit with some degree of hindleg
uncoordination; only when placed in an ice-water bath does the
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impairment in swimming become prominent, although quanti-
tative data are lacking (Heller et al., 1982). In contrast, there is
one quantitative study which documented a very large (60–65%)
reduction in spontaneous locomotor activity of myotonic mice
while in a cage (Heimann et al., 1988). The latter data, however,
most likely reflects predominantly low distance walking rather
than moderate to high distance walking and running. Based on
the above information, it is unclear whether CLC-1 deficiency
has mild or severe adverse effects on exercise activity. The pur-
pose of the present study was to test the hypothesis that skeletal
muscle CLC-1 chloride channel deficiency leads to severe impair-
ments in spontaneous exercise, which was tested in myotonic mice
by assessing voluntary wheel running. Voluntary wheel running
was chosen as the model for a moderate to high amount of exer-
cise because normal rodents typically spontaneously walk and run
∼4–10 km/day when provided access to running wheels (Dupont-
Versteegden et al., 1994; Carter et al., 1995; Hayes and Williams,
1996; van Lunteren and Moyer, 2003; van Lunteren et al., 2004).
Furthermore, as noted previously, descriptions of the manifes-
tations of the myotonia differ among humans, goats, and mice.
In contrast, voluntary walking and running is a form of exercise
that is common to both mice and humans, so that the find-
ings in myotonic mice will be directly applicable to humans with
myotonia congenita.

MATERIALS AND METHODS
All studies were approved by the Institutional Animal Care and
Use Committee at the Cleveland Department of Veterans Affairs
Medical Center (Cleveland, OH, USA), and performed in accor-
dance with NIH animal care guidelines. Male homozygous (−/−)
myotonic mice (SWR/J-Clcn1adr/mto/J; −/−; n = 3) and pheno-
typically normal control animals (± or +/+; n = 4) were obtained
from Jackson Laboratories (Bar Harbor, ME, USA). Throughout
their lifetime heterozygous (±) mice are behaviorally indistin-
guishable from homozygous (+/+) normal controls; furthermore,
the electrical activity of heterozygotes can not be distinguished
from homozygous normal controls (Heller et al., 1982). Thus
many studies of myotonic mice group heterozygous (±) and
homozygous (+/+) mice together as controls (Heller et al., 1982;
Fuchtbauer et al., 1988; Mehrke et al., 1988; Goblet and Whalen,
1995; Kramer et al., 1998; van Lunteren et al., 2007a,b), sim-
ilar to the present study. At the time of entry into the study
the animals were 5–6 weeks old. Animals were kept in a 12:12
light:dark cycle. Assessment of spontaneous running was done
using standard size polycarbonate living chambers which con-
tained running wheels (van Lunteren and Moyer, 2003; van Lun-
teren et al., 2004). The running wheels were equipped with a
magnetic counter, the output of which was sent to a PC-type com-
puter (Lafayette Instruments, Lafayette, IN, USA). This allowed
quantification of the number of revolutions, and multiplying this
by the circumference of the running wheels provided measure-
ments of distance. The animals spent 8 weeks in running wheel-
equipped housing, and were given ample access to food and water
24 h/day. All animals were housed singly while their running was
assessed.

Recordings of the number of rotations of each running wheel
were performed 24 h/day for the entire 8 week period. The total

distance each animal ran per day was initially calculated. The
approach used in previous studies (Hara et al., 2002; van Lun-
teren et al., 2004) of identifying active running times was adopted;
specifically any 10 min interval during which the animals ran
enough to produce at least one rotation of the wheel was defined
as an active running period. Higher thresholds for defining
active running times were also examined (see Results). Aver-
age consecutive running times were calculated from the num-
ber of 10 min periods in a row during which the animals ran.
Thus the consecutive running time indicates the total dura-
tion of time during which the animals ran enough to produce
at least the pre-defined minimum number of wheel rotations
during each 10 min interval, and does not imply that the ani-
mals ran without stopping the entire time (Hara et al., 2002;
van Lunteren et al., 2004). In previous studies of normal rats
we found that when animals are provided access to a running
wheel, they gradually increase their running distance over the
course of 3–5 weeks and then remained relatively stable there-
after (van Lunteren and Moyer, 2003; van Lunteren et al., 2004).
Statistical analysis was performed with the unpaired t -test for
comparisons of two data sets. Analysis of variance, followed by the
Student-Newman–Keuls test in the event of a significant analy-
sis of variance result, was used for statistical testing of multiple
data sets. A P value of <0.05 (two-tailed) was chosen to indicate
significance.

RESULTS
The myotonic mice used for the running studies weighed consider-
ably less than the wild type mice (12.7 ± 0.3 vs 25.5 ± 0.3 g), as has
also been noted in previous studies of this mouse model (Heller
et al., 1982; Heimann et al., 1988; van Lunteren et al., 2007a).
Delayed muscle relaxation during isometric contractions was ver-
ified in previous muscle contractile studies of CLC-1 chloride
channel-deficient myotonic animals (Heller et al., 1982; Heimann
et al., 1988; Mehrke et al., 1988; Reininghaus et al., 1988; van
Lunteren et al., 2004, 2007b).

RUNNING ACTIVITY AT 8 WEEKS
Examples of the temporal pattern of running over the course of
each day during the eighth week are depicted in Figure 1. Both
normal and myotonic mice did the vast majority of their wheel
running between 8 pm and 8 am, as expected for nocturnal ani-
mals. Normal mice almost always ran for multiple consecutive
10-min periods, typically 15–20 consecutive periods at the onset
of the night, and then fewer consecutive periods as the night went
on. In contrast, myotonic mice only ran only a few times per night,
and for short periods of time per episode (typically no more than
three consecutive 10-min periods).

Data were obtained and averaged for all 7 days of the eighth
week of running (Figure 2). Normal mice ran significantly fur-
ther per day than myotonic mice (Figure 2A). In addition, all
normal animals averaged more than 1300 m/day (with most run-
ning in excess of 5000 m/day), whereas all myotonic mice averaged
less than 700 m/day. The mean consecutive running time was sig-
nificantly shorter for myotonic than normal mice (Figure 2B).
Changing the threshold for defining the consecutive running time
from at least one revolution to a higher value did not change
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FIGURE 1 | Example of running behavior of a normal and myotonic mouse during all of week 8. The distance run is quantified for each 10 min interval as a
function of time during the day. Each day depicted is from 8 am one morning until 8 am the following morning.

the finding of shorter consecutive running times in myotonic
compared with control animals, as depicted in Figure 2C for a
threshold of 3 m/10 min interval. Similarly, the average consecu-
tive running distance (defined as the total distance run during each
consecutive running period) was lower for myotonic than control
mice (Figure 2D).

TIME COURSE OVER WHICH CHANGES IN RUNNING OCCURRED
The time course of changes in running distance of normal and
myotonic mice over the 8-week period is depicted in Figure 3A.
During the first few days of access to the running wheels, the nor-
mal mice gradually increased the amount of running. At 2 weeks
the animals averaged >4 km/day, and this distance was maintained
thereafter (albeit with a slight downward trend). In contrast, the
myotonic mice did not increase the running distance from the first

few days to later time periods. Running distances were significantly
greater for normal than myotonic mice at 2, 4, and 8 weeks.

The above temporal patterns seen with total running dis-
tance were also noted for consecutive running time (Figure 3B).
Myotonic mice had significantly lower consecutive running times
than normal mice at 2, 4, and 8 weeks, but not at 2–3 days.

DISCUSSION
The present study found substantial reductions in spontaneous
exercise activity of myotonic mice. Not only was the total distance
run per day reduced substantially, but the animals ran for shorter
consecutive durations, and for shorter distances each time they
ran. Furthermore, normal mice gradually increased the running
distance and consecutive running times when first provided access
to the running wheels, whereas myotonic mice did not.
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FIGURE 2 | Running parameters are compared for normal and myotonic

mice during all of week 8. Data are depicted for individual animals (small
circles) as well as mean values for each group of animals (±SE). Asterisks
indicate statistical significance between normal and myotonic mice
(*P = 0.048, **P = 0.025, ***P < 0.001). (A) Total running distances per day;

(B) average consecutive running times based on any running at all during the
10 min period; (C) average consecutive running times quantified based on the
animals having to have run at least 3 m during the 10 min period to be
considered as having run; (D) average consecutive running distances based
on any running during the 10-min period.

One issue about the design of the present study is the use of rel-
atively small sample sizes of three myotonic mice and four normal
mice. Large differences in running distances and times were noted
between myotonic and normal animals which greatly exceeded
variability in values within each group, resulting in statistically
significant findings. Calculations were performed on the 8-week
data to determine whether the study was adequately powered to
have at least an 80% chance of detecting significant differences
at a P < 0.05 level. The following power values were found: 96%
for average running distance, 100% for average consecutive run-
ning time with no threshold, 89% for average consecutive running
time with a 3-m threshold, and 86% for average distance per
running period. Thus power analysis indicates that the sample
sizes were indeed adequate to statistically detect the large dif-
ferences in running parameters between myotonic and control
mice.

Many descriptions of exercise capacity in humans with myoto-
nia congenita are qualitative rather than quantitative (Ptacek
et al., 1993; Burnham, 1997; Weinberg et al., 1999; Stimson, 2001;
Colding-Jorgensen, 2005) or compare myotonic subjects before

and after an intervention rather than myotonic vs normal subjects
(Birnberger et al., 1975; Hammaren et al., 2005). Impaired ability
to perform athletic activities is described frequently, in particu-
lar for strenuous activities. On the other hand, various degrees of
impairment can be overcome by engaging in a suitable antecedent
warm-up period, and furthermore the time course over which
myotonia dissipates is considerably faster than the time course
over which fatigue develops during high intensity repetitive con-
tractions (van Lunteren et al., 2011). As a result, some subjects
with myotonia congenita are able to engage successfully (albeit not
always fully normally) in strenuous athletic activities (Burnham,
1997; Weinberg et al., 1999; Stimson, 2001; Colding-Jorgensen,
2005).

Heller et al. (1982) noted that the animals walk almost normally,
but on closer inspection their gait is slightly “stiff” and walk-
ing is slower than unaffected littermates. Subsequently Entrikin
et al. (1987) described a stiffed-legged hindlimb gait. Heimann
et al. (1988) video-recorded mice while on a plane surface,
and found that the relative reduction in spontaneous activity
of myotonic mice (60–65%) was greater than the magnitude of
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FIGURE 3 | Changes in average daily running distances (A) and average

consecutive running times (B) for normal and myotonic mice as a

function of time after being provided access to the running wheels.

The 2, 4, and 8-week data were quantified during the last 2 days of the
week. Asterisks (*) indicate significant differences between normal and
myotonic mice.

reduced activity (50–55%) seen in dystrophin-deficient mdx dys-
trophic mice (an animal model of human Duchenne muscular
dystrophy).

Although the running activity of myotonic mice has not been
reported previously, that of dystrophin-deficient mdx dystrophic
mice has been quantified. Dupont-Versteegden et al. (1994) found
that control mice ran ∼7 km/day whereas mdx dystrophic mice
ran ∼5 km/day. Carter et al. (1995) found no significant run-
ning deficit in the young (4 week old) dystrophic mice but a
50–70% reduced distance run in adult (6 month old) dystrophic
mice. Hayes and Williams (1996) found average running dis-
tances of 30 km/week in mdx dystrophic mice and 45 km/week
in control mice. The present study found that myotonic mice
had deficits in running distance of ∼85–90%, thus exceeding the
above reported reductions seen in mdx mice. Hayes and Williams
(1996) also reported on the running behavior of α2-laminin-
deficient dy/dy dystrophic mice (an animal model of human classic
congenital muscular dystrophy). The dy/dy mice have greater gen-
eralized weakness than mdx mice (Carter et al., 1995; Jentsch
et al., 2005), and this was reflected in very large impairments
of running distance (80–95%). Therefore the running activity
deficit of myotonic mice is comparable to that of dy/dy dystrophic
mice.

Hara et al. (2002) found shortened continuous running times
in the mdx dystrophic compared with control animals (20–30 vs

50–80 min, depending on age). A running endurance abnormal-
ity also occurs in streptozotocin-induced diabetes, with average
values at 8 weeks of 16 and 40 min in diabetic and normal rats,
respectively (van Lunteren et al., 2004). In the present study, the
deficit in the average consecutive running time of the myotonic
animals was in the 60–70% range, and thus comparable in magni-
tude to the deficits seen in both mdx dystrophic mice and diabetic
rats.

Several mechanisms may contribute to the impaired running
activity (present study) and activity levels (Heimann et al., 1988)
of the myotonic mice. First, the myotonic mice were smaller than
the normal mice despite comparable ages, in agreement with pre-
vious reports of this mouse model (Heller et al., 1982; Heimann
et al., 1988; van Lunteren et al., 2007a). Reduced weight due to
fat loss should improve running, whereas reduced weight due to
sarcopenia should reduce running. Second, it is possible that the
animals did not want to run instead of that they could not run,
similar to what has been reported with hormonal interventions.
Steinmeyer et al. (1991a) examined the tissue distribution of CLC-
1 by northern blot analysis. There was a prominent band in skeletal
muscle, but faint bands in kidney, liver, heart, and a smooth muscle
cell line. Thus CLC-1 is found predominantly, but probably not
exclusively, in skeletal muscle making it relatively unlikely that it
could affect a mouse’s motivation to run. Third, the myotonic mice
have substantial electrical and mechanical myotonia as a direct
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effect of the CLC-1 chloride channel loss, as reported previously
(Heller et al., 1982; Heimann et al., 1988; Mehrke et al., 1988;
Reininghaus et al., 1988; van Lunteren et al., 2004, 2007b), and
this certainly will impair muscle performance during intermit-
tent contractions. Fourth, muscle from humans and animals with
myotonia congenita has structural, biochemical, and contractile
alterations which go beyond the direct effects of the markedly
reduced or absent CLC-1 channels. This includes alterations in
fiber type composition and myosin isoform distribution (in par-
ticular loss of type IIB fibers and myosin), down regulation of
parvalbumin, and abnormal expression of myogenic regulatory
factors (MyoD and myogenin; Stuhlfauth et al., 1984; Reininghaus
et al., 1988; Agbulut et al., 2004). In addition, variable degrees
of weakness have been noted in the intact animal (Heller et al.,
1982; Watkins and Watts, 1984), and studies of isolated muscles
have noted impaired performance during the contraction phase
of the contraction–relaxation cycle under both isometric and iso-
tonic conditions (Entrikin et al., 1987; Reininghaus et al., 1988; van
Lunteren et al., 2007a,b). The extent of impairment is consider-
able, for example isometric force is reduced by ∼35–65% whereas
isotonic power and work impairments may exceed 50% (van Lun-
teren et al., 2007a,b). Fifth, there may have been a training response
during the course of the 8-weeks of running in the normal mice
which exceeded that of the myotonic mice. However, both groups
of mice were housed in conventional cages prior to the onset of the
8-week running period, and therefore the early difference between
groups can not be attributed to training responses. Finally, it is
unlikely that pain contributed to differences between groups, as
there was no evidence for the myotonic mice having pain while
running, and we are not aware of pain being a significant issue in
this disease.

It is interesting to consider whether exercise training might
revert the effects of the CLC-1 chloride channel deficiency. The
present data would suggest that little or no mitigation occurs.

If there was an improvement in muscle function with repeti-
tive running one would expect that the myotonic animals should
increase the amount of running during the 8-weeks of study; rather
there was actually a small decrease over time.

The present study used voluntary rather than forced exercise,
and thus assessed the extent to which exercise gets performed on a
regular basis rather than maximum exercise capacity. Forced exer-
cise regimens in rodents typically involve application of noxious or
painful stimuli (e.g., electrical shocks) to ensure that the animals’
effort is maximal. The resultant stress may produce substantial
physiological responses that differ from those of exercise itself. In
contrast, most human exercise is done on a voluntary basis. At
times humans participate in highly structured exercise regimens
during athletic or military training, but frequently exercise per-
formance is encouraged verbally rather than enforced by noxious
or painful stimuli. Therefore, data from a myotonic rodent model
of forced exercise would be less applicable to myotonic humans
than a rodent model of voluntary exercise. On the other hand
forced treadmill running might have allowed us to test whether a
warm-up period improves exercise performance.

In conclusion, CLC-1 chloride channel-deficient myotonic
mice have deficits in spontaneous exercise performance. The mag-
nitude of the deficit is quite large, and in many respects as great as
that seen in animal models of muscular dystrophy. One limitation
of the present study with respect to extrapolating these findings to
humans with myotonia congenita is that myotonia dissipates with
repeated contractions (the “warm-up phenomenon”), and thus it
may be possible for humans with CLC-1 deficient myotonia to
overcome at least part of the exercise deficit by a well-designed
warm-up regimen prior to initiating exercise.
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