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Abstract: Pulmonary arterial hypertension (PAH) sometimes co-exists with hereditary hemorrhagic
telangiectasia (HHT). Despite being clinically diagnosable according to Curaçao criteria, HHT can be
difficult to diagnose due to its clinically heterogenicity and highly overlapping with PAH. Genetic
analysis of the associated genes ACVRL1, ENG, SMAD4 and GDF2 can help to confirm or discard the
presumptive diagnosis. As part of the clinical routine and to establish a genetic diagnosis, we have
analyzed a cohort of patients with PAH and overlapping HHT features through a customized Next
Generation Sequencing (NGS) panel of 21 genes, designed and validated in-house. We detected a
homozygous missense variant in GDF2 in a pediatric patient diagnosed with PAH associated with
HHT and a missense variant along with a heterozygous deletion in another idiopathic PAH patient
(compound heterozygous inheritance). In order to establish variant segregation, we analyzed all
available family members. In both cases, parents were carriers for the variants, but neither was
affected. Our results expand the clinical spectrum and the inheritance pattern associated with GDF2
pathogenic variants suggesting incomplete penetrance and/or variability of expressivity with a
semi-dominant pattern of inheritance.

Keywords: GDF2; hereditary hemorrhagic telangiectasia; pulmonary arterial hypertension; massive
parallel sequencing; NGS; genomic medicine; personalized medicine

1. Introduction

Pulmonary arterial hypertension (PAH) is a severe disease defined as a persistently ele-
vated mean pulmonary artery pressure (mPAP ≥ 20 mmHg) with a mean pulmonary arterial
wedge pressure (PAWP) ≤ 15 mmHg and pulmonary vascular resistance (PVR) ≥ 3 UW [1].
PAH causes progressive right-sided heart failure leading to premature death if it remains
untreated [1,2]. It is known that there is a genetic component that contributes to a pre-
disposition to develop the disease. Pathogenic variants in the gene encoding the bone
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morphogenetic protein type 2 receptor (BMPR2), a receptor for the transforming growth
factor-beta (TGF-β) superfamily, explain approximately 20–25% of idiopathic PAH (IPAH)
cases and 60% of heritable PAH (HPAH) [3–5].

The etiology of PAH is highly heterogeneous, and it occasionally coexists with distinct
clinical entities such as hereditary hemorrhagic telangiectasia (HHT). HHT is characterized
by the presence of epistaxis, mucocutaneous telangiectasias and multiple arteriovenous
malformations (AVMs) in the lung, gastrointestinal tract, liver, brain, nasal mucosa, spine,
and conjunctiva [6]. The AVMs consist of the lack of intervening capillaries and result in
direct connections between arteries and veins [6]. According to the Curaçao criteria [7,8],
the diagnosis of HHT is established in a patient with at least three of the following clinical
features: epistaxis, mucocutaneous telangiectases, visceral AVMs, and/or a family history
of HHT. HHT might be sometimes difficult to be diagnosed because observable manifesta-
tions may be absent until adulthood [9]. Therefore, genetic testing is considered the gold
standard in the pediatric population for patients with a family history of HHT and even
when genetic test results are positive, it will confirm the diagnosis regardless of family
history or symptoms.

Currently, all known genetic defects that cause HHT are found within the TGF-β
signaling pathway. Identification of pathogenic variants in activin A receptor type I-like
(ACVRL1 or ALK1), endoglin (ENG), growth differentiation factor 2 (GDF2, also known as
BMP9 or SMAD9), or SMAD family member 4 (SMAD4) establish a definitely molecular
diagnosis, even if the clinical features are inconclusive. On endothelial cells, BMPR2 and
ACVRL1 participate in a complex signaling in which ENG acts as a co-receptor and SMAD1,
SMAD4 and SMAD9 as signaling intermediaries [10–13]. These results provide further
evidence of the importance of BMP signaling and its dysregulation in the pathogenesis of
PAH and HHT. Pathogenic variants in ENG and ACVRL1, count 80% of the total number
of patients with HHT [14–17]. Also, pathogenic variants in SMAD4 are responsible for a
combined syndrome of juvenile polyposis with or without HHT [MIM# 174900, 175050],
which occurs approximately in less than 2% of the HHT patients [18]. Finally, pathogenic
variants in GDF2 have been described in PAH patients [19–21] and were shown to cause an
HHT-like phenotype [22].

Genetic analysis of the associated genes is extremely useful to confirm the initial
presumptive diagnosis, differential diagnosis with PAH, progression and management of
the disease and family risks based on the results. In families where there is an affected
member with a known disease-causing variant and for those family members who do not
manifest symptoms of HHT, diagnostic genetic testing is a more cost-effective solution
than conventional clinical screening and may benefit from early treatment, if necessary [23].
Therefore, in order to address the molecular diagnosis of PAH patients, we applied a custom
NGS panel, which included genes ACVRL1, ENG, SMAD4 and GDF2 and 17 additional
genes related to PAH [24]. In the present study, we have identified an homozygous
missense pathogenic variant in GDF2 in a patient with PAH-HHT and a missense variant
and a copy number variant (CNV) in a patient with IPAH. In both cases, their healthy
parents were carriers of the same GDF2 variants in heterozygosis state. These results add
more evidence of the semi-dominant inheritance with variable expression and incomplete
penetrance model related to GDF2 variants. This also supports the co-exist variable clinical
spectrum of PAH and HHT in individuals with GDF2 pathogenic variants.

2. Materials and Methods

This study was approved by the ethical committee for scientific research of each
participant center and by the ethical committee of the La Paz University Hospital (CEIC-
HULP PI-1210). All patients or parents of the children involved in this project signed a
clinical consent form to accept their participation.
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2.1. Cases Presentation

The index patients included in the study were selected from the Spanish pediatric
PAH registry (REHIPED). Prior to genetic diagnosis, family history information was
collected. DNA samples from the proband and parents were extracted. Both probands
and first-degree relatives were enrolled in the study after informed written consent was
obtained in each case. The most relevant clinical information of the two included patients
is summarized in Table 1.

Table 1. Clinical information. Main clinical characteristics of the patients and results obtained in the tests performed from
diagnosis to the present time.

Number Patient Patient 1 Patient 2

Etiology Group 1: PAH associated with HHT Group 1: idiopathic PAH

Sex Male Female

Age at diagnosis (years) 5 4

Current age (years) 13 12

NYHA functional class II I

Last known PAH therapies Bosentan: 125 mg BID
Tadalafil: 40 mg/day

Macitentan: 10 mg/day
Tadalafil: 40 mg/day

Cardiac catheterization (mPAP and
cardiac index)

5 y.o. 1: 55 mmHg;
8.7 L/min/m2

8 y.o.: 20 mmHg

4 y.o.: 33 mmHg;
4.2 L/min/m2

9 y.o.: 44 mmHg;
3.6 L/min/m2

Abdominal and Thoracic computed
tomography

5 y.o.: No radiologic abnormalities of
significance

4 y.o.: No radiologic abnormalities of
significance

Cranial nuclear magnetic resonance 6 y.o.: No significant abnormalities
11 y.o.: No significant abnormalities Not performed

Gastrointestinal endoscopy 8 y.o.: No telangiectasias detected Not performed
1 y.o.: years old.

Patient 1 was evaluated for the first time in 2013, when he was five years old. He
complained of shortness of breath on exertion and recurrent epistaxis. Peripheral oxygen
saturation was normal at that time. A transthoracic echocardiography (TTE) revealed
indirect data of significant pulmonary hypertension. During the first right heart catheteri-
zation (RHC), mean pulmonary artery pressure (mPAP) was 55 mmHg, pulmonary artery
wedge pressure (PAWP) was 8 mmHg, and pulmonary vascular resistance (PVR) was
5.4 wood units (WU). The cardiac index (CI) was surprisingly high (8.7 L/min/m2), con-
sistent with the initial diagnosis of PAH related with high cardiac output. Nevertheless,
neither of the parents presented symptoms suggestive of the disease and there was no
known relevant family history. Despite the patient being initially diagnosed with IPAH,
further examinations revealed the presence of telangiectasias on the face and back, which
led to the diagnosis being extended to “possible PAH associated with HHT” according
to the Curaçao criteria [7,8]. Although fecal occult blood tests showed positive results,
neither a computed tomography nor a colonoscopy demonstrated the presence of arteriove-
nous malformations in the gastrointestinal tract. Double initial oral therapy with tadalafil
(40 mg/24 h) and bosentan (125 mg/12 h) was initiated from the diagnosis, maintaining
the patient stable to date.

Patient 2 was also diagnosed in 2013 in the setting of chest pain evaluation when she
was four years old. Similarly, the TTE showed data of significant pulmonary hyperten-
sion. Then, the RHC demonstrated a mPAP of 33 mmHg, a PAWP of 6 mmHg, a CI of
4.2 L/min/m2 and PVR of 6.5 WU. In this patient, neither the index case nor their first-
degree relatives had any relevant signs or symptoms suggestive of HHT. At diagnosis,
thoracic computed tomography was normal. Equally, blood samples had always been
normal, without evidence of anemia during follow-up. Oxygen saturation at rest and
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during exercise was likewise unremarkable. Currently, the patient remains stable without
any limitation in her daily life, estimating a functional class I at her twelve years of age,
under double oral therapy with macitentan and tadalafil.

2.2. Next Generation Sequencing

Genetic analysis was performed in the probands and on their parents after obtaining
DNA from peripheral blood. Samples were included into a customized Next Generation Se-
quencing (NGS) panel of 21 genes (HAP v1.2) designed in-house, which included: ACVRL1;
GDF2; BMPR1B; BMPR2; CAV1; EIF2AK4; ENG; KCNA5; KCNK3; NOTCH3; SMAD1;
SMAD4; SMAD5; SMAD9; TBX4; TOPBP1; SARS2; CPS1; ABCC8; CBLN2; MMACHC. This
custom panel was designed using NimbleDesign tool (Roche, Indianapolis, IN, USA). Frag-
mentation and library preparation were performed with SeqCap EZ Choice Enrichment
Kit (Roche, Indianapolis, IN, USA). Sequencing was performed with the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) following the manufacturer’s instructions [25].

Variant prioritization was performed according to a custom filtering algorithm consid-
ering quality of the base pair reads, variant allele frequency in pseudo control populations
and pathogenicity predictors as previously described [25], and summarized in Figure 1.
Finally, variants were classified according to the guidelines described by the American
College of Medical Genetics and Genomics (ACMG) [26].
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Figure 1. Filtering pipeline for NGS panel HAP v1.2. Modified from Tenorio et al. 2020 [25].

Additionally, in order to carry out the analysis of CNVs, we used a custom script de-
veloped in-house called “LACONv” v1 (https://github.com/kibanez/LACONv, accessed
on 21 June 2021) [27].

2.3. Segregation Analysis

In addition to the study of the probands, the analysis of all available first-degree
relatives of the index cases was completed. Samples were obtained from the parents of the
proband and siblings and the genetic segregation study was performed by
sanger sequencing.

In patient 2, we performed a SNP array to confirm the deletion detected in the proband
and her relatives. For this purpose, a SNP array study was carried out using the Infinium
OmniExpressExome 8 v1.6 platform (Illumina). Image data were analyzed using the
Chromosome Viewer tool contained in the Genome Studio package (Illumina, San Diego,
CA, USA). In Chromosome Viewer, gene call scores < 0.15 at any locus were considered
“no calls”. In addition, allele frequency analysis was applied for all SNPs. All genomic
coodinates were established according to the 2009 human genome build 19 (GRCh37/NCBI
build 37.1). Deletion sizes were plotted on the genome browser using the University
os California at Santa Cruz Genome Browser (http://genome.ucsc.edu/, accessed on
25 June 2021).

In unaffected carriers, a complete and specific diagnostic follow-up was performed in
order to rule out the disease.

https://github.com/kibanez/LACONv
http://genome.ucsc.edu/
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3. Results

In patient 1, we identified a homozygous missense variant in exon 1 of GDF2 (Table 2)
in the index patient (GDF2:NM_016204.4:c.328C > T:p.(Arg110Trp)). This variant causes
a substitution of an arginine to tryptophan at amino acid position 110. The parents and
brother were heterozygotes for the same variant, suggesting that the child inherited a copy
from each parent (Figure 2A). In silico analyses showed that this variant was absent in
several population databases, and the majority of the pathogenic prediction tools (dbNSFP)
suggested a damaging effect for this variant. Therefore, this variant was classified as likely
pathogenic variant (LP) by applying the ACMG criteria (Table 2).

Table 2. Variants information.

Gene Name Chr.
Coordinate

cDNA
Position 1

Protein
Position Variant Effect ACMG

Classification
Population
Frequency 4

GDF2 Chr10:48416366 c.328C > T p.(Arg110Trp) Missense LP 2 Absent
GDF2 Chr10:48414423 c.445G > A p.(Glu149Lys) Missense VUS 3 Absent

1 The version of the reference genome used is hg19. The transcript used for variant annotation is: GDF2 (NM_016204.4); 2 VUS: Variant of
unknown significance. 3 LP: likely pathogenic. 4 Population frequency was obtained from gnomAD genomes (European non-Finnish).
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Figure 2. Pedigree of both families with GDF2 variants. Segregation analysis of GDF2 in all available family members. The
figure shows a fragment of the GDF2 sequence with corresponding amino acids below. (A) Patient 1: It represents the
homozygous missense variant at nucleotide position c.328 (c.328C > T) in exon 1 of GDF2 (NM_016204.3), which causes the
amino acid substitution arginine to tryptophane at peptide position 110 (p.Arg110Trp) in the index patient. In addition, it
shows the same heterozygous missense variant found in healthy parents and brother. (B) Patient 2: The missense variant at
nucleotide position c.445 in exon 2 of GDF2 (NM_ 016204.4), which causes the amino acid substitution glutamine to lysine
at peptide position 149 in the index patient and mother and the deletion inherited from her father. Double line denotes
consanguinity. Legend: +/+ homozygous for the alternative allele; +/− heterozygous for the alternative allele; del: deletion.

In patient 2, we detected a missense variant (GDF2:NM_016204.4:c.445G > A:p.(Glu149Lys))
in exon 2 of GDF2 (Table 2), absent in pseudo control population databases. Based on
the results of the variant segregation analysis, we determine that this variant has been
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inherited from her mother. This patient also inherited a deletion from her father of a size of
4.24 Mb located on chromosome 10, in the region q11.22–q11.23, which includes 41 genes
(AGAP4, FAM25E, PTPN20B, SYT15, GPRIN2, ANXA8L1, FAM25G, NPYAR, FAM25BP,
AGAP10P, ANTXRL, ASAH2B, AGAP9, ANXA8, ZNF488, RBP3, GDF2, GDF10, FAM25C,
FRMPD2, MAPK8, ARHGAP22, WDFYA, LRRC18, VSTM4, C10orf128, DRGX, ERCC6,
CHAT, SLC18A3, OGDHL, PARG, AGAP7, TIM23, NOCOA4, MSMB, AGAP6, ASAH2),
which included GDF2 (Figure 3).
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4. Discussion

The recent advances in massive parallel sequencing have contributed to an improve-
ment in the knowledge of the genetic basis of PAH. Although during many years it was
thought that only the primary forms of PAH were associated with a genetic factor, several
studies have demonstrated that associated forms such as PAH associated with HHT also
had a genetic contribution [22]. As far as we know, HHT has been classically described as
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an autosomal-dominantly inherited vascular malformation syndrome since the detection
of heterozygous variants in ACVRL1, ENG, SMAD4 and GDF2 [14–17].

Variants in GDF2 have been the most recent genetic discover related to PAH associated
with HHT [22] and it is one of the genes with higher level of evidence of association with the
development of PAH [28]. According to the analyses of the variant proteins performed by
Wooderchak et al. (2013), pathogenic variants in GDF2 negatively affect protein processing
and/or function; a bmp9-deficient zebrafish model demonstrated that BMP9, encoded by
GDF2, is involved in angiogenesis [22]. These data confirm a genetic contribution of a
vascular-anomaly syndrome that has phenotypic overlap with HHT [22]. This is directly
related to the main biological processes dysregulated in PAH: proliferation, apoptosis and
endothelial cell migration.

In the present study, we identified two missense variants in GDF2 and a CNV, which
includes this gene in a PAH-HHT patient but also in an idiopathic PAH case. In patient
1, segregation analysis of the variant has allowed to confirm that both parents and older
brother were heterozygous carriers of the same variant in GDF2. There is increasing
evidence of homozygous variants in GDF2 associated with HHT. In 2016, Wang et al.,
detected a homozygous nonsense pathogenic variant in a Chinese boy with a suggestive
diagnosis of HHT but the consanguineous parents were heterozygous and apparently
unaffected carriers. However, it must be noted that the father and his paternal uncle
had had epistaxis meanwhile the mother and his younger sister showed vascular lesions.
Sanger sequencing revealed the same homozygous variant in his sister, but at the time of
publication she did not show any symptoms of PAH [29].

As in the previous case, our consanguineous parents of the patient and brother were
heterozygous carriers of the same GDF2 variant but they did not present any symptoms
at the time of this study and there is no known family history. In addition, both consan-
guineous parents carry the same heterozygous variant, so we speculate that the variant was
inherited in heterozygous form from the shared grandfather, through any of their parents.
In other words, we speculate that there are at least three additional family members (I-2,
II-2 and II-3 in Figure 2A) with the same heterozygous variant who had not developed
the disease. Hypothetically, these results support the idea of an incomplete penetrance
or variable expressivity may occur in heterozygous GDF2 carriers. Moreover, the older
brother (IV-2 in Figure 2A), who is 16 years old, presented the same heterozygous variant,
but he did not show any symptoms. This may be explained by the fact that epistaxis caused
by telangiectasias in the nasal mucosa eventually develop in 95% of cases but only 50% of
individuals report having nosebleeds before the age of 10 years [9] and, similarly, oral or
dermal telangiectasias are not usually observed until the third decade of life [22,30]. As we
have already commented, in many cases an early diagnosis of the disease is difficult, thus
demonstrating the great importance of genetic screening.

As in several patients previously described, our patient presented with clinical features
of GDF2-like disorder including epistaxis and dermal lesions described as telangiectases
but whose location and appearance are atypical compared to HHT patients. Meanwhile
patients with homozygous variants in GDF2 showed spider-like/linear telangiectases only
on their chin and/or cheeks; patients with variants in ACVRL1, ENG and SMAD4 have
them typically on the lips and oral cavity [22].

Not only have homozygous variants in GDF2 been detected in patients with HHT, but
they have also been identified in patients with PAH [20,21,31,32]. Previous studies have
measured BMP9 and pBMP10 plasma levels along with the serum-derived endothelial
BMP activity in patients with homozygous nonsense GDF2 mutations, PAH patient and
a patient with “HHT-like” phenotype. They confirmed that it results in reduced plasma
BMP9 and pBMP10 levels, even in asymptomatic heterozygous parents [33]. Furthermore,
the variant specifically detected in patient 1 in this study has been previously described in
heterozygosis by Hodson et al. [32] in a female patient diagnosed at 46 years with PAH.
She manifested a functional class 2 of the World Health Organization (WHO) scale, with
a mPAP of 38 mmHg, PAWP 5 mmHg, PVR of 6.9 WU and a CO 4.8 L/min, with no
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family history [32]. Hodson et al. confirmed that this variant exhibited impaired BMP9
processing, secretion or stability, thus indicating that this variant is loss-of-function and it
is likely the cause of PAH. Loss of function of BMP9 may reduce the expression of BMPR2
and ALK-1 and disrupt its interaction with ENG, both of which may contribute to PAH
pathogenesis [32].

Likewise, in patient 2, we detected a missense variant of unknown significance in-
herited from the mother and a CNV, which includes GDF2 inherited from her father. The
missense variant is absent in pseudo control population databases and has not been previ-
ously described. Although both parents were heterozygous for those variants, neither of
them is affected. Strikingly, this proband is an idiopathic patient and she does not meet any
of the Curaçao criteria. Likewise, although the CNV includes 40 genes more, the individual
did not have reported comorbidities. Previous studies have reported other patients with
similar deletions (4.29 Mb and 4.28 Mb) who exhibited earlier onset of disease and with
no family history [32]. However, to the best of our knowledge, no segregation analysis
of the variants was carried out. In view of all the above we suggest that the presence of
one of the variants is not enough for the development of the disease but that the presence
of a second hit is necessary. However, it would be necessary to extend this study with
functional studies.

The analysis through our customized gene panel within the diagnostic routine has
allowed us to describe a homozygous variant in GDF2 and a compound heterozygous
of GDF2. Therefore, the design of our customized panel has proven to be effective for
genetic diagnosis of conflicting cases of PAH and HHT or even with overlapping features.
Moreover, it was possible to detect heterozygous variants in healthy relatives, which will
help them to receive detailed follow-up of their progression with the aim of early diagnosis
and/or prevention of the disease. Our work adds evidence to the notion that variants in
the GDF2 may generate a greater predisposition to develop both idiopathic PAH and a
“HHT-like” syndrome. Likewise, we described five healthy individuals with heterozygous
variants, suggesting that there is a wider spectrum of inheritance patterns associated with
GDF2 variants, an incomplete penetrance or even the need for the presence of a second
mutational event in an individual for the development of the disease.

Finally, in view of the results obtained, the importance of genetic counselling for
families is clear, which can be useful when planning future pregnancies or if there is family
history of a condition.
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