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Brain–computer interfaces are systems capable of mapping brain activity to specific commands, which enables to remotely
automate different types of processes in hardware devices or software applications. However, the development of brain–computer
interfaces has been limited by several factors that affect their performance, such as the characterization of events in brain signals
and the excessive processing load generated by the high volume of data. In this paper, we propose a method based on com-
putational intelligence techniques to handle these problems, turning them into a single optimization problem. An artificial neural
network is used as a classifier for event detection, along with an evolutionary algorithm to find the optimal subset of electrodes and
data points that better represents the target event. 1e obtained results indicate our approach is a competitive and viable al-
ternative for feature extraction in electroencephalograms, leading to high accuracy values and allowing the reduction of a
significant amount of data.

1. Introduction

1e brain–machine interfaces (BMIs) or brain–computer
interfaces (BCIs) are computer systems that allow estab-
lishing a direct communication channel between the human
brain and a computer [1] to obtain, analyze, and convert
brain activity into commands or instructions in real time [2].
1e latter is used as a detonator to remotely execute and
automate tasks through hardware devices and software
applications, the purpose of which is to increase the pro-
ductivity of people in their work areas or satisfy any need in
daily life.

1e BCI systems are fed from a constant stream of data
corresponding to the readings of the user’s brain activity.
1ese data go through a preprocessing stage where a variety
of transformations are applied to improve the quality of the
data and prepare them for further analysis. 1is procedure is
called feature extraction and consists of identifying patterns

in the brain activity that correspond to a certain action (also
known as an event) carried out by the user voluntarily or
involuntarily. 1e identified patterns are mapped to specific
commands that allow to execute procedures in other digital
systems.

As it is well known, the human brain is in constant
operation, even when the person is in a state of rest or deep
sleep. Consequently, at the time carrying out readings of
brain activity, large volumes of data are obtained, being of
utmost importance subjecting said data to an exhaustive
analysis to find patterns and generate a model that is capable
of recognizing such patterns. In this way, the model obtained
is integrated into a BCI that operates in real time. In other
words, the BCI will be continuously capturing a user’s brain
activity, which will be evaluated by the pattern recognition
model to execute commands.

Nevertheless, the development of this type of BCI has
been limited by the factor of time required the analysis and
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mapping of the information in the EEG [3]. 1erefore, the
ideal thing is to filter the information contained in the EEG
and only keep the necessary data (EEG feature extraction)
that allow to typify the operation commands of the BCI.

1e problem of EEG feature extraction has been ex-
tensively studied and addressed using different techniques.
Typically, the process begins with a channel selection phase,
which aims to reduce the dimensionality of the data and thus
reduce computation times. 1en, on the subset of selected
channels, the extraction of characteristics is carried out,
which are later evaluated with an established metric. A
classification of this type of technique is presented in [4]
highlighting five main categories, which are filtering,
wrapper, embedded, hybrid, and manual techniques or with
human intervention.

In this work, a method for the feature extraction of EEG
based on computational intelligence (CI) techniques is
proposed, such as artificial neural networks (ANN) and
evolutionary algorithms (EA). 1e main advantage of the
proposed methodology is to use a combination of filtering
and wrapper techniques for the feature extraction process.
1e proposed method consists of using an ANN model as a
classifier, which is capable of finding features of the EEG
signals that allow the identification of one or more types of
events. However, the ANN model training process becomes
complex due to the variety of information sources (channels)
and the volume of data that the EEGs possess. For this
reason, an EA is used to optimize the classifier parameters
and generate the training and validation sets from the
complete EEGs. In this way, the trained and validated ANN
model can be used for the detection of events in a real BCI
implementation.

1e remainder of this document is organized as follows:
Section 2 provides an overview of techniques for brain
activity monitoring. Section 3 presents some works of the
literature related to feature extraction of EEG. Section 4
describes the procedure for acquiring EEG signals. Section 5
presents the steps to perform the training and validation of
the classifier. Section 6 introduces the algorithm to optimize
the classification model. 1e experimental setup and results
are shown in Section 7. In Section 8, conclusions and final
remarks of the conducted research are given.

2. Electroencephalography

Currently, there exists a variety of techniques that allow
recording a person’s brain activity and are generally used in
the field of neuroscience. As it was aforementioned, these
techniques can be divided into two categories, invasive and
noninvasive. 1e invasive ones require the implantation of a
subcutaneous or intracranial sensor which is responsible for
measuring brain activity, while the noninvasive ones make
use of sensors (e.g., electrodes or terminals) placed over the
scalp to achieve the same purpose. Alternatively, they can be
categorized by the type of representation of the bioelectric
activity obtained, which can be in the form of an image (2D,
heat map, 3D) or time series.

Electroencephalography is a technique used in the
medical area that allows for detecting the electrical activity

generated by neuronal activity within the brain.1e readings
of brain activity are done using a set of electrodes, which are
positioned in different areas of the scalp and capture the
electrical currents produced by neurons [5]. As a result of
this, the electroencephalogram (EEG) is obtained, which is a
representation of brain activity over some time.

An EEG is made up of n time series with n being the
number of electrodes that were used to measure brain ac-
tivity. Given their sensitivity with respect to time, EEGs have
been used to monitor the effect of anesthesia in surgical
procedures, as well as the evaluation and diagnosis of pa-
tients with suspected seizures, epilepsy, and some other
unusual problems [6].

1e main disadvantage of EEGs is that brain activity can
be affected by other sources of brain activities produced by
the human body itself or external sources in the environ-
ment. Nonetheless, its main advantage is that this technique
is a noninvasive and low-cost procedure that can be used
multiple times in the same patient without any risk.

3. Related Works

1e problem of EEG feature extraction has been extensively
studied and addressed through different techniques. In this
section, some of the main work carried out are described,
emphasizing the proposed methodology of each one of them.
Generally, the process of extraction and selection of char-
acteristics in EEG begins with a channel selection phase,
which aims to reduce the data dimensionality and obtain
better precision in the classification stage. A classification of
this type of techniques is presented in [4] highlighting five
main categories, which are filtering, wrapper, embedded,
hybrid, and manual techniques or with human intervention.
Below is some research related to techniques based on filtering
and wrapper, as they are typically more frequently used.

Filtering techniques operate on subsets of channels
obtained by search algorithms, and subsequently, an inde-
pendent analysis is carried out with techniques based mainly
on statistics or probability.

In [7], a statistical model based on the measurement of
Kullback–Leibler divergence is presented for the selection of
the optimal subset of characteristics. In the following paper,
the characteristics are extracted by applying an autore-
gressive model (AR) and a common spatial pattern (CSP-log)
algorithm. Afterwards, the selection of the optimal subset
and time segments are found with the Kullback–Leibler
divergence method. A similar approach is proposed in [8]
where the common spatial pattern (CSP) method and the
discernibility of feature subset (DFS) metric are used. Wang
et al. [9] propose three variants of the algorithm CSP for
feature extraction. After this, the features obtained are
synchronized with a cross-correlation function.

On the other hand, wrapper techniques consist of using a
classification algorithm to evaluate the subsets obtained by
the search algorithm. In this way, each subset is subjected to
a training and testing process in the classifier, where the
precisionmetric dictates the value of the candidate solutions.

Baig et al. [10] present a comparative study of some
evolutionary techniques for the selection of characteristics,
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being the algorithm of differential evolution (DE) as the
main object of study. In the first instance, they use a
common spatial pattern (CSP) filter for the extraction of
characteristics and later generate subsets with the DE al-
gorithm, which are evaluated with classifiers such as linear
discriminant analysis (LDA), support vector machine
(SVM), k-nearest neighbors (k-NN), Naive Bayes classifier
(NB), and regression trees. 1e proposed algorithm is
compared with other evolutionary computation algorithms
such as particle swarm optimization (PSO), simulated
annealing (SA), ant colony optimization (ACO), and arti-
ficial bee colony (ABC). As a result of this work, it was found
that the performance of the DE algorithm along with SVM
was superior with respect to the other analyzed techniques.

In [11], a similar comparison is presented focused on the
recognition of emotions in EEG signals, where a scheme
consisting of four stages involving preprocessing, extraction,
selection, and classification of characteristics is proposed. In
the preprocessing stage, signal processing filters are applied
for frequency removal and isolation, as well as independent
component analysis (ICA) for artifact reduction and data
separation into independent components. Feature extrac-
tion is performed in three different domains: temporal,
frequency, and temporal-frequency by using various
methods such as Hjorth parameters, power spectrum density
(PSD), and discrete wave transform (DWT), among others.
For the feature subsets selection phase, they make use of the
ACO, SA, genetic algorithms (GA), PSO, and DE, com-
plemented with a probabilistic neural network (PNN) as a
classifier. 1e results show a higher performance by the DE,
PSO, and GA algorithms, and it is concluded that the
evolutionary algorithms obtain better results if they work on
the combined temporal and frequency spaces.

Lahiri et al. [12] propose a variation of the firefly al-
gorithm (FA) which they call the self-adaptive firefly algo-
rithm (SAFA) to search for the optimal subset of
characteristics. Such an algorithm has an extended explo-
ration capacity that consists of self-adapting the step size of
each solution close to the position of the best current so-
lution, giving place to a better exploitation of the local
neighborhood.1emethodology involves a preprocessing of
the data for the elimination of artifacts using four IIR filters
such as butterworth, Chebyshev type I, Chebyshev type II,
and elliptical filter. Regarding the extraction of character-
istics, Hjorth parameters and autoregressive adaptive pa-
rameters (AAR) were used for the temporal domain, PSD in
the case of the frequency domain, and DWT for the time-
frequency domain. In addition, a directed acyclic graph
support vector machine (DAGSVM) was implemented with
three nonlinear kernel functions for task classification,
obtaining greater precision with a radial basis function
(RBF). 1e results obtained in this work show that the
proposed algorithm has a high degree of effectiveness in the
exploration and exploitation of the candidate solutions,
avoiding premature convergence problems.

Another evolutionary approach is presented in [13]
where the use of a genetic algorithm is proposed for the
selection of characteristics related to motor imagination
events, specifically the imaginary movement of the hands.

For this work, the BCI competition III and IV databases is
used, provided by the Berlin BCI group.1e data go through
a preprocessing phase whose purpose is to improve the
quality of the signals, where a discrete Laplacian filter is
applied for noise smoothing and a band-pass filter to isolate
the bands μ and β subsequently, the time-frequency domain
characteristics are extracted using the short-time Fourier
transform short-time Fourier transform (STFT). 1e GA
works with a representation similar to that proposed in [14];
however, the variables encoded in the genes of the chro-
mosome are different. In this case, each chromosome or
individual is made up of a number n of genes where n

corresponds to the total number of channels in the EEG, and
four variables are encoded in each gene: the channel label, a
frequency band, a temporal component index, and a flag that
indicates whether the channel is active or inactive.

Moreover, Jin et al. [15] propose a novel feature opti-
mization and outlier detection method for the common
spatial patterns algorithm. 1ey use the minimum covari-
ance determinant (MCD) to detect and remove outliers in
the dataset then they use the Fisher score to select features.
1e proposed algorithm was evaluated in terms of iteration
times, classification accuracy, and feature distribution using
two BCI competition datasets. 1e experimental results
showed that the average classification performance of the
proposed method is 12% and 22,9% higher than that of the
traditional CSP method.

A great deal of the studies related to the extraction and
selection of EEG features are strongly linked to the devel-
opment of BCI for specific purposes, even though related
research is also carried out in the field of medicine. Wen and
Zhang [16] propose a methodology for the search of
characteristics in EEG with a focus on the detection and
analysis of epilepsy. 1e process consists of performing a
feature extraction by applying nonlinear methods, arguing
that other methods, such as the fast Fourier transform, are
ineffective in this task. Moreover, the combination of
multiple algorithms for feature extraction is objected, since
this sometimes causes an expansion of dimensionality and
redundancy of the same. 1e authors propose the use of a
genetic algorithm for the selection of characteristics in the
frequency domain, while the labeling is carried out with
multiple classifiers such as k-NN, LDA, tree decision,
multilayer perceptron (MLP), AdaBoost, and Naive Bayes.
1e obtained results show a precision range of [0.96, 0.99] in
multiclass classification experiments.

4. EEG Acquisition

It consists of obtaining the digital signals corresponding to
the brain activity of a participant, in other words, the set of
EEGs that will later be processed. In the first instance, it is
necessary to define the type of event that is intended to
characterize, in this work the eye-blink event was used as
event. Additionally, it is necessary to define how the par-
ticipant will receive the stimulus that allows such an event to
be triggered. Afterwards, the supervisor must capture and
store the brain activity that the participant presents during
the execution of the test.
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Moreover, the supervisor requires to design a test whose
main objective is to generate a stimulus in the participant. In
this way, when the person captures the stimulus, it is possible
to execute the action that in turn represents the eye-blink
event. Generally, a participant must repeat the test on more
than one occasion to obtain multiple EEG files, which will
later be used to generate the training, validation, and test sets.

In the methodology proposed for the following research
paper, it is suggested for the participant to be positioned in
front of a computer screen, with the intention that he/she
can receive visual stimuli or instructions through multi-
media content. In addition to this, another reason why this
type of test is recommended is related to taking advantage of
the internal or external sensors of the computer, such as the
webcam or the microphone. 1ese devices can be useful to
obtain other types of information that allow to corroborate
the reliability of the carried-out test.

4.1.Capture andStorage of EEGs. To capture a person’s brain
activity, an AURA kit developed by the company Mirai
Innovations (https://www.mirai-innovation-lab.com) was
used which specializes in the design, development, and
research of new technologies was used.

1e software included in the AURA kit allows EEG
capture and storage to be carried out in CSV format files.
However, the AURA software has an option for data
retransmission using LSL (Lab Streaming Layer), which
must be activated before starting the capture. In such a way
the initiative was taken to develop its application to auto-
mate some of the processes involved. 1is includes the
capture and storage of data, acquisition of complementary
information about the participant, issuance of stimuli or
instructions, and video capture with a web camera. 1is
application is linked to the AURA software through LSL and
obtains the data in real time from the AURA software. 1e
application consists of a control panel that allows to start,
pause and stop the execution of the test with the participant.

5. Classification of Events in EEG

It consists of implementing a classification model that is
capable of learning and recognizing the distinctive patterns of
events in EEGs.1erefore, the model is subjected to a training
process where, based on examples, it learns to distinguish
such patterns. However, it is necessary to generate training,
validation, and test sets starting from the EEG signals.

5.1. Data Preprocessing. Up to this point, the information
contained in the EEG files is known as raw data or raw EEG,
which means that they are files with data without any type of
preprocessing or alteration. Despite this, raw EEGs present
some level of contamination caused by electrical interference
from the biosensing device itself. Hence, it is necessary to
preprocess the EEGs obtained so that these are suitable for
the feature extraction process.

5.1.1. Signal Filtering. It consists of applying filters for digital
signal processing to eliminate noise from the data and

modify the amplitude of brain waves by frequency elimi-
nation or isolation.

Figure 1 shows a fragment of raw EEG where it is not
possible to appreciate the shape of the brain waves. 1is is
because raw EEGs have contamination generated by elec-
trical interference from the signal amplifier. Such interfer-
ence generates erroneous signals at the frequency of 50 or
60Hz, depending on the voltage and frequency of the
geographical location.

For this reason, it was decided to apply the notch filter or
suppress band, which prevents the passage of signals within
the range known as cut-off frequencies. 1us, the electrical
interference is suppressed from the signal, making it sub-
stantially more readable compared to raw EEG. Further-
more, it allows to visualize the oscillatory patterns of
neuronal activity. Figure 2 shows an EEG fragment after the
application of the notch filter at 60Hz.

Moreover, the eye-blink artifact contaminates the low-
frequency EEG bands (1–12Hz) that are associated to hand
movements, attention levels, and drowsiness [17]; for this
reason, it was decided to use a band-pass filter whose ob-
jective was to isolate a certain range of frequencies and
eliminate the remaining frequencies. 1is allows the am-
plitude and wave period to be modified based on the
specified frequency range. In this way, the resulting signal
only contains the oscillation patterns corresponding to the
frequency range of interest, as shown in Figure 3.

5.1.2. Normalization. 1eEEG signals have microvolts (μV)

as unit of measurement, whose values oscillate in a varied
range. 1erefore, it was decided to limit the values to the
range [0, 1] to establish a standard in all the processes in-
volved in the extraction of characteristics. For this, the Min-
Max scaling formula which is defined in equation (1) is
applied.

X′ �
X − Xmax

Xmax − Xmin
. (1)

Where X is the set of original values, Xmin and Xmax are
the minimum and maximum values, respectively, while X′
is the set of scaled values. 1en, given a complete EEG of a
certain participant, the procedure is applied independently
in each of its channels. 1erefore, it is necessary to obtain
the reference values Xmin and Xmax of a channel before
scaling it.

5.1.3. Event Tagging. Event tagging is intended to attach a
series of tags or markers to EEG files. Each marker indicates
the exact moment in which a certain event occurred during
the execution of the test with the participant. In this way, the
training and validation sets can be generated from the la-
beled EEGs, which will be the input of the classification
model.

1e procedure consists of carrying out an empirical
analysis of the files obtained from the test performed, which
are the video file and the EEG file. Both files must be an-
alyzed in parallel and synchronously, in such a way that it is
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possible to determine the instant of time where the par-
ticipant executes the action corresponding to the event.
1erefore, due to the video-EEG time synchrony, it is
possible to define the moment in the EEG sample where an
event tag should be attached.

To achieve the previous objective, it was decided to
develop an application to speed up the labeling process in the
EEG, so that the user only has to load the information of the
corresponding files (video/eeg) and the temporal synchro-
nization is carried out automatically. 1us, the remaining
procedure is to analyze the video and manually generate the
tagging markers. It should be noted that this procedure is of
vital importance since if the events are not correctly labeled,
the classifier could be taught incorrectly. Figure 4 shows the
application’s graphical interface, which consists of a video

window (Figure 4(a)), an EEGwindow (Figure 4(b)), and the
control panel (Figure 4(c)).

5.2. EEG Segmentation. 1e operation mode of the BCI
systems is in real time since the systemworks with a constant
flow of EEG signals. 1is implies that the classification
model must analyze consecutive segments of the input
signals, which have a fixed size and are called windows.
1erefore, it is necessary for the EEG obtained from the
participants to be segmented in windows.

1e purpose of the segmentation, apart from emulating
the constant flux of signals, is to generate training, valida-
tion, and testing datasets. However, the segmentation
process is carried out differently for each set.

275 325175100 125 150 200 225 400250 450300 425350 375 475 5005025 750
Sample number

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Figure 1: Raw EEG signal.
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Figure 2: EEG signal with notch filter at 60Hz.
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Figure 3: EEG signal with band-pass filter from 1 to 12Hz.
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1e segmentation of EEG is carried out depending on
two variables, which are graphically represented in Figure 5
and are described as follows:

(i) Size: It defines the number of consecutive samples
(signal points) that make up a window.

(ii) Overlap: It indicates the overlap percentage of the i

window (current) with the i − 1 (previous) window.

5.2.1. Training Dataset. 1e segmentation process begins
with the location of markers in EEG, which indicates the
exact point where an event was recorded in the signal. Each
marker serves as the center of a window as shown in Fig-
ure 6. Afterwards, the window is extracted and such segment
from the original signal is removed, repeating this procedure
with each of the markers. 1en, the remaining signal
(without markers) is segmented in consecutive windows of
fixed size and overlapped. Finally, each of the obtained
windows (with and without event) make up the dataset for
training.

5.2.2. Validation and Test Datasets. For both datasets, a
segmentation in translapsed consecutive windows is carried
out, by using a control mechanism that allows identifying
those windows that have an event marker. Since there is a
possibility that the same marker may be present in more
than one consecutive window.

5.3. Artificial Neural Network Design. It is proposed the use
of an ANN-type MLP as a classification model that, once
trained, can be used in a real implementation of a BCI.

Nonetheless, some suggestions have been made in the
scientific community, and some authors have proposed
methods to estimate the number of layers and neurons of the
model [18]. Below, some key points that allowed defining the
general architecture of the MLP are presented, specifically
the distribution of neurons in the hidden layers.

(i) Input layer: 1e size of the IL input layer depends
on the window size used in the segmentation
process, which must be multiplied by the number of
EEG channels.

(a) (b)

(c)

Figure 4: Main window of the developed application for labeling. (a) Video player. (b) EEG viewer. (c) Control panel.
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(ii) Number of hidden layers: It is proposed that theMLP
has two hidden layers, assuming that the first layer
allows to reduce the dimension of the input data,
while the second layer is responsible for generalizing
or abstracting characteristics of the data.

(iii) Output layer: 1e proposed model was designed to
perform a binary classification with each input
window.1erefore, the size of the OL output layer is
1, since it consists of a single neuron that, based on a
threshold function t(x), it determines the class of an
example.

It was considered that the size of the hidden layers of the
model should be proportional to the size of the input layer
and the output layer. For this, a set of formulas were defined
that allow to calculate the number of neurons of each hidden
layer. A proportion factor is calculated κ as shown in
equation (2), where IL indicates the size of the input layer
and OL denotes the size of the output layer. 1e number of
neurons in the first hidden layer HL1 is defined by equation
(3), while the size of the second hidden layer HL2 is given by
equation (4).

κ � ⌊
IL

OL
 

2
⌋, (2)

HL1 � OL · κ2, (3)

HL2 � OL · κ. (4)

According to the previously established, the ANN to-
pology has a horizontal pyramid shape where each layer has
a smaller size or number of neurons than the previous layer.
1e neurons of the hidden layers have an activation function
known as a rectified linear unit (ReLU) defined in equation
(5). On the other hand, the neuron of the output layer has a
sigmoid activation function, which is used as a threshold
function t(x), and its definition is presented in equation (6).

f(x) � max(0, x), (5)

t(x) �
1

1 + e
− x. (6)

5.4. Classifier Tuning. 1e MLP model makes use of the
backpropagation algorithm to carry out the learning process
during a finite number of times at the training stage. At each
time, the average square error MSE (mean squared error) is
calculated by

MSE �
1
n



n

i�1
Yi − Yi 

2
. (7)

Where Y is the original label set, Y is the set of prediction
labels, and n is the total number of examples of the training
set. In this way, the prediction capacity of the model can be
verified, and based on said metric, the backpropagation
algorithm adjusts the internal parameters of the model to
minimize the error.
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Figure 6: Segmentation of event windows.1e green area corresponds to the window and the red vertical lines are the event marker or label.
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Figure 5: Graphical representation of the segmentation variables.1e orange area corresponds to a window at position i, while the blue area
represents a window at position i + 1.
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5.5. Validation of the Classifier. Once the training stage is
completed, the model makes predictions on the validation
dataset, calculating the F1 metric which is defined in
equation (8). 1e obtained value represents a harmonic
average between the precision metric and the sensitivity
metric, which are defined in equations (9) and (10),
respectively.

F1 � 2 ·
PPV · TPR

PPV + TPR
, (8)

PPV �
TP

TP + FP
, (9)

TPR �
TP

TP + FN
. (10)

Where PPV (positive predictive value) is the precision
metric, TPR (true positive rate) is the sensitivity metric, TP
(true positive) is the number of true positives, FP (false
positive) is the number of false positives, and FN (false
negative) is the number of false negatives.

6. Optimization of the Classifier

1e creation of the training, validation and testing datasets,
as well as the number of neurons per layer of theMLPmodel,
are directly dependent on the segmentation variables de-
scribed in Section 5.2. Up to this point, the assignment of
values for these variables is arbitrarily carried out, which
implies an extensive test and error process until a combi-
nation that shows acceptable results is found.

1e current classification model operates with a large
volume of data because all the samples of the window of each
channel in the EEG are the input of the model. 1e pro-
cessing of these data demands a high computational cost,
both in terms of memory and in terms of computing time. In
turn, this represents a great inconvenience for the operation
of a BCI, since the system delay at the time of processing the
data and issuing a response must be imperceptible to the
user.

However, the characteristic pattern of an event can likely
be detected through a subset of samples, and the full window
is not necessarily required. It is even possible that the activity
registered in more than one channel has no relationship with
the event. 1erefore, the information of these channels can
be completely omitted, allowing the structure of the model
to be more compact and efficient. 1is procedure is known
as extraction or selection of features.

Hence, the use of a genetic algorithm (GA) for the
optimization of the classification model through the ex-
traction of characteristics is proposed. 1e procedures in-
volved in the proposed algorithm are described below.

6.1. Representation. Each individual is made up of the
window overlap variable x1, which will have a range between
0.1 and 0.9. Additionally, n binary variables that allow
selecting a c active channel subset were used, where n is the
total EEG channels, for the biosensate sensor was used n � 8.

In addition, other m additional binary variables will be
included for every channel, which will function as the subset
of f features of itself, with m being equal to the value of the
maximum window size variable. Regarding to the latter, it
was chosen to set a default value of m � 250, which is
equivalent to windows of one-second long although the
algorithm can select a subset of the window.

If a variable takes the value of 0, the element (channel or
feature) that the variable represents will not be considered as
input data. 1erefore, all those characteristics whose binary
variable take the value of 1 will be part of the neuronal
network input, as long as the channel variable to which the
feature belongs also has the value of 1. In Figure 7, the
structure of the individual is shown.

For the representation of the individual, it was decided to
use a binary coding based on Gray codes [19, 20], since it has
been shown that this kind of coding allows minimum ge-
notypic-level disturbances to generate minimum changes at
a phenotypic level.

6.2. Objective Function. Given that the GAs require to
measure the quality of the individuals of the population
(solutions), it is necessary to define a function that allows to
quantitatively measure each of the generated solutions by the
algorithm. In this case, the best way to determine the quality
of a solution regarding the rest, consists of training and
validating the classification model. Accordingly, the value of
the F1 metric (described in Section 5.5, equation (8)) ob-
tained in the validation of the model, indicates the quality of
the solution. 1is implies that for each solution generated by
the GA, it is necessary to train and validate the proposed
classification model.

In the proposed GA, it was decided to use selection by
binary tournament, since this type of selection is charac-
terized by being simple and fast, in addition to being one of
the most commonly used methods in different evolutionary
computing techniques. As a crossing operator for the
proposed method, it was chosen to use the uniform cross
because its mode of operation involves an exploration of the
most aggressive search landscape compared to other types of
crosses.

Additionally, it was decided to use uniform mutation,
where each allele on the chromosome has the same prob-
ability of being inverted. For the calculation of the proba-
bility of mutation, it was decided that it was linearly
decreasing according to the number of generations, at the
beginning of the generations, such probability was
Mi � 10/η, and at the end, it was Mf � 1/η.

Finally, a μ + λ selection is used, which consists of
selecting only the best μ individuals from the current
population and the recently integrated new individuals.

7. Results

It was established that the event to be characterized was the
blinking action, which consists of the closure and opening of
both eyelids in a period of time less than or equal to a second.
1is time interval was established to delimit the duration of
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the event in question since such action may have a greater
duration. Generally, the flashing is considered as an artifact
of the EEG signals, as well as the breath and the heartbeat
[21]. 1e term artifact is used to refer to events (commonly
involuntary) of the human body that often obstruct the
detection of other events.

A controlled test was designed where a participant must
observe a video on the screen of a laptop and has the freedom
to blink at any time during video playback, using the capture
architecture presented in section 4.1. A total of eight elec-
trodes measure the brain activity of the participant in the
areas of the prefrontal cortex Fp1, Fp2, frontal lobe F3, F4,
parietal lobe P1, P2, and occipital lobe O1, O2, according to
the standard positioning of the 10–20 international system.
At the same time, the participant’s face is captured through
the computer’s webcam to later perform the labeling of
events in the EEG file.

7.1. Description of the Datasets. In the proposed method-
ology, a total of three datasets are required, which are
training, validation, and testing. For this, two capture ses-
sions were carried out with each participant, where the first
has an approximate duration of between 8 and 12 minutes,
while the second only lasts 4 minutes. Some of the general
properties of the acquired EEG are shown in Table 1.

1e highest EEG (EEG A) is divided into two parts
according to a 70/30 ratio, for subsequently generating the
training and validation datasets. 1at is, the signal segment
(starting from sample 1) that encompasses 70% of the events
are designated for training, while the remaining signal (with
30% of events) for validation. On the other hand, EEG B is
used in its entirety to generate the test dataset.

In Figure 8, the previously suggested division is shown
graphically, while Table 2 shows the distribution of events
for the training and validation sets.

7.2. Experiment 1: Feature Extraction. 1is experiment in-
volves carrying out the extraction of characteristics on EEGs
obtained from the acquisition phase, to quantify the effec-
tiveness of the proposed method.

From this point, the term Problemwill be used to refer to
the process of extraction of characteristics in the EEGs of
each participant. However, for this experiment, the training
and validation datasets will only be used, which are gen-
erated from EEG A.

A total of 31 independent executions of the GA described
in Section 6 will be performed with the previously presented

problems A-1, A-2, A-3, and A-4. 1e execution parameters
of the GA are shown in Table 3.

1e configuration of the MLP artificial neural network,
such as the activation functions and the size of the different
layers, will be carried out according to what is presented in
Section 5.3. Although, in this case, the size of the input layer
IL will not depend on the window size but on the number of
active channels and the number of selected features by
channel. In terms of the number of training epochs, the
model will carry out a total of 10 epochs.

1e results obtained from the experiment are presented
by boxplot diagrams. In Figures 9–11, the graphs of precision
metrics (PPV), sensitivity (TPR), and F1 are shown, re-
spectively. Each box represents a set of 31 values obtained
from the algorithm executions with problems A-1, A-2, A-3,
and A-4.

On the other hand, in Table 4, the statistics regarding the
feature selection on each problem are presented. Where the
σ column denotes the value of the standard deviation and the
ϕ column indicates the percentage of data excluded from the
original input. 1is percentage is estimated according to the
average, considering that the full entry consists of 2000 data
(window of 250 samples ×8 channels).

For the individual analysis of the results, for each
problem, the data of features selection and the data of the
evaluation metrics will be presented, both in tabulation
format. Table 5 provides the essential nomenclature for the
interpretation of these results.

1e data are sorted in ascending order with respect to the
F1 metric and, given that some values are repeated, a second
sorting in ascending way was carried out with respect to the

Table 1: General properties of acquired EEGs.

#
EEG A EEG B

Events Samples Events Samples
1 183 183114 129 60123
2 218 120123 63 63114
3 66 183087 12 60114
4 27 120114 22 63087

x1 c1 f1c1 f1c2f···c1 f···c2fmc1 fmc2c2 … fmcn

Overlap

Channel 1
status

Channel 1
features

Channel 2
status

Channel 2
features

Figure 7: Phenotypic structure of an individual.

EEG A

8 -12 minutes

EEG B

4 minutes

Training

70% Events

Validation

30% Events

Test

100% Events

Figure 8: EEG splitting for dataset generation.

Table 2: Event distribution for training and validation stages.

ID
Training (70%) Validation (30%)

Events Samples Events Samples
A-1 128 125914 55 57200
A-2 153 88648 65 31475
A-3 46 125185 20 57902
A-4 19 82581 8 37533
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total number of selected features. 1is procedure was per-
formed taking into account the context of the problem in
question, where it is seeked to maximize the target function
f(x) ≡ F1 and minimize the subset of selected features.

On each table, there are three highlighted rows indi-
cating the worst ( ), medium ( ), and best ( ) solution out of
the 31 executions. Both the worst and the median solution
are determined based on the order made, however, to de-
termine which is the best solution, the intervention of an
analyst or expert is necessary. Since in some cases, it is
possible to know a priori the exact channels that reflect the
brain activity of a specific event. 1erefore, the best solution
should include such sources of information in the subset of
selected channels, something that through sorting cannot be
secured.

In this particular case, the flashing event has been
studied and previously documented. Since the flicker is
considered an artifact, it is typically removed from the EEG
signals to mitigate interference with other events of interest.
Hence, some studies establish that the source of the flashing
signals is found in Fp1 and Fp2 channels, by the interna-
tional electrode positioning system 10–20 [22, 23].

According to the previously presented, three criteria to
choose the best solution to each problem were suggested.
1e first is that the solution must have a value F1 ≥ 0.90,
ensuring a good performance of the classificationmodel.1e
second criterion is that the solution must include Fp1 and
Fp2 channels in the subset of selected channels. Finally, the
third lies in that the least number of characteristics selected
in total should be counted.

7.2.1. Problem A-1. 1is problem has a total of 183 events,
out of which 128 were used for training and 55 for validation.
1e boxplot graphs indicate that the values of the evaluated
metrics are concentrated above 0.9, and some atypical values
are presented in all three cases. According to the statistics in

Table 4, the average number of selected features is 605, the
amount that represents an average reduction of 69.75% of
the input data.

Table 6 shows the number of selected characteristics per
channel, in addition to the overlap percentage used in the
segmentation of windows. It should be noted that in most
executions, the found overlap percentage was greater than
70%.

1e worst solution obtained a value of F1 � 0.64 with an
overlap of 24%, and a total of 477 selected features of the Fp1,
Fp2, F4, and P2 channels. Instead, the best solution reached a
value F1 � 0.96 by selecting 249 features of the Fp1 and Fp2
channels, and an overlap of 82%. Translated to percent, in
the best scenario, a reduction of 87.55% of the input data is
achieved.

7.2.2. Problem A-2. 1e boxplot graphs corresponding to
the evaluation metrics show null data dispersion because all
the values reached 1.0. 1erefore, this implies that each of
the examples of the validation set was correctly classified. It
should be noted that this problem has a total of 218 events,
from which 153 were intended for training and 65 for
validation.

1e statistics in Table 4 indicate an average reduction of
70.66% of the data, based on a mean of 586.68 selected
features. In Table 7, the results of the selection of features are
presented, where it is observed that an overlapping per-
centage of over 80% was found in the 31 executions.

Since all the solutions reached a value F1 � 1.0, the
choice of the best and the worst solution falls (partially) in

Table 4: Feature selection statistics.

ID Minimum Median Maximum Mean σ ϕ (%)
A-1 249 634 872 605.00 164.88 69.750
A-2 358 531 924 586.68 133.85 70.666
A-3 240 392 764 437.90 166.40 78.105
A-4 113 243 732 251.48 167.07 87.426

Table 5: Nomenclature for the interpretation of the results.

Column Description
# Execution number
Overlap (%) Window overlap percentage
Fp1 Number of selected channel features
Fp2 Number of selected channel features
F3 Number of selected channel features
F4 Number of selected channel features
P1 Number of selected channel features
P2 Number of selected channel features
O1 Number of selected channel features
O2 Number of selected channel features
Total Sum of selected features
TP True positives
FP False positives
TN True negatives
FN False negatives
PPV Precision metric (positive predictive value)
TPR Sensitivity metric (true positive rate)
F1 F1 metric (F-score, F-measure)

Table 3: GA execution parameters.

Parameter Symbol Value
Population size P 50
Number of generations G 200
Crossover rate C 0.9
Mutation probability M Uniform-variable

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1
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V 

m
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A-2 A-3A-1 A-4
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Figure 9: Results for the PPV metric.
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the total of selected features. 1e worst solution selects 924
characteristics of seven channels, except for only the P2
channel. While the best solution selects a subset of 358
features of Fp1, Fp2, and P1 channels, achieving a decrease
of 82.1% of the input data. In both cases, the solutions
operate with an overlap of 87%.

7.2.3. Problem A-3. 1is problem has a total of 66 events, of
which 46 were assigned for training and 20 for validation.
1e results shown in the boxplot graphs indicate that the
values of themetrics are focusedmostly above 0.9, with some
exceptions considered as atypical values. On the other hand,
the statistics presented in Table 4 reveal that the average
number of selected features is 437.9, the amount that rep-
resents a reduction of 78.1% of the input data.

Table 8 shows the information on the selection of fea-
tures, where it is possible to notice that 25 of the 31 solutions
have an overlap window above 80%.

1e worst solution uses an overlap of 30% and brings
together a subset of 713 features of six channels (Fp1, Fp2, F3,
P1, P2, and O1), reaching a value of F1 � 0.68. In contrast,
the best solution obtained a value F1 � 0.97 with an overlap
of 86% and selects a subset of 240 features of the Fp1 and Fp2
channels. 1erefore, the input data are reduced by 88%.

7.2.4. Problem A-4. In this problem, there is a total of 27
events, of which 19 were designated for training and eight for
validation. 1e boxplot graphs corresponding to the eval-
uation metrics show a considerable dispersion in the values
obtained, as well as the absence of anomalous data. 1e
highest dispersion comprises the [0.5, 1.0] range and belongs
to the sensitivity metric (TPR). 1e statistics in Table 4
indicate that, on average, the data are reduced by an 87%
according to a mean of 251.48 selected features.

1e information presented in Table 9 reveals that all
solutions completely omit the characteristics of the O1
channel, while the F3, F4, P1, P2, and O2 channels are only

selected in few occasions. Moreover, in 14 of the 31 exe-
cutions, overlap percentages of less than 35% were found,
while the rest reached percentages greater than 70%.

Both the worst and the best solution operate with an
overlap of 11%. However, the worst solution has a subset of
264 features, selected from Fp2 and P2 channels. With this
configuration, the solution obtained a precision PPV � 1.0
and a sensitivity TPR � 0.5, resulting in a value F1 � 0.66.
On the contrary, the best solution works with a subset of 238
features, selected from Fp1 and Fp2 channels. In this case, a
value of F1 � 0.93 is achieved with a precision of PPV � 1.0
and a sensitivity of TPR � 0.875, while the subset of selected
features represents a reduction of 88.1% regarding the input
data.

7.2.5. Discussion of the Experiment. Based on the boxplot
graphs from Figures 9–11, we can conclude that the pro-
posed method presented a better performance at the time of
extraction of features with problem A-2. In the 31 execu-
tions, a perfect classification was carried out on the vali-
dation assembly, and therefore, in the three evaluated
metrics, a value of 1.0 was obtained. In the opposite case, the
least efficient performance is presented with problem A-4,
where it is evident that there is a high variability in the values
of the evaluated metrics. On the other hand, from problems
A-1 and A-3, the highlighted ones reveal a similar behavior,
where in both scenarios the concentration of values occurs in
the [0.9, 1.0] range, and they are the only problems where
atypical values are presented.

A factor that significantly contributed to obtaining these
results was the number of events present in the datasets of
each problem. Based on the information presented in Ta-
ble 1, problem A-2 has the highest number of events
compared to the other problems. 1is allows that, during
the training stage, the MLP classification model can effi-
ciently learn the event’s pattern. As a result, all predictions
on the validation dataset are correct. On the contrary, the
deduction related to the results of problem A-4 is that the
number of events is insufficient to perform good training.
1is causes the predictions of the model over the validation
dataset to be inconsistent, giving way to obtaining varied
results.

However, even though the number of events in problem
A-1 is approximately 2.7 times greater than problemA-3, the
results obtained from both problems have a certain degree of
similarity. 1is can be appreciated in the boxplot graphs of
Section 7.2, especially those that correspond to the TPR
(Figure 10) and F1 (Figure 11) metrics. It is strongly believed
that this behavior is due to the stability or consistency of the
characteristic pattern of the event. 1at is to say, the action
executed by the participant was replicated multiple times
without presenting drastic changes between replicas. In this
case, the blinking action can be affected when the person
manifests visual fatigue or sleep during the test.

1e previous hypothesis is supported on the existing
relationship between the number of events in an EEG
(Table 1) and the average percentage of excluded data
(Table 4). According to the Pearson correlation coefficient,

Table 7: Selected features and metric values of problem A-2.

Overlap (%) Fp1 Fp2 F3 F4 P1 P2 O1 O2 Total
87 136 133 122 124 146 0 131 132 924
87 140 120 0 137 0 134 0 0 531
87 127 108 0 0 123 0 0 0 358
TP FP TN FN PPV TPR F1
53 0 483 0 1.0 1.0 1.0
53 0 483 0 1.0 1.0 1.0
53 0 483 0 1.0 1.0 1.0

Table 6: Selected features and metric values of problem A-1.

Overlap (%) Fp1 Fp2 F3 F4 P1 P2 O1 O2 Total
24 128 116 0 113 0 120 0 0 477
87 124 119 0 0 118 0 138 136 635
82 120 129 0 0 0 0 0 0 249
TP FP TN FN PPV TPR F1
20 1 225 21 0.952381 0.487805 0.645161
51 3 1348 0 0.944444 1.000000 0.971429
46 0 961 3 1.000000 0.938776 0.968421
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there is a linear dependence ρ � −0.93 that indicates a
strong negative correlation, as shown in Figure 12. Hence,
it is inferred that the greater consistency the pattern has,
the lower the number of features and events necessary to
define it.

7.3. Experiment 2: Pattern Generalization. 1e objective of
this experiment is to revalidate the solution with the highest
potential for each participant, which was found by extracting
features in EEG A. In this way, it is intended to verify the
abstraction or generalization capability of patterns by the
trained models.

1e best solution for problems A-1, A-2, A-3, and A-4
will be taken and will undergo an evaluation process with an
external dataset. 1at is, the dataset will be different from
those used in the training and validation of the corre-
sponding model. 1erefore, for this experiment, test sets will
be used, which are generated from EEG B.

7.3.1. Results of the Experiment. 1e results of this experi-
ment are presented in tabular format. For each evaluation,
the confusion matrix and the precision (PPV), sensitivity
(TPR) and F1 metrics were calculated. Table 10 shows the
obtained results, where the best performance was achieved
with problem B-2 reaching a value of F1 � 0.91, while the
worst one was with problem B-4 achieving a value of
F1 � 0.24.

7.3.2. Discussion of the Experiment. Based on the results of
Table 10, we can affirm that the model belonging to the best
solution of problem A-2 performed better than the rest of
the evaluated models. 1e test set was generated using a
window overlap of 87% with the EEG of problem B-2. It is
highly probable that the good performance of the model is
caused by the fact that it was trained with a large variety of
event examples since problem A-2 is the one with the largest

number of them. 1is allowed the model to learn a suffi-
ciently abstract eye-blink pattern, to the point of it being able
to successfully detect it in an unknown dataset. As a result,
an accuracy PPV � 1.0 and a sensitivity TPR � 0.84 was
obtained, with only nine detection failures out of 57 possible.

On the other hand, the model evaluated with problem
B-1 presented a similar performance to that of the model
evaluated with problem B-3, just as it happened in the first
experiment. Problem B-1 dataset was created with an
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Figure 10: Results for the TPR metric.
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Figure 11: Results for the F1 metric.

Table 9: Selected features and metric values of problem A-4.

Overlap (%) Fp1 Fp2 F3 F4 P1 P2 O1 O2 Total
11 0 128 0 0 0 136 0 0 264
87 127 122 120 111 117 119 0 0 716
11 117 121 0 0 0 0 0 0 238
TP FP TN FN PPV TPR F1
4 0 157 4 1.000000 0.500 0.666667
7 0 1107 1 1.000000 0.875 0.933333
7 0 157 1 1.000000 0.875 0.933333

Table 8: Selected features and metric values of problem A-3.

Overlap (%) Fp1 Fp2 F3 F4 P1 P2 O1 O2 Total
30 111 124 129 0 120 119 110 0 713
89 141 121 112 0 0 127 0 0 501
86 119 121 0 0 0 0 0 0 240
TP FP TN FN PPV TPR F1
10 0 305 9 1.000000 0.526316 0.689655
18 0 1885 1 1.000000 0.947368 0.972973
19 1 1508 0 0.950000 1.000000 0.974359
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overlap percentage of 82%, while for problem B-3, a window
overlap of 86% was used. 1e classification results indicate a
high incidence of false positives with problem B-1, which
significantly affected the accuracy metric and consequently
led to a value of F1 � 0.82. On the contrary, with problem
B-3, a value of F1 � 0.88 was achieved with only two false
positives and one false negative. From this, we can conclude
that the hypothesis regarding the stability of the event
pattern is well-founded. 1e convincing evidence for the
aforementioned is the case of problem A-3⇒ B-3, where the
low number of events in the EEG was compensated by the
consistency of the eye-blink action.

1e worst performance was presented by the model
evaluated with problem B-4, which in the first experiment
obtained an accuracy PPV � 1.0, a sensitivity TPR � 0.87,
and an F1value � 0.93. However, in the test set predictions,
there were a significant number of false negatives which
severely affected the value of the three-evaluationmetrics. As
a result, an accuracy PPV � 0.75, a sensitivity TPR � 0.14,
and a value F1 � 0.24 were obtained. It is evident that there is
no agreement between the results of both experiments, thus,
we can infer that the model presented overfitting. In ad-
dition, another aspect to be considered is the overlap used
for the creation of the datasets, which was 11% according to
the best solution of problem A-4. In contrast, the best so-
lutions to problems A-1, A-2, and A-3 operate with overlap
percentages of 82%, 87%, and 86%, respectively. 1erefore,

the inference about this fact is that the window overlap
should be greater than 80% to avoid loss of information
between windows.

8. Conclusions

BCI systems aim to satisfy a large part of a person’s daily
activities by automating tasks, whether for entertainment
purposes, work issues, or quality of life, among many others.

In this paper, a methodology to perform EEG feature
extraction was proposed, which involves the use of a GA as a
search algorithm and anMLP-type ANN as the classification
model. To demonstrate the performance of the proposed
architecture, eye-blinking action was established as a case
study, and a methodology was designed to acquire multiple
EEG files containing such an event. Subsequently, two ex-
periments were proposed: the first one aims to perform
feature extraction in the acquired EEGs to generate trained
models; the second one aims to measure the capability of the
trained models in detecting new examples of the event.

1e obtained results showed that the proposed method
in this paper proved to be successful regarding data di-
mensionality reduction. In the best case (problem A-3), a
decrease of 88% was achieved, whereas in the worst case
(problem A-2), it got a decrease of 82.1%.

Likewise, it was observed how the proposed architecture
was able to generalize the event within the trained models.
1e above was demonstrated by evaluating the model with
the test dataset. As follows, it was observed that the model is
capable to detect the event pattern in most of the presented
problems. 1e obtained results indicate good performance
in three out of the four evaluated models, which maintained
a metric of F1 > 0.8.

Additionally, both the dataset and the developed ap-
plications are part of a public repository hosted on the
GitHub platform. In this repository, the source code of the
proposed method implementation is also contained as well
as the output files obtained from the performed executions.
1e aforementioned elements are available in the following
URL address: https://github.com/CesarRocha00/evobci.git.

Finally, in the future, it is wished the development of a
strategy for automatic event labeling in the acquired EEGs
instead of doing it manually. In addition to exploring,
extending the proposed architecture for feature extraction in
the frequency domain of EEG signals.

Data Availability

1e data used to support the findings of this study are in-
cluded in the article.

Conflicts of Interest

1e authors declare that they have no conflicts of interest.

Acknowledgments

1is study was funded by the Autonomous University of
Tamaulipas.

A-1
A-2

A-3

A-4

68

70

72

74

76

78

80

82

84

86

88
Ex

cl
ud

ed
 d

at
a (

%
)

200 220120100 140 18016040 6020 80
Number of EEG events

Figure 12: Negative correlation between the number of EEG events
and the average percentage of excluded data.1e red line represents
the trend.

Table 10: Results of the evaluation with the test set.

ID TP FP TN FN PPV TPR F1

B-1 95 40 605 1 0.703704 0.989583 0.822511
B-2 48 0 1482 9 1.000000 0.842105 0.914286
B-3 11 2 1621 1 0.846154 0.916667 0.880000
B-4 3 1 260 18 0.750000 0.142857 0.240000
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