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ABSTRACT Our group has previously used laboratory and commercially developed assays
to understand the IgG responses to SARS-CoV-2 antigens, including nucleocapsid (N),
spike (S), and receptor binding domain (RBD), in Canadian blood donors. In this current
study, we analyzed 17,428 available and previously characterized retention samples col-
lected from April 2020 to March 2021. The analysis compared the characteristics of the
Abbott SARS-CoV-2 IgG II Quant assay (Abbott anti-spike [S], Abbott, Chicago, IL) against
four other IgG assays. The Abbott anti-S assay has a qualitative threshold of 50 AU/mL.
The four comparator assays were the Abbott anti-nucleocapsid (N) assay and three com-
monly used Canadian in-house IgG enzyme-linked immunosorbent assays (ELISAs) recog-
nizing distinct recombinant viral antigens, full-length spike glycoprotein, glycoprotein RBD,
and nucleocapsid. The strongest qualitative relationship was between Sinai RBD and the
Abbott anti-S assay (kappa, 0.707; standard error [SE] of kappa, 0.018; 95% confidence
interval, 0.671 to 0.743). We then scored each previously characterized specimen as posi-
tive when two anti-SARS-COV-2 assays identified anti-SARS-CoV-2 IgG in the specimen.
Using this composite reference standard approach, the sensitivity of the Abbott anti-S
assay was 95.96% (95% confidence interval [CI], 93.27 to 97.63%). The specificity of the
Abbott anti-S assay was 99.35% (95% CI, 99.21 to 99.46%). Our study provides context on
the use of commonly used SARS-CoV-2 serologies in Canada and identifies how these
assays qualitatively compare to newer commercial assays. Our next steps are to assess
how well the Abbott anti-S assays quantitatively detect wild-type and SARS-CoV-2 variants
of concern.

IMPORTANCE We describe the qualitative test characteristics of the Abbott SARS-CoV-
2 IgG II Quant assay against four other anti-SARS-CoV-2 IgG assays commonly used
in Canada. Although there is no gold standard for identifying anti-SARS-CoV-2 sero-
positivity, aggregate standards can be used to assess seropositivity. In this study, we
used a specimen bank of previously well-characterized specimens collected between April
2020 and March 2021. The Abbott anti-S assay showed the strongest qualitative relationship
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with a widely used laboratory-developed IgG assay for the SARS-CoV-2 receptor binding do-
main. Using the composite reference standard approach, we also showed that the Abbott
anti-S assay was highly sensitive and specific. As new anti-SARS-CoV-2 assays are developed,
it is important to compare their test characteristics against other assays that have been
extensively used in prior research.

KEYWORDS IgG, SARS-CoV-2 antibody, methods comparisons, nucleocapsid, receptor
binding domain, spike

Canadian Blood Services previously engaged a broad group of laboratories in North
America to attempt to understand the neutralizing capacity of blood donor anti-

bodies to SARS-CoV-2 (1–5). Originally, much of this preliminary work was focused on
supporting SARS-CoV-2 convalescent plasma studies in Canada (1, 2, 4, 5). The identifi-
cation of waning neutralizing antibody responses in blood donors (1) led to the devel-
opment of a further “Correlates of Immunity” project, which had the stated goal of
understanding changes in anti-SARS-CoV-2-neutralizing capacity as the COVID-19 pan-
demic advanced. As part of this Correlates of Immunity project, our group was able to
sample 1,500 retention specimens a month from Canadian blood donors using a
repeated cross-sectional design with random cross-sectional sampling of all available
retention samples for a 12-month period from April 2020 until March 2021 (6–10).
During this process, we used a variety of assays that have been widely used by our and
other groups to assess SARS-CoV-2 seroprevalence in Canada. These included the
Abbott Architect antinucleocapsid antigen IgG assay (Abbott-NP, Abbott, Chicago, IL),
as well as three in-house Sinai Health (Toronto, ON, Canada) IgG enzyme-linked immu-
nosorbent assays (ELISAs) utilizing recombinant viral antigens, full-length spike glyco-
protein (S), spike glycoprotein receptor binding domain (RBD), and nucleocapsid (NP)
(2, 3, 6, 11–16). The Sinai Health IgG ELISAs were developed to allow for the scalable
parallel detection of IgGs against the S, RBD, and NP. They are described in extensive
detail in the literature (12). Apart from work undertaken with Canadian Blood Service,
the laboratory-developed automated ELISAs described are being used or have been
used in multiple Canadian studies, including the Canadian COVID-19 Antibody and
Health Survey from Statistics Canada (17), the Action to Beat Coronavirus study (18),
and studies focused on infection and/or vaccine responses across different cohorts pre-
dicted to have a weaker immune response (19, 20).

Given the absence of a gold standard (6, 21), we previously characterized SARS-CoV-2
seropositivity, including latent class analysis (7, 8) and composite reference standard
approaches (6). We also attempted to understand the impact of donor-declared vaccine his-
tory on SARS-CoV-2 serological profiles (1, 2, 9, 10). We have noted that responses of different
assays are, at times, inconsistent with one another (1, 6–9). These differences may be due to a
variety of factors, including COVID-19 vaccination, false-positive results (probably less likely),
assay accuracy and reliability, cross-reactivity with seasonal coronaviruses, and antibody wan-
ing for both anti-N and anti-S targets (6–8, 22). In our prior analysis of specimens from the
Correlates of Immunity project, we were able to determine that regardless of the approach, by
March of 2021, infection and vaccine-mediated seroprevalence in Canadian blood donors
(,10%) was much lower than U.S. seroprevalence estimates. We also noted that our specimen
bank was influenced by relatively low infection rates and the relatively slow ramp-up of vacci-
nation programs (6, 7, 23, 24).

The development of new anti-SARS-CoV-2 commercial assays allows for the operationali-
zation of seroprevalence studies by non-research-focused laboratories, including clinical and
public health laboratories as well as blood operators (7, 21, 25, 26). The Abbott SARS-CoV-2
Quant assay (Abbott, Chicago, IL) was developed for the qualitative and quantitative determi-
nation of IgG against SARS-CoV-2 S. The qualitative cutoff for this assay has been described as
50 AU/mL (27). This assay has now been used in multiple seroprevalence surveys (28–31). Due
to the nonavailability of some retention specimens from our specimen bank, this study did
not attempt to infer neutralizing antibody seroprotection from the seroprevalence estimates.
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Instead, we attempted to understand qualitatively the test characteristics of the Abbott anti-S
assay against specimens well characterized by qualitative assays previously utilized by
Canadian seroprevalence and health studies.

RESULTS
Study population characteristics. Retention specimens from a total of 17,428

blood donors were included in the study, with samples collected between April 2020
and March 2021. Epidemiological characterization of these blood donors was previ-
ously described in multiple publications (6, 7).

Percentage agreement between the Abbott anti-S assays and Abbott anti-N, Sinai
anti-S, Sinai anti-RBD, and Sinai anti-N assays. The percentage agreement estimates
between the Abbott anti-S assay and Abbott anti-N, Sinai anti-S, Sinai anti-RBD, and Sinai anti-
N assays are listed in Tables 1 to 4. The highest agreement between positive Abbott anti-S
assay results was with positive Sinai anti-S results (72.6%; Table 2), then positive Sinai anti-RBD
results (66.6%; Table 3), then positive Sinai anti-N results (32.3%; Table 4), and, finally, positive
Abbott anti-N results (28.7%; Table 1). The highest agreement between negative Abbott anti-S
results was with negative Sinai anti-RBD results (99.5%; Table 3), then negative Sinai anti-N
results (97.7%), as well as negative Abbott anti-N results (99.7%; Table 1), and, finally, negative
Sinai anti-N results (97.4%; Table 2).

Comparison of agreement between qualitative results (kappa analysis). Qualitative
determination of positive results used signal-to-cutoff values, which are described in the
Materials and Methods. The distribution of qualitative agreement between the Abbott anti-S
assays and Abbott anti-N (Table 1), Sinai anti-S (Table 2), Sinai anti-RBD (Table 3), and Sinai
anti-N (Table 4) were determined. The highest kappa was with Sinai anti-RBD (kappa, 0.707;
SE of kappa, 0.018; 95% confidence interval (CI), 0.671 to 0.743) and progressively lower for
Sinai anti-S (kappa, 0.527; SE of kappa, 0.020; 95% CI, 0.489 to 0.565), Abbott anti-N (kappa,
0.407; SE of kappa, 0.030; 95% CI, 0.348 to 0.467), and lowest for Sinai anti-N (kappa, 0.278;
SE of kappa, 0.027; 95% CI, 0.226 to 0.3330).

Analysis of discordant specimens positive by Abbott anti-S. Of the 467 specimens
determined to be positive by the Abbott anti-S qualitative cutoff, distributions of positivity by
other assays are identified in Fig. 1 and 2. Discordant specimens positive by Abbott anti-S and
negative by all other assays or positive by only one other assay were analyzed as follows.

About a quarter of Abbott anti-S-positive specimens were negative on all other assays (i.e.,
their signal-to-cutoff values were below cutoff) (Fig. 1). None of these 111 specimens that
were only Abbott anti-S positive had a sequentially prior Abbott anti-N-positive specimen
(based on Canadian Institutes of Health Research [CIHR] number). None of the 111 specimens
were from donors who declared a recent history of COVID-19 vaccination. Not only were tar-
get signals below cutoff, but in general, median signal-to-cutoff values were well below cutoff.
Summary results for each of the targets suggested low median signal-to-cutoff values in this

TABLE 1 Comparison of Abbott-anti-S and Abbott anti-N assays

Abbott anti-S result

No. (%)a of results

TotalAbbott anti-N positive Abbott anti-N negative
Positive 134 (28.7) 333 467
Negative 43 16,918 (99.7) 16,961
Total 177 17,251 17,428
aNumbers in parentheses represent percent agreement versus other methodology.

TABLE 2 Comparison of Abbott-anti-S and Sinai anti-S assays

Abbott anti-S result

No. (%)a of results

TotalSinai anti-S positive Sinai anti-S negative
Positive 339 (72.6) 128 467
Negative 443 16,518 (97.4) 16,961
Total 782 16,646 17,428
aNumbers in parentheses represent percent agreement versus other methodology.
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group of specimens as follows: Abbott anti-N (median, 0.02 [25th to 75 percentiles, 0.02 to
0.05]), Sinai anti-S (median, 0.08 [25th to 75 percentiles, 0.03 to 0.09]), Sinai anti-RBD (median,
0.06 [25th to 75 percentiles, 0.03 to 0.09]), Sinai anti-N (median, 0.06 [25th to 75 percentiles,
0.04 to 0.09]), and Abbott anti-S (median, 78.7 [25th to 75 percentiles, 57.5 to 112.2]).

Of the 467 specimens determined to be positive by the Abbott anti-S qualitative cutoff,
about three-quarters were positive on at least one other assay. There were 47 determined dis-
tributions of positivity by only one other assay as in Fig. 1. The median Abbott anti-S signal-to-
cutoff value for these 47 specimens was relatively low (median, 104.8 AU/mL 25th to 75 per-
centiles, 72.8 to 117.0 AU/mL). Distributions of other positive assays were Sinai anti-S (n = 30),
Sinai anti-RBD (n = 10), Abbott anti-N (n = 4), and Sinai anti-N (n = 3). Of the specimens with
lone positive assays, the median signal-to-cutoff ratios for positive specimens were generally
low for most markers as follows: Abbott anti-N (median, 3.41 [25th to 75 percentiles, 2.09 to
5.05]), Sinai anti-S (median, 0.40 [25th to 75 percentiles, 0.29 to 0.57]), and Sinai anti-RBD (me-
dian, 0.23 25th to 75 percentiles, 0.20 to 0.27). Of note, these specimens may have a relatively
strong Sinai anti-N (median, 3.34 25th to 75 percentiles, 0.45 to 3.67) signal-to-cutoff values.

Analysis of discordant specimens negative by Abbott anti-S. Of the 16,961 speci-
mens determined to be negative by the Abbott anti-S qualitative assay, distributions of
positivity by other assays are identified in Fig. 2.

As in Fig. 2, 15 Abbott anti-S negative specimens were determined to be positive by two
(n = 14, 0.08%) or three (n = 1, 0.02%) other tests. Positive values are highlighted in Table 5.
Frequencies of positivity were Abbott anti-N (n = 2; median, 2.21 [25th to 75 percentiles, 2.05
to 2.37]), Sinai anti-S (n = 14; median, 0.32 [25th to 75 percentiles, 0.29 to 0.55]), Sinai anti-RBD
(n = 14; median, 0.23 [25th to 75 percentiles, 0.22 to 0,44]), and Sinai anti-N (n = 9; median,
0.58 [25th to 75 percentiles, 0.53 to 0.72]). Of the 15 specimens, the median signal to cutoff for
the Abbott anti-S was relatively low (median, 0.8 [25th to 75 percentiles, 95% CI, 0.2 to
3.2]). In this group, the Abbott anti-S values for two specimens, CIHR013582 (46.8 AU/mL)
and CIHR013757 (16.3 AU/mL), were below the qualitative cutoff of 50 AU/mL but above
the quantitative reportable limit of detection (6.8 AU/mL) for the Abbott anti-S assay. One
specimen (CIHR006065) had positive signals for Sinai anti-S (1.31), Sinai anti-RBD (0.49),
and Sinai anti-N (1.92).

Sensitivity and specificity calculations. Using a composite reference standard
approach, the sensitivity of the Abbott anti-S assay was 95.96% (95% CI, 93.27 to 97.64%). The
specificity of the Abbott anti-S assay was 99.35% (95% CI, 99.21 to 99.46%) (Table 6).

DISCUSSION

This study compared the characteristics of the Abbott SARS-CoV-2 IgG II Quant assay
(Abbott anti-spike [S]; Abbott, Chicago IL) against four other SARS-CoV-2 IgG assays that are
commonly used in Canada (2, 3, 6, 11–16). This study did not attempt to infer neutralizing

TABLE 4 Comparison of Abbott-anti-S and Sinai anti-N assays

Abbott anti-S result

No. (%)a of results

TotalSinai anti-N positive Sinai anti-N negative
Positive 151 (32.3) 316 467
Negative 392 16,569 (97.7) 16,961
Total 543 16,885 17,428
aNumbers in parentheses represent percent agreement versus other methodology.

TABLE 3 Comparison of Abbott anti-S and Sinai anti-RBD assays

Abbott anti-S result

No. (%)a of results

TotalSinai anti-RBD positive Sinai anti-RBD negative
Positive 311 (66.6) 156 467
Negative 93 16,868 (99.5) 16,961
Total 404 17,024 17,428
aNumbers in parentheses represent percent agreement versus other methodology.
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antibody seroprotection from the seroprevalence estimates and did not assess seropreva-
lence in Canadian blood donors.

The Abbott anti-S assay can be utilized as a qualitative (27, 32), as well as quantitative,
assay (33–36) for the detection of anti-SARS-CoV-2 antibodies. The assay is a chemiluminescent
microparticle immunoassay for IgG against the RBD region of S (21) with a qualitative assay
cutoff of 50 AU/mL (27, 32). In the past, we have also utilized serological assays against N, S,
and RBD, including those included in this study, to estimate seroprevalence in Canadian blood
donors (6–8). We also noted that well-validated anti-S and anti-RBD assays allow for estimates
of seroprevalence that are less impacted by waning antibodies as those seen with anti-N anti-
bodies (6–8, 25, 37). The reasons for waning antibodies to both N and S antigens are still not
completely understood but may reflect low levels of infections in some populations, waning
immunity after vaccination, immune status in populations studies, and differences in vaccine
rollout strategies (38–41). It is also important to utilize a variety of assays for seroprevalence
work, given the absence of a gold-standard SARS-CoV-2 immunoassay (6).

Assays that bridge between qualitative binding and quantitative neutralization are
important, and this study focused on the qualitative binding element of immunity. In our
previous studies, we have shown a difference in detection of binding versus neutralizing
anti-SARS-CoV-2 antibodies in specimens from the same cohort of blood donors in our
Correlates of Immunity project (9, 10). Other work has shown that not all binding antibodies
correlate to neutralization but that IgG against RBD (and to a lesser extent, S) can act as an
indicator of neutralization (2, 42). In other cases, detection of both binding and neutralizing
antibodies may both indicate immune protection after vaccination in macaque infection
models (43). However, even some anti-RBD antibodies may bind to nonneutralizing faces of
the RBD molecule (44). We now understand that antibodies to SARS-CoV-2 are polyfunctional
and undertake neutralizing and antibody-dependent cell-mediated cytotoxicity (ADCC) and

FIG 2 Reactivity of Abbott anti-S-negative specimens with other anti-SARS-CoV-2 IgG assays. The
graph indicates the percentage and number of Abbott-anti-S-negative specimens that were reactive
(1 to 3) and nonreactive by other anti-SARS-CoV-2 IgG assays.

FIG 1 Reactivity of Abbott anti-S-positive specimens with other anti-SARS-CoV-2 IgG assays. The
graph indicates the percentage and number of Abbott-anti-S-positive specimens that were reactive (1
to 4) and nonreactive by other anti-SARS-CoV-2 IgG assays.
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antibody-dependent cellular phagocytosis (ADCP) through antibodies to both N and S pro-
teins (4, 45–47). However, the mechanisms of ADCC and ADCP are still being understood and
require further studies in humans (48, 49).

The characterization of commercially available anti-S quantitative assays, such as the
Abbott anti-S assay, is important for supporting large-scale serosurveys and for guiding
public health decision-making (25, 37, 50). This ability of the Abbott serology platforms to
test both anti-S and anti-N signals will play an important role in helping serosurveillance
groups to characterize population-level immune responses to both vaccination and natural
SARS-CoV-2 infection (29–31, 51, 52).

We acknowledge several important caveats in this study, including the use of a relatively
small number of specimens over a 12-month period from April 2020 to March 2021. Because
these were healthy blood donors, these donors did not provide clinical information on COVID-
19 disease. The methodologies used to detect antibodies were qualitative or, in the case of
the Abbott anti-S assay, were analyzed as qualitative assays and did not assess antibody titers
over time. For a small subset of data, we assessed donor-declared vaccine histories and did
not access health databases in jurisdictions where donors lived. In this study, we also did not
account for the impact of variants of concern on how SARS-CoV-2 immunoassays are qualified
and characterized (25, 53).

In conclusion, we describe the qualitative characteristics of the Abbott anti-S assay. We
used a composite reference standard approach to estimate the sensitivity of the Abbott anti-S
assay to be 95.96% (95% CI, 93.27 to 97.63%). We also estimated the specificity as 99.35%
(95% CI, 99.21 to 99.46%). Our study provides context on the use of commonly used SARS-
CoV-2 serologies in Canada and identifies how these assays qualitatively compare to newer
commercial assays. Our next steps are to assess how well the Abbott anti-S assays quantita-
tively detect SARS-CoV-2 wild type and variants of concern.

MATERIALS ANDMETHODS
Ethical considerations. This project received ethics board clearance from the following institutions:

Canadian Blood Services, the University of Alberta, and Sinai Health, Toronto (Mount Sinai Hospital).

TABLE 5 Signal-to-cutoff ratios of four assays on which Abbott anti-S negative specimens
were positive by two or more anti-SARS-CoV-2 assays

CIHR no.

Signal-to-cutoff ratio of:
Abbott anti-S negative
specimens (AU/mL)Abbott anti-N Sinai anti-S Sinai anti-RBD Sinai anti-N

CIHR000106 0.08 0.31 0.22 0.08 3.4
CIHR002075 0.05 1.00 0.43 0.63 0
CIHR003710 0.04 0.26 0.57 0.51 0.7
CIHR006065 0.02 1.31 0.49 1.92 0
CIHR007833 0.23 0.89 0.20 0.81 0.8
CIHR008235 2.05 0.29 0.06 0.23 0.2
CIHR009609 0.45 0.29 0.30 0.25 1.8
CIHR012266 0.02 0.32 0.24 0.16 3.2
CIHR013582 0.02 0.44 0.60 0.02 46.8
CIHR013757 0.06 0.33 0.40 0.55 16.3
CIHR014210 2.37 0.12 0.22 0.58 0
CIHR015196 0.06 0.31 0.22 0.56 0.8
CIHR015226 0.02 0.38 0.19 0.05 1.2
CIHR015837 0.01 0.30 0.23 0.61 0.8
CIHR016791 0.08 0.20 0.22 0.45 1.2

TABLE 6 Sensitivity and specificity calculation matrix using reference standards

Abbott anti-S result
No. of positive specimens
(‡2 positive tests)

No. of negative specimens
(<2 positive tests) Total

Abbott anti-S positive 356 111 467
Abbott anti-S negative 15 16,946 16,961
Total 371 17,057 17,428
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CIHR Correlates of Immunity study participants and samples. Canadian Blood Services has blood
collection sites concentrated in large and small cities in all Canadian provinces except Quebec. Blood
donors must meet the following criteria: be at least 17 years of age, pass health selection criteria screen-
ing, and pass infectious disease screening protocols for blood donations that are then used to manufac-
ture products for transfusion. At each donation, there is also an additional EDTA plasma (Becton Dickson
[BD], Mississauga, ON, Canada) retention sample collected for additional blood testing if required (54).

Study design and population.We designed a repeated cross-sectional design with a random cross-
sectional sampling of all available retention samples (n = 1,500/month) for a 12-month period from April
2020 until March 2021. A two-stage process sampling approach was used with a random selection of
blood donor clinics followed by a random sample selection within clinics. Samples were anonymized.
We collected variables, including sex, birth year, residential forward sortation area (FSA; first three char-
acters of postal code), donation date, and collection site, which were extracted from the Canadian Blood
Services donor database. Retention plasma specimens were aliquoted at Canadian Blood Services and
transported to test sites (6). A residual specimen was stored at280°C for the remainder of the study.

SARS-CoV-2 antibody testing. Each retained plasma sample was evaluated for SARS-CoV-2 IgG anti-
bodies using four assays as described previously (6). This study undertook parallel testing for the Abbott Architect
anti-nucleocapsid antigen assay (Abbott-NP, Abbott, Chicago, IL), as well as three in-house IgG ELISAs utilizing
recombinant viral antigens, full-length spike glycoprotein (spike), spike glycoprotein receptor binding domain
(RBD), and nucleocapsid (NP) (11, 12). The testing of specimens by the Abbott-NP assay occurred in a sequential
and ascending manner based on specimen number (CIHR number). Residual specimens that were previously
tested by the Abbott-NP assay were available for testing by the Abbott SARS-CoV-2 Quant assay. Specimens
used for this study included those described in a prior analysis for April 2020 to March 2021, inclusive (6).

Thresholds used for assay comparisons. Ratio-converted ELISA reads were undertaken as previ-
ously described (2, 11), and cutoffs (positive) for each of the targets were N, $0.396; RBD, $0.186; and S,
$0.190 (6). Plasma samples were also tested with the Abbott Architect SARS-CoV-2 IgG test (Abbott
Laboratories, USA), which detects anti-N IgG antibodies as directed by the manufacturer, using an anti-
body index (AI) cutoff of 1.4. Plasma samples were also tested with the Abbott Architect anti-S SARS-
CoV-2 IgG test (Abbott Laboratories, USA), which detects the anti-S total with the cutoff of 50 AU/mL.

Data storage and statistical analysis. We used a Microsoft Excel (Redmond, WA, USA) spreadsheet
for data storage. Data were analyzed as described in the results section using GraphPad Prism (v9.2.0;
GraphPad Software, Inc., San Diego, CA, USA). The percentage agreement between the Abbott SARS-
CoV-2 Quant assay and other methods was calculated based on the denominators of rows as per Tables
1 to 4 and Table 6. Kappa analysis was performed using GraphPad Prism Quick Calcs and interpretations
as previously described (55, 56). Sensitivity and specificity calculations were undertaken using the Vassar
Stats clinical calculator 1 with 95% confidence intervals estimated as per Cohen (57, 58).

Collection of SARS-CoV-2 vaccination history in donors. All donors at the time of donation were
asked if they received a SARS-CoV-2 vaccine in the past 3 months. This was standard practice by
Canadian Blood Services. Information on dosing and vaccine type was limited. Provincial vaccine data-
bases are not linked to the blood operator records of donation.

Determination of anti-SARS-CoV-2-positive and -negative specimens for analysis of sensitivity
and specificity. In the past, we have estimated positives in the sample set using multiple methods,
including a composite reference standard where seropositivity using two or more assays described
below represents a true-positive case (6). For this study, we continued to use that reference standard.
Specimens were deemed to be anti-SARS-CoV-2 positive if they reacted with any two of the following
previously characterized assays; Abbott anti-N, Sinai anti-S, Sinai anti-RBD, and Sinai anti-N. Negative
specimens were reactive to only one of the assays listed above or none of these assays.
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