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Heart failure is the leading cause of death worldwide. The inability of the adult

mammalian heart to regenerate following injury results in the development of systolic

heart failure. Thus, identifying novel approaches toward regenerating the adult heart

has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is

an essential homeostatic process for maintaining growth and survival. The emerging

role of mitochondrial metabolism in controlling cell fate and function is beginning to be

appreciated. Recent evidence suggests that metabolism controls biological processes

including cell proliferation and differentiation, which has profound implications during

development and regeneration. The regenerative potential of the mammalian heart is

lost by the first week of postnatal development when cardiomyocytes exit the cell

cycle and become terminally differentiated. This inability to regenerate following injury

is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs

during heart maturation in the postnatal heart. Thus, understanding the mechanisms

that regulate cardiac metabolism is key to unlocking metabolic interventions during

development, disease, and regeneration. In this review, we will focus on the emerging

role of metabolism in cardiac development and regeneration and discuss the potential of

targeting metabolism for treatment of heart failure.
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INTRODUCTION

Heart failure is the leading cause of morbidity and mortality worldwide. In the United States
alone, there are over 6,000,000 people with heart failure (1). This is largely due to the inability
of the adult mammalian heart to replenish the lost myocardial tissue following injury, which
results in the progressive weakening of the heart muscle and the development of heart failure
(2). Current therapies are focused on preventing further remodeling of the remaining myocardial
tissue. Heart transplantations are the only treatment in patients with severe heart failure (3). Due to
the complexity and complications associated with heart transplants they are not always a suitable
treatment; therefore, identifying novel therapeutic approaches to promote adult heart regeneration
provides immense opportunities to advance heart failure therapy. Endogenous heart regeneration
following injury has been demonstrated in some non-mammalian vertebrates (4, 5). Interestingly,
neonatal mice are also capable of regenerating their heart tissue following injury, however this
regenerative ability is lost within a few days following birth (6, 7). These models of endogenous
regeneration provide us with a platform to elucidate the mechanisms that guide heart regeneration
to reactivate these processes to promote adult heart regeneration.
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Embryonic and neonatal cardiomyocytes produce energy
primarily via glycolysis, where postnatal maturation is
accompanied with a metabolic switch to fatty acid oxidation
to meet the energy demands of adult cardiomyocytes (8)
(Figure 1). This metabolic switch contributes to the postnatal
cardiomyocyte cell cycle exit and loss of the regenerative
potential of the mammalian heart. This underscores the
potential role of cardiac metabolism as a target to promote adult
heart regeneration.

In this review, we highlight major studies of cardiac
metabolism including fatty acid oxidation, glucose, and
amino acid metabolism (Figure 2). We also discuss key
metabolic targets that may play an important role during
cardiomyocyte development and regeneration and their
potential as a therapeutic target for adult heart disease.

ENERGY METABOLISM AND HEART
REGENERATION

The heart is the most energy-consuming tissue (per gram)
in the human body (9), and energy production takes place
in the mitochondria. The main function of the mitochondria
is generating energy as adenosine triphosphate (ATP); thus,
mitochondria play an essential role during development, cellular

FIGURE 1 | Schematic representation of the energy utilization in neonatal and

adult mouse hearts. The neonatal mouse heart generates energy through

glucose metabolism, while the adult mouse heart generates energy through

fatty acid oxidation.

proliferation, and tissue regeneration, all of which are energy
demanding processes (10–12).

Heart regenerative capacity differs by model organisms from
vertebrates to human. Zebrafish and newts have a remarkable
capability to regenerate their hearts after injury. Zebrafish
heart regeneration is primarily derived from the proliferation
of the pre-existing cardiomyocytes (13, 14). Following injury,
cardiomyocyte dedifferentiation and proliferation are required
to regenerate the heart following injury. Interestingly, single-
cell transcriptional analysis of regenerating zebrafish hearts
demonstrate that proliferating border zone cardiomyocytes
undergo metabolic reprogramming to glycolysis from oxidative
phosphorylation following cryoinjury (15). In contrast, glycolysis
inhibitors including 2-deoxyglucose and lonidamine impair
cardiomyocyte proliferation and heart regeneration (15). These
results suggest that the glycolytic metabolic state mediates
cardiomyocyte proliferation and regeneration following injury
in zebrafish.

Like zebrafish, embryonic and neonatal mice can regenerate
their heart after injury. Both zebrafish and neonatal mouse hearts
have lower mitochondrial DNA copy numbers compared to
postnatal and adult mice (16). This increase in cardiomyocyte
mitochondrial number in the adult heart is due to the switch
from glycolytic metabolism in neonatal cardiomyocytes to
oxygen-dependent mitochondrial oxidative phosphorylation in
adult cardiomyocytes (17). This metabolic switch and increase
mitochondrial DNA results in a significant rise in reactive
oxygen species (ROS) production from mitochondria which
plays an essential role in regulating heart development and
regeneration (16). This increase in ROS production contributes
to postnatal cardiomyocyte cell cycle arrest. Interestingly, the
increased sarcomere contraction in the postnatal heart promotes
mitochondrial metabolism, which results in ROS production and
DNA damage response activation via p53. As a result, inhibition
of sarcomeres in cardiac troponin T knockout cardiomyocytes
prevents cell cycle arrest and polyploidy resulting in increased
cardiomyocyte proliferation (18). Furthermore, ROS scavengers
such as N-acetyl cysteine (NAC) prolongs the postnatal window
of cardiomyocyte proliferation and regeneration following
ischemia reperfusion (I/R) injury (16).

Significant metabolic shifts occur in response to abnormal
heart conditions. A healthy adult heart generates energy through
fatty acid oxidation, however conditions such as pressure
overload, hypertrophy, and ischemia results in a metabolic
transition toward anaerobic glycolytic metabolism to be protect
against damage (19). A recent study elegantly demonstrates the
different metabolite utilization in human hearts by using arterio-
venous metabolomics, which is a powerful tool to measure
metabolite utilization in humans by measuring the metabolite
intake and release in the blood from human hearts. Similar to
mouse studies, healthy human hearts mostly uptake fatty acids
as a fuel source while they only uptake limited amounts of
glucose. Interestingly, the healthy heart releases amino acids,
specifically essential amino acids. In contrast, the failing heart
utilizes more ketones and lactate, but less fatty acids (20). These
results are consistent with previous animal studies demonstrating
that ketones and β-hydroxybutyrate are protective in the failing
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FIGURE 2 | Schematic of the major metabolic pathways that modulate the cardiac regenerative response following injury. Glucose metabolism (blue), fatty acid

metabolism (purple), and BCAA metabolism (red). Acetyl CoA from these major metabolic pathways is required for the TCA cycle. GLUT, glucose transporter type; HK,

hexokinase; G-6-P, glucose-6-phosphate; F-1,6-BP, fructose-1,6-biphosphate; PFK, phosphofructokinase; PDK, pyruvate dehydrogenase kinase; PDH, pyruvate

dehydrogenase; CD36, cluster of differentiation; CPT1, carnitine palmitoyltransferase; MCD, malonyl CoA dehydrogenase; ACC, acetyl CoA carboxylase; BCAAs,

branched-chain amino acids; AA, amino acid; BCAT, branched-chain amino-transferase; BCKA, branched-chain alpha keto acids; BCKDH, branched-chain

alpha-keto acid dehydrogenase; PP2Cm, protein phosphatase 2Cm; mTOR, the mechanistic target of rapamycin; AMPK, 5′ adenosine monophosphate-activated

protein kinase; TCA, tricarboxylic acid cycle; SDH, succinate dehydrogenase. Yellow star induces regeneration and red lightning bolt inhibits regeneration.

heart (21, 22). Collectively, these studies demonstrate that cardiac
metabolism is dynamic and can switch to different states during
development, disease, and regeneration.

FATTY ACID OXIDATION IN THE HEART

The heart requires high amounts of energy to maintain adult
cardiac physiology (9). The adult human heart generates ATP
via fatty acid oxidation (23–25). Fatty acids are oxidized through
the tricarboxylic acid (TCA) cycle in the mitochondria, and the
intermediate electrons from the TCA cycle flow through the
electron transport chain (ETC) and produce a proton gradient
to generate energy through ATP synthesis (26).

The first step for transporting long chain fatty acids from
the cytosol into the mitochondria for initiating mitochondrial
fatty acid oxidation occurs by carnitine palmitoyltransferase I
(CPT1) in the outer mitochondrial membrane. CoA in acyl-
CoA, which is derived from fatty acids, is converted to carnitine
through CPT1. Thus, CPT1 is a key enzyme in regulating fatty
acid oxidation. There are three tissue-specific isoforms of CPT1
that exist in mammalian tissues: CPT1A is expressed in the
liver, lung, spleen, pancreas, and kidney; CPT1B is expressed
in the heart, skeletal muscle, and adipose tissue; and CPT1C
is expressed in the brain (27). Mitochondrial CPT1 activity is

very low in the neonatal rat heart. Interestingly, CPT1 level is
significantly increased in 7-day-old juvenile mice, which is the

timepoint when themajority of mammalian cardiomyocytes have
already exited the cell cycle (28). CPT1 expression is increased

in adolescent (6 months) sheep hearts compared to fetus (105
days) hearts (29). Thus, CPT1 could be a key regulator of
cardiomyocyte proliferation.

CPT1 inhibition reduces fatty acid oxidation due to the

blockade of fatty acid transfer into the mitochondria. Inhibition
of CPT1 by etomoxir promotes neonatal mouse cardiomyocyte

proliferation (30). However, inhibition or activation of CPT1

does not induce cardiomyocyte proliferation in the adult mouse

heart (31). Ventricular cardiomyocytes isolated from neonatal
mice injected with the CPT1 inhibitor etomoxir show a reduction
in fatty acid oxidation genes (30). These results demonstrate that

disruption of fatty acid oxidation by inhibition of CPT1 extends

neonatal cardiomyocyte proliferation and heart regeneration but
is not sufficient to promote adult heart regeneration.

Another metabolite that regulates fatty acid oxidation via
CPT1 inhibition is malonyl-CoA (32). Inhibition of malonyl-
CoA decarboxylase (MCD), which is responsible for malonyl-
CoA decarboxylation, results in increased malonyl-CoA levels
which reduces fatty acid oxidation and increases glucose
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oxidation (33). As a consequence, short-term pharmacological
inhibition of MCD increases malonyl-CoA levels in ischemic
conditions resulting in improving cardiac function during
ischemia/reperfusion (I/R) injury in the swine heart (34) and
following myocardial infarction (MI) in the rat heart (35).
Genetically MCD deficient mouse hearts show increased glucose
oxidation and improved cardiac function following I/R injury
(36). These results demonstrate that malonyl-CoA improves
cardiac function following injury through CPT1 inhibition.

CPT1 is also regulated by peroxisome proliferator-activated
receptors (PPARs), which are lipid receptors that play a critical
role in regulating energy metabolism. There are three subtypes
of PPAR: PPARα, PPARβ/δ, and PPARγ (37). PPARα, β/δ, γ

gene expression levels are lower in the developing mouse heart
compared to 14- and 28-day-old mouse hearts (38, 39). The
levels of PPARs change during aging, as cardiac PPARα is
significantly reduced in aged mice (40). PPARs play multiple
roles in cardiac function in several disease states. It has been
shown that expression of PPARα and CPT1 is notably reduced
in adult mouse hearts following transverse aortic constriction
(TAC) injury (41) as well as following I/R injury (42). However,
activation of PPARα using the PPARα agonist GW7647 increased
CPT1 gene expression which increased fatty acid oxidation and
enhanced oxygen consumption rate in the presence of the fatty
acid palmitate in isolated mouse cardiomyocytes (30).

However, the role of PPAR in cardiomyocyte proliferation
and regeneration remains unclear. The PPARα agonist GW7647
does not promote cardiomyocyte proliferation and cardiac
function following MI in adult mouse hearts (31). Furthermore,
PPARα activation by agonistWY-14643 reduced cardiac function
following I/R injury (42). Moreover, larger infarct size is observed
in PPARα knockout mouse heart following I/R injury (43). In
contrast, another study showed that PPARα transgenic mouse
hearts showed improved cardiac function and reduced left
ventricular dilation following TAC injury (41).

Another PPAR family receptor, PPARδ, has been shown to
play a role during cardiac injury. The PPARδ ligand, GW501516,
has been shown to inhibit cardiac fibroblast proliferation
and transdifferentiation to myofibroblasts (44). Furthermore,
inhibition of PPARδ reduced cardiomyocyte proliferation
following injury in zebrafish hearts, whereas cardiomyocyte-
specific PPARδ overexpression induced proliferation and reduced
scar size following MI in mouse hearts (45).

Despite the important role of PPAR receptors in a variety
of heart disease models, the exact role of these receptors in
regulating cardiomyocyte proliferation and heart regeneration
remains to be fully defined.

GLUCOSE METABOLISM IN HEART

Although the adult mammalian heart utilizes fatty acids as a
main source of energy in the heart, glucose plays an important
role as an energy source (46–49). Under healthy conditions the
heart mostly uses fatty acids to produce energy, however, it will
switch to glucose as an energy source during heart failure (50–52).

Glucose metabolism is initiated by glucose uptake. In the heart,
glucose enters cardiomyocytes via glucose transporters (GLUTs)
which are expressed by various cell types. Among 14 members
of the GLUT family (53), the most abundant GLUTs in the
human heart are the insulin-sensitive glucose transporter GLUT4
(54, 55), and the insulin-independent glucose transporter GLUT1
(54, 56).

Under physiological conditions, GLUT1 is the main glucose
transporter in embryonic and neonatal hearts, while GLUT4
is the primary glucose transporter in adult hearts (57, 58). In
heart failure, GLUT4 expression is reduced while the levels of
GLUT1 increase (59). This results in an increase in GLUT1-
mediated glycolysis in heart failure, suggesting that GLUT1 plays
an important role in cardiac protection during heart failure.
GLUT1 expression is also increased in the heart under hypoxic
conditions (60), which is mediated via hypoxia-inducible factor-
1α (HIF-1α) (61). Cardiac-specific overexpression of GLUT1
results in increased glucose uptake and glycolysis in the mouse
heart (62, 63), whereas cardiac-specific GLUT1 deletion reduces
glucose uptake and glycolysis in isolated mouse cardiomyocytes
following TAC injury (59). Interestingly, GLUT1 overexpression
enhanced the regenerative response of neonatal mice following
cryoinjury by increasing the levels of glucose metabolites (64).
These results provide new evidence that increased GLUT1
expression promotes cardiomyocyte proliferation and heart
regeneration through increased glucose metabolism.

Once glucose enters cardiomyocytes through GLUTs, glucose
is phosphorylated and metabolized by key glycolytic enzymes
such as hexokinase (HK) and phosphofructokinase (PFK) to
form two pyruvate molecules (65). Pyruvate is then oxidized
to acetyl CoA by pyruvate dehydrogenase (PDH), a key
regulator in pyruvate metabolism (66), to enter the TCA
cycle in the mitochondria. These glycolytic enzymes have been
demonstrated to play a role in cardiac repair and regeneration
following injury. In adult zebrafish, increased glycolysis has
been shown to promote cardiomyocyte proliferation through
increased cell cycle gene expression following injury (67). In
addition, inhibition of glycolysis by 2-deoxyglucose reduced
cardiomyocyte proliferation in the injured zebrafish heart (15).
Thus, key components of glycolysis play an important role during
cardiomyocyte proliferation and heart regeneration.

Hexokinase (HK) is the first enzyme of glycolysis that
phosphorylates glucose to glucose-6-phosphate. Among the
four distinct HK isozymes (HK 1, 2, 3, and 4) (68),
HK-1 and -2 are expressed in the heart and regulate
cardiac glucose metabolism (69, 70). Cardiac-specific HK-2
overexpression decreased cardiac hypertrophy in isoproterenol-
induced mouse hearts and reduced cardiomyocyte size in
neonatal rat ventricular cardiomyocytes (71). In addition,
HK-2 overexpression reduced ROS accumulation which is
upregulated during cardiac hypertrophy (71). In contrast,
reduced HK-2 expression in HK-2+/− mice results in increased
cardiac dysfunction due to increase in cell death and fibrosis
and reduction of angiogenesis following I//R injury (72).
Whether HK plays a role during heart regeneration remains to
be determined.
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Another important enzyme that regulates glycolysis is
phosphofructokinase (PFK) which has two isoforms: PFK-
1 and PFK-2. PFK-2 regulates PFK-1 activity since PFK-2
regulates the synthesis of fructose-2,6-biphosphate, which
activates PFK1 that promotes glycolysis. Thus, PFK-2 is a
crucial enzyme that regulates glycolysis (65). PFK-2 is activated
upon insulin stimulation which promotes glycolysis, where
PFK-2 is reduced in the insulin-deficient streptozotocin-
induced diabetic mice and high-fat diet-induced obese
mice (73). Glycolysis and insulin sensitivity are decreased
in cardiac-specific kinase-deficient PFK-2 mutant mouse
hearts (74, 75). As a result, glycolysis is not increased in
cardiac-specific kinase-deficient PFK-2 mice in contrast to
wild type mice following TAC surgery (75). On the other
hand, overexpression of kinase-active PFK-2 enhances
contractility in hypoxic mouse cardiomyocytes (76). Thus,
PFK-2 regulates glycolysis and may play a role in cardiac
protection following injury.

A key glycolysis enzyme is pyruvate dehydrogenase kinase
(PDK). There are four PDK isoforms (PDK 1, 2, 3, and
4). PDKs expression is significantly increased during heart
development and is further increased in the adult heart
(58). PDKs expression is also increased in the infarct zone
following cardiac cryoinjury in zebrafish (67). Among the PDK
isoforms, cardiac PDK4 is the most significantly upregulated
enzyme in 7-day-old mice, where the majority of mammalian
cardiomyocytes exit the cell cycle (58). PDKs play in a role
in glycolysis via inhibition of pyruvate dehydrogenase (PDH),
which is a limiting step in glucose oxidation. PDK inhibition
by dichloroacetate induces PDH activation which promotes
cardiac function following KCl-induced cardiac arrest (77).
A recent study demonstrated that cardiac-specific deletion
of PDK4 promotes adult cardiomyocyte proliferation and
heart regeneration following adult MI (78). In summary,
PDK plays an important role in glycolysis via inhibition of
PDH activity, suggesting that PDKs may be an important
therapeutic target to increase glycolysis and promote cardiac
repair and regeneration.

Pyruvate kinase muscle isoenzyme 2 (PKM2), a rate-
limiting enzyme in the final step of glycolysis, is expressed in
embryonic and neonatal mouse hearts; however, it is significantly
reduced beyond postnatal day 7 when cardiomyocytes exit
the cell cycle (79). Interestingly, overexpression of PKM2 in
cardiomyocytes promotes cell cycle and glucose-6-phosphate
dehydrogenase expression (79). Cardiomyocyte-specific PKM2
expression by modified RNA (modRNA) promotes adult
cardiomyocyte proliferation and cardiac regeneration following
adult MI (79). Conversely, loss of PKM2 reduces cardiomyocyte
proliferation following injury in zebrafish hearts (67). Moreover,
cardiomyocyte-specific deletion of PKM2 impairs heart
development as they exhibit smaller heart size and low levels of
cardiomyocyte proliferation (79).

Taken together, these studies demonstrate that glycolysis plays
an important role in regulating cardiomyocyte proliferation
and heart regeneration following injury. Thus, targeting
glucose metabolism is a promising approach to promote adult
heart regeneration.

AMINO ACID METABOLISM IN THE HEART

Amino acids are key molecules for cell growth and survival.
Amino acids are used as the building blocks for protein
synthesis as well as inhibiting proteolysis (80). In addition, amino
acids serve as precursors to key metabolites (81). Remarkably,
amino acids can act as a signaling molecule, such as leucine,
which stimulates muscle protein synthesis via the mechanistic
target of rapamycin (mTOR) signaling pathway (82–84). The
levels of cellular amino acids fluctuate throughout development,
increasing in postnatal stages until reaching peak levels around
P9 and then decreasing into adult stages suggesting a dynamic
role for amino acids during development and maturation (85).

A recent study demonstrated that circulating arterial amino
acid levels are reduced in patients with heart failure in
comparison to healthy patients (86). Decreasing levels of
arterial amino acids correlated with reduced heart function,
demonstrating the potential use for arterial amino acid levels as a
biomarker of heart failure (86). To understand if this reduction of
circulating arterial amino acids was the heart reducing its energy
consumption of amino acids a recent study aimed to quantify
fuel consumption of the failing and non-failing human heart
(20). This study demonstrated that energy consumption of amino
acids was unchanged between the non-failing and failing hearts
(20), suggesting that the role amino acids play in heart failure is
not tied to their function as an energy source.

To further understand the role of amino acid metabolism in
heart failure, a main focus was placed on a subset of amino
acids, the branched chain amino acids (BCAAs), which are
utilized differently than the other amino acids. BCAAs consist
of leucine, isoleucine, and valine (87). BCAAs account for nearly
5% of total carbon used within the heart, and they also act as
regulatory components for other metabolic processes (20, 88).
BCAA catabolism has been shown to play a role in heart failure.
This is seen in both humans and rodents where all components
in BCAA catabolism have altered expression levels in heart
failure (87). A study using a mouse model deficient in protein
phosphatase 2Cm (PP2Cm), which is a critical component in the
conversion of branch chain ketone acids to acyl-CoA derivatives
via the branched-chain alpha-keto acid dehydrogenase complex
(BCKDH), demonstrated that the knockout mice have a higher
susceptibility to heart failure in response to pressure overload
stress (87). This was due to the higher levels of BCAAs in the
PP2Cm deficient mice, which reduced glucose breakdown via
direct inhibition of pyruvate dehydrogenase (89).

The mechanistic target of rapamycin (mTOR) signaling
pathway has been demonstrated to play an important role
during heart development and growth (90, 91). Interestingly,
BCAAs stimulate mTOR activation which promotes metabolic
reprogramming to glycolysis from fatty acid oxidation through
HIF-1α (92). In contrast, inhibition of mTOR promotes human
iPSC-derived cardiomyocyte maturation and impairs zebrafish
heart regeneration following injury (93, 94). mTOR is also
inhibited by 5′ adenosine monophosphate-activated protein
kinase (AMPK) through tuberous sclerosis complex 2 (TSC2)
(95). Pharmacological activation of AMPK by metformin
inhibits mTOR pathway activation following TAC injury (96).
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In addition, AMPK activation by AICAR promotes human
iPSC-derived cardiomyocyte maturation (97). Thus, downstream
pathways of BCAAs including mTOR and AMPK can regulate
cardiomyocyte proliferation and regeneration.

Conversely, stimulating BCAA catabolism can be protective
against heart injury and failure. BCAA catabolism can be
activated by inhibition of the branched chain ketoacid
dehydrogenase kinase (BCKDK), which results in BCKDH
activation (87). BCKDK inhibition increased BCAA catabolism,
which increased cardiac function following TAC compared to
controls (98). In addition, adenoviral overexpression of PP2Cm
in infarcted diabetic mice resulted in a significantly smaller
scar size compared to controls (99). These studies demonstrate
that enhanced BCAA catabolism can be protective against
cardiac injury.

This relationship between BCAA catabolism and heart failure
demonstrate that amino acid metabolism plays a role in heart
disease and repair. Future studies to dissect the role of amino
acids in the heart will establish their role as an important
therapeutic target in cardiovascular disease.

TCA CYCLE METABOLITES IN THE HEART

The metabolic switch from glycolysis in neonatal mice to fatty
acid oxidation in adult cardiomyocytes is accompanied by a
significant increase in mitochondrial number and high levels of
ROS production (16). This increase in ROS levels in the postnatal
heart induces cardiomyocyte DNA damage, which contributes
to cardiomyocyte cell cycle exit in the adult mammalian heart
(16). Thus, elucidating the role of mitochondrial metabolites in
regulating this metabolic switch is critical to identify metabolic
targets to promote adult heart regeneration.

Succinate dehydrogenase (SDH), also known as
mitochondrial complex II, is an important enzyme in regulating
cell cycle and metabolic reprogramming in cancer because SDH
plays a role in both the TCA cycle and the electron transport
chain (100). Metabolic reprogramming has been recognized
as a hallmark of various cancers due to the unique metabolic
signature of cancer (101). In the presence of oxygen, pyruvate is
converted to acetyl-CoA which enters the mitochondrial TCA
cycle. However, in the absence of oxygen very limited oxidative
phosphorylation takes place, instead lactate production increases
aerobic glycolysis (101). Interestingly, pyruvate is mostly
converted to lactate in cancer cells regardless of the oxygen
levels. This metabolic switch promotes cancer cell survival and
cell proliferation (100–102).

Recent studies demonstrated that reverse activity of SDH
during ischemia results in succinate accumulation (103, 104).
The accumulated succinate is then rapidly oxidized following
reperfusion and results in a burst of ROS production via
reverse activity of the mitochondrial complex I (105). These
studies suggest that ROS production due to reverse activity
of SDH and succinate accumulation is a hallmark of I/R
injury (105). Interestingly, SDH inhibition reduces infarct size
during ischemia in Langendorff-perfused mouse hearts (106).
Furthermore, the SDH competitive inhibitor malonate reduces

infarct size during I/R injury in pig hearts (107). These results
demonstrate that SDH inhibition during I/R injury blocks
the SDH-mediated succinate accumulation, thus protecting the
heart against the redox insult during I/R injury. Interestingly,
a recent study demonstrated that succinate accumulation in
ischemia/reperfusion is not due to the reverse activity of
SDH, but rather due to canonical TCA cycle activity (108).
Thus, although succinate accumulation during ischemia is
conserved across vertebrates, the proposed mechanism of
succinate accumulation remains to be further understood.

SDH knockdown induces cell proliferation and migration
in human hepatocellular carcinoma cell lines and leads to
a metabolic shift to glycolysis as demonstrated by increased
level of glycolytic enzymes (109). Interestingly, a recent study
demonstrated that metabolic reprogramming to glycolysis
promotes cardiomyocyte proliferation and heart regeneration
following injury in zebrafish (15). Remarkably, SDH inhibition
by malonate promotes adult cardiomyocyte proliferation,
revascularization, and heart regeneration following adult
myocardial infarction (110). In contrast to the cardioprotective
role of malonate during I/R injury in mouse and pig hearts
(105, 107); malonate did not protect against infarction post-
MI but rather promoted regeneration following infarction
(110). Furthermore, SDH inhibition by malonate following
adult MI was accompanied by increased succinate levels as a
consequence of TCA cycle inhibition, which is distinct from
the cardioprotective role of malonate that prevents succinate
accumulation during I/R injury (105, 110). Interestingly,
metabolic profiling of the adult heart demonstrated an increase
in glucose metabolism and a decrease in TCA cycle metabolism
following SDH inhibition by malonate, consistent with a
metabolic reprogramming from oxidative phosphorylation to
glycolysis in the adult heart. These results demonstrate that SDH
inhibition by malonate promotes adult heart regeneration via
metabolic reprogramming (110).

Collectively, these studies demonstrate an important role for
mitochondrial metabolites in regulating the cardiac metabolic
state, and targeting metabolism has an important therapeutic
potential to promote adult heart regeneration.

DISCUSSION

The role of the complex metabolic interactions in the heart
and their potential to promote cardiac repair and regeneration
are beginning to be appreciated. The shift in metabolism from
glycolysis to fatty acid oxidation after birth coincides with the
loss of regenerative potential in the neonatal mouse heart. The
studies that are highlighted throughout this review demonstrate
that manipulation of metabolic pathways is an area of immense
potential for identifying new therapeutics to treat heart diseases
(Table 1). Targeting these metabolic pathways can promote or
inhibit regeneration depending upon the specific component that
is modulated (Figure 2).

Manipulating metabolic components in ways that can
stimulate glucose metabolism has been implicated in promoting
regeneration, as this shifts the heart’s metabolic landscape closer
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TABLE 1 | Summary of recent studies demonstrating a central role for metabolism in heart failure and regeneration.

Metabolism Target gene Function Application Results References

Fatty acid

oxidation

Carnitine palmitoyltransferase

1 (CPT1)

Induces fatty acid

oxidation

CPT1 inhibition Increased proliferation of isolated neonatal

cardiomyocytes

(30)

Reduced in fatty acid oxidation gene expression

No change in adult mouse cardiomyocyte

proliferation

(31)

Malonyl-CoA decarboxylase

(MCD)

Reduces fatty acid

oxidation

MCD inhibition Increased malonyl-CoA levels in ischemic swine

heart

(33, 34)

Improved cardiac function following rat heart

myocardial infarction (MI)

(35)

Increased glucose oxidation in MCD deficient

mouse heart

(36)

Improved cardiac function in ischemic MCD

deficient mouse heart

Peroxisome

proliferator-activated receptor

(PPAR) α

Induces fatty acid

oxidation

PPARα activation Increased CPT1 gene expression and oxygen

consumption rate in the presence of the fatty acid

palmitate in isolated mouse cardiomyocytes

(30)

No change in adult cardiomyocyte proliferation and

cardiac function following MI

(31)

Cardiac function decreased following I/R injury (42)

PPARδ Induces fatty acid

oxidation

PPARδ activation Decreased cardiac fibroblast proliferation and

myofibroblast transdifferentiation

(44)

Reduced cardiomyocyte proliferation and

increased scar size following MI in mouse heart

(45)

PPARδ inhibition Reduced cardiomyocyte proliferation following

cardiac injury in zebrafish

(45)

Glucose

metabolism

GLUT1 Increases glucose

uptake

GLUT1 overexpression Increased glucose uptake and glycolysis in the

mouse heart

(62, 63)

Increased regenerative response and glucose

metabolites in neonatal mouse heart following

cryoinjury

(64)

Decreases glucose

uptake

GLUT1 inhibition Reduced glucose uptake and glycolysis in isolated

mouse cardiomyocytes following TAC injury

(59)

Hexokinase (HK) 2 Increases glycolysis HK-2 overexpression Decreased cardiac hypertrophy in

isoproterenol-induced mouse hearts

(71)

Reduced cardiomyocyte size in neonatal rat

ventricular cardiomyocytes

Reduced ROS accumulation

Decreases glycolysis HK-2 inhibition Increased cardiac dysfunction and cell death and

fibrosis

(72)

Decreased angiogenesis following I/R injury

Phosphofructokinase (PFK) 2 Increases glycolysis PFK-2 inhibition Reduced glycolysis and insulin sensitivity in mice (74, 75)

PFK-2 overexpression Increased contractility in hypoxic mouse

cardiomyocytes

(76)

Pyruvate dehydrogenase

kinase (PDK)

Increases glycolysis PDK inhibition Increased cardiac function following KCI-induced

cardiac arrest

(77)

PDK-4 inhibition Promoted mouse cardiomyocyte proliferation and

heart regeneration following adult MI

(78)

Pyruvate kinase muscle

isoenzyme 2 (PKM2)

Increases glycolysis PKM2 overexpression Increased cardiomyocyte proliferation and cardiac

regeneration following adult MI

(79)

PKM2 inhibition Reduced cardiomyocyte proliferation following

injury in zebrafish hearts

(67)

Impaired heart development and reduced

cardiomyocyte proliferation

(79)

Amino acid

metabolism

Protein Phosphatase 2cm

(PP2 cm)/Protein

Phosphatase 1 k (PPM1K)

Reduced BCAA

oxidation

PP2cm inhibition Increased BCAA and BCKA levels (87)

(Continued)
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TABLE 1 | Continued

Metabolism Target gene Function Application Results References

Reduced cardiac function and increased heart

failure

(87, 89)

Decrease in glucose uptake and utilization (89)

Increased BCAA

oxidation

PP2cm overexpression Decreased DNA damage and cell death, leading to

a smaller scar size post-MI

(99)

BCKDK Increased BCAA

oxidation

BCKDK inhibition Decreased free BCAAs, leading to improved heart

function post-TAC

(98)

TCA cycle

metabolism

Succinate dehydrogenase

(SDH)

Reduced succinate

accumulation

SDH inhibition Reduced infarct size during ischemia in I/R mouse

hearts

(106)

Reduced infarct size during I/R injury in pig hearts (107)

Induced glucose metabolism in adult mouse hearts (110)

Promoted adult cardiomyocyte proliferation,

revascularization, and heart regeneration

following MI

(110)

to the metabolic state of the regenerative neonatal heart. This
was demonstrated with deletion of PDK4, overexpression of
PP2cm, as well as SDH inhibition viamalonate, which promoted
regeneration by inducing glucose metabolism via modulating
their respective metabolic pathways (78, 99, 110).

In contrast, increased fatty acid oxidation has been
demonstrated to reduce the cardiac regenerative response
following injury. Inducing fatty acid oxidation via treatment
with the PPARα agonist WY-14643 results in reduced cardiac
function after injury (42). Similarly, inhibition of glycolysis
exacerbates cardiac injury, as demonstrated by reduced HK-2
expression (72) and PP2cm deletion (87).

The dynamic role of glycolysis and fatty acid oxidation
following injury demonstrates a central role for cardiac
metabolism during regeneration. Although multiple key
components have already been identified that can be targeted
therapeutically, these metabolic pathways play an important role
in cardiac homeostasis. Thus, elucidating the mechanisms of
these pathways during homeostasis, disease, and regeneration
is an essential step prior to targeting these pathways for
therapeutic development. For example, targeting succinate
dehydrogenase post-MI promoted adult heart regeneration, yet
the mechanisms by which succinate dehydrogenase inhibition
promotes regeneration needs to be fully understood prior to
clinical use (110). Furthermore, harnessing the potential of
known pharmacological agents that have been demonstrated
to target these metabolic pathways needs to be explored as
candidates to induce adult heart regeneration.

Elucidating the role of cardiac metabolism in health and
disease will provide us with novel avenues with significant

therapeutic potential that could aid in promoting heart
repair and regeneration. Advancements in this area of
research will provide a better understanding of heart disease
and regeneration.
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