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Abstract: Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML).
Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an
essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1
(GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called
transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by
acquisition of additional somatic mutations in a stepwise manner. We previously developed a model
for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem
cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In
this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the
cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of
GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional
STAG2 protein, leading to enhanced production of immature megakaryocytic population compared
to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs
exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that
GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation
pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid
differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially
reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced
self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via
hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.

Keywords: Down syndrome; iPSC; CRISPR/Cas9; leukemia; GATA1s; STAG2

1. Introduction

Down syndrome (DS), characterized by trisomy 21, is known to be a leukemia-predisposin
g syndrome [1]. The dosage imbalance in the hematopoiesis governing genes (RUNX1,
DYRK1A) located on chromosome 21 [2,3] is considered to be the likely cause of the 500-fold
higher incidence of myeloid leukemia in young children with DS (DS-ML) [4]. Early acquisi-
tion of somatic mutations in GATA1, resulting in the production of N-terminally truncated
short form of GATA1 protein (GATA1s) [5–7], is linked to the induction of transient abnormal
myelopoiesis (TAM) seen in 1 of 10 DS infants [8,9]. Thus, trisomy 21 and GATA1 muta-
tion together induce this pre-leukemic condition characterized by increased population of
megakaryoblasts in the peripheral blood [10]. Although TAM in most infants is self-resolved,
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approximately one-third of these representing 1–2% of DS children develop DS-ML prior to
age 5 [9]. This process is believed to be promoted by the acquisition of additional somatic
mutations in genes encoding three major classes of proteins—cohesin complex components,
epigenetic regulators, and signaling molecules [10–12].

Comprehensive genomic analyses of DS-ML and TAM blasts showed the presence of
mutations in one or other cohesin complex components in 53% DS-ML patients, while no
such mutations were observed in TAM patients [12]. The mutations in cohesin complex
components were mutually exclusive, indicating that they constituted driver mutations.
The cohesin complex functions to hold sister chromatids together until they are segregated.
STAG2 (stromal antigen 2), a redundant subunit of cohesin complex, is the most frequently
mutated cohesin complex component in several types of cancers [13]. In addition to its
redundant role in sister chromatid assembly, STAG2 is a transcriptional coactivator shown
to regulate stem cell expansion and differentiation [14].

We recently reported an in vitro disease model by customizing trisomic induced
pluripotent stem cells (iPSCs) using precise GATA1 gene editing to recapitulate the char-
acteristics of TAM [15]. We utilized this model system and CRISPR (clustered regularly
interspaced short palindromic repeats)/Cas9 methodology for the introduction of loss of
function mutations in STAG2, representing the third genetic hit (besides trisomy 21 and
GATA1s) to develop DS-ML. Hematopoietic differentiation of two distinct trisomic iPSC
lines bearing GATA1 and STAG2 mutation showed that GATA1s and loss of STAG2 protein
in trisomy 21 background co-operatively increased the abundance of the megakaryoid pop-
ulation and promoted expression of DS-ML markers. Thus, we developed an iPSC system to
model the stepwise mutagenesis in DS-ML leukemogenesis using CRISPR/Cas9-mediated
gene targeting.

2. Materials and Methods
2.1. iPSC Lines and Culture

Isogenic iPSC lines with trisomy 21 (T21-1) and disomy 21 (D21-1) (described in [15]
as T21 and D21, respectively) were obtained from RUCDR Infinite Biologics, Rutgers
University, NIH Center for Regenerative Medicine [16]. Trisomic DS2-iPS10 iPSC line
(T21-2) (described in [15] as H) was gifted by Prof. George Daley, Children’s Hospital,
Harvard University, Boston, MA [17].

iPSCs were cultured in complete mTESR1 (StemCell Technologies, Ontario, Canada)
on Matrigel (Corning, Tewksbury, MA, USA)-coated plates. Subculturing was performed
by dissociating iPSC colonies with cell dissociation agent (StemCell Technologies) for
3 min followed by scraping the colonies into the mTESR1 media. Whenever colonies were
revived from liquid nitrogen, mTESR1 was supplemented with 10 µM Rho Kinase inhibitor
Y27632 (Cayman, Ann Arbor, MI, USA) overnight before continuing the culture in fresh
mTER1 medium. Cells were tested for their pluripotency by determining the expression
of pluripotency markers TRA-1-60 and SSEA4 (BioLegend, San Diego, CA, USA) by flow
cytometry. Bioauthentication was performed to confirm the ploidy and integrity of the
iPSC lines using the AmpFLSTR Identifiler PCR Amplification kit (ThermoFisher Scientific,
Waltham, MA, USA).

2.2. CRISPR Design and Cloning

CRISPR guide sequence for STAG2 was designed using algorithm on http://crispor.
tefor.net/, accessed on 19 August 2020 [18]. Alt-R CRISPR-Cas9 sgRNA with single RNA
molecule comprising crRNA and tracrRNA was complexed with Alt-R Cas9-GFP nuclease
(both obtained from IDT, Coralville, IA, USA) to form RNP complex, which was introduced
into iPSCs (0.75 × 105 cells) using a 4D nucleofector system and P3 Primary Cell 4D-
Nucleotransfector X Kit L (Lonza; Basel, Switzerland). Transfected cells were cultured in
12-well plates. Two days after transfection, single-cell suspension was generated using
accutase, and 10,000 cells were plated in each well of a 6-well plate. Media were changed
every day until individual colonies were visible. Individual colonies were expanded for
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cryopreservation and genomic DNA isolation using a MicroDNA kit (Qiagen, Germantown,
MD, USA). Genomic DNA used as a template for PCR using primers flanking the guide
sequence. PCR products were Sanger sequenced, and the sequence was analyzed using
a free web-based software tool (https://ice.synthego.com, accessed on 24 January 2022).
Clones showing desired mutation were further expanded and STAG2 mutation was re-
confirmed by Sanger sequencing and immunoblotting.

2.3. Hematopoietic Differentiation and Lineage Expansion

For hematopoietic differentiation of iPSC colonies with disease-specific mutation in
STAG2 and GATA1, we used a protocol described previously [15]. Briefly, 70–80 uniform-
sized colonies were plated on Matrigel-coated 6-well plates. The next day, we added
Media A (STEMdiff Hematopoietic kit, StemCell Technologies), and subsequent media
changes were performed following the manufacturer’s instructions. Cells collected on day
12 and filtered using sterile cell strainer 100 µm nylon mesh (ThermoFisher Scientific) were
analyzed for hematopoietic progenitor cells (HSPCs) by flow cytometry as described below.

For the megakaryocytic lineage expansion, the hematopoietic differentiation was
stopped on day 10, the floating cells were collected, and 100,000 cells were resuspended in
megakaryocytic lineage expansion media (StemCell Technologies) and continued in culture
in a 96-well plate. Media was changed as needed, and on day 5, cells were collected for
determination of lineage-specific markers by flow cytometry.

2.4. Immunoblot Analysis

Automated immunoblot analysis was performed using Wes system (ProteinSimple,
San Jose, CA, USA) according to the manufacturer’s instructions using a 12–230 kDa
Separation Module (SM-W001) and the Anti-Rabbit Detection Module (DM-001). iPSCs or
HSPCs were lysed in Minute Total Protein Extraction kit (Invent Biotechnologies, Plymouth,
MN, USA), sonicated, and clarified by centrifugation at 16,000× g for 15 min. Supernatant
was collected and protein equivalent to 50,000 cells was loaded per capillary. GATA1,
STAG2, pSTAT-1, RIG-I, MDA5, and BCL2 antibodies were purchased from Cell Signaling
Technology (Danvers, MA, USA). Normalization to total protein was performed using the
Total Protein Detection Module in Wes (DM-TP010).

2.5. Flow Cytometry

Cells (25,000) resuspended in staining solution (phosphate-buffered saline (PBS) con-
taining 1% FBS) were stained for 15 min in the dark using appropriate antibodies for
the detection of specific cell populations. Brilliant Violet 421-conjugated CD71, FITC-
conjugated CD235ab, Brilliant Violet 785-conjugated CD34, APC-conjugated CD41, PE-
conjugated CD18, and Brilliant Violet 605-conjugated CD45 were used for analysis of ery-
throid, megakaryoid, and myeloid population. The total of percent erythroid population
(CD71+ CD235ab+), myeloid population (CD45+ CD18+), and megakaryoid population
(calculated as the percentage of CD34+ CD41+ cells of total CD41+ cell population) was set
at 100.

For analysis of cells generated by megakaryocytic lineage expansion, cells were
stained with Pacific blue-conjugated CD56, Brilliant Violet-conjugated 421, Brilliant Violet-
conjugated 785, FITC-conjugated CD99, PE-conjugated CD41, and Brilliant Violet 650-
conjugated CD42b. Cells were also stained with 1:1000 Hoechst 33,342 for ploidy determi-
nation. Cells were washed once with staining solution, centrifuged at 500× g for 5 min,
and resuspended in 100 µL of staining solution. Samples were acquired on Novocyte 3000
or Quanteon flow cytometers (Agilent Technologies, Palo Alto, CA, USA). Positive events
were determined on the basis of respective isotype control antibodies for each fluorophore.
Fluorescence compensation was performed on the NovoExpress software using unstained
and single antibody-stained cells.

https://ice.synthego.com
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2.6. Colony-Forming Unit Assay

To determine the multi lineage-potential, we cultured 1000 HSPCs collected on the
10th day after hematopoietic differentiation in MethoCultTM SF H4636 (StemCell Technolo-
gies) for 12 additional days. The three different colonies—CFU-GEMM (colony-forming
unit granulocyte erythroid macrophage megakaryocyte), CFU-GM (colony-forming unit
granulocyte-macrophage), and BFU-E (burst-forming unit erythroid) were identified and
counted using the EVOS M5000 imaging system.

2.7. RNA Sequencing and Data Analysis

Total RNA was isolated using Qiagen RNeasy Plus Micro kit following the manufac-
turer’s protocol. RNA library preparations, sequencing reactions, and initial bioinformatics
analysis were conducted at GENEWIZ, LLC. (South Plainfield, NJ, USA). RNA sequencing
libraries were prepared using the NEBNext Ultra RNA Library Prep Kit for Illumina following
the manufacturer’s instructions (NEB, Ipswich, MA, USA). Briefly, mRNAs were first enriched
with Oligo(dT) beads. Enriched mRNAs were fragmented for 15 min at 94 ◦C. First-strand and
second-strand cDNAs were subsequently synthesized. cDNA fragments were end-repaired
and adenylated at 3′ ends, and universal adapters were ligated to cDNA fragments, followed
by index addition and library enrichment by limited-cycle PCR. The sequencing libraries
were validated on the Agilent TapeStation (Agilent Technologies) and quantified by using a
Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) as well as by quantitative PCR (KAPA
Biosystems, Wilmington, MA, USA). The sequencing libraries were multiplexed and clustered
on 6 lanes of a flowcell. After clustering, the flowcell was loaded on the Illumina HiSeq
instrument according to the manufacturer’s instructions. The samples were sequenced using a
2× 150 Paired End (PE) configuration. Image analysis and base calling were conducted by the
HiSeq Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq
was converted into fastq files and de-multiplexed using Illumina’s bcl2fastq 2.17 software.
One mismatch was allowed for index sequence identification.

RNA-seq reads were aligned to human reference genome hg38 with STAR [19]. After
read alignment, the number of read counts per gene locus was summarized with ‘fea-
tureCounts’ [20], using hg38 gene annotation. Prior to statistical analysis, genes with low
expression were filtered. The sequencing data were normalized using RUVseq [21] to
correct for batch effects and other unwanted variations. Differentially expressed genes were
identified using edgeR [22]. Genes with false discovery rate adjusted p-value (FDR) less
than 0.05 and log2 fold change greater than 0.5 were considered as significantly differen-
tially expressed genes unless otherwise specified. Enriched (FDR less than 0.05) ‘biological
processes’ and ‘pathways’ associated with differentially expressed genes were identified
using and EnrichR [23]. Gene set enrichment analysis was performed using WebGestalt [24].
Heatmaps and gene set enrichment plots were generated using custom R scripts.

2.8. Statistical Analysis

p-values to determine the statistical significance of the differences in percent cell
population between a pair of iPSC lines were calculated by two-tailed Student’s t-test with
unequal variance.

3. Results
3.1. GATA1 and STAG2 Knockout in Trisomic iPSCs by CRISPR/Cas9 Mutagenesis

We previously showed that the introduction of patient-specific GATA1 mutation in
trisomic iPSCs leads to the production of a short form of GATA1 (GATA1s) in HSPCs
and is sufficient to recapitulate the characteristics of TAM [15]. Trisomy 21 and GATA1s
represent the two initial steps in DS-ML leukemogenesis. We used this system for the
introduction of additional co-operating mutation in STAG2 in order to model the DS-ML
leukemogenesis. Because an overwhelming majority of STAG2 mutations observed in
DS-ML were nonsense, frameshift, or splice-site alteration resulting in loss of protein
function [12], we designed a CRISPR guide sequence located within exon 5 with cut site
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at the 68th amino acid (Figure 1A). By CRISPR/Cas9 mutagenesis, we introduced STAG2
mutation in two independent trisomic iPSC lines T21-1 and T21-2, with either wildtype or
mutated GATA1 described previously [15].
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Figure 1. (A) Diagrammatic representation showing GATA1 protein domain organization containing
two zinc finger domains (ZFD) and a N-terminal transcription activation domain (TAD). Arrow indi-
cates the position of the cut site within the CRISPR guide sequence located in exon 1. Diagrammatic
representation showing STAG2 protein domain organization containing STAG domain, stromalin
conservative domain (SCD), and glutamine-rich (GR) domain. Arrow indicates the position of the cut
site within the CRISPR guide sequence located in exon 5. (B) List of GATA1 and/or STAG2 mutant
iPSC lines generated for the study. Isogenic lines are highlighted by the same color. (C) Immunoblots
using the automated Western blotting system Wes in band view showing the GATA1, GATA1s, and
STAG2. Total protein quantitation was performed to ensure equal loading.

Sequence analysis of the genomic DNA region flanking the guide sequence identified
clones with either a 1 or 4 bp monoallelic insertion in iPSC line T21-1 derived from the
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fibroblasts of a female DS individual. The T21 trisomic iPSC line T21-2 derived from a male
DS individual displayed a hemizygous deletion of 14 bp or 1 bp insertion, because STAG2,
like GATA1, is located on the X chromosome and there is a single gene copy in these cells.
All these mutations resulted in reading frameshift and the introduction of a premature
termination codon (Figure 1B). Immunoblot analysis demonstrated the absence of STAG2
protein in CRISPR/Cas9 mutated lines, as well as the exclusive expression of GATA1s in
GATA1 mutant HSPCs (Figure 1C).

3.2. Effect of STAG2 Knockout in the Presence or Absence of GATA1 Mutation on
Erythroid Differentiation

iPSC lines harboring GATA1 and/or STAG2 mutations were haematopoietically dif-
ferentiated to study the multi-lineage hematopoietic differentiation potential. On day 12
after differentiation, HSPCs were collected and used for multi-dimensional flow cytometry
analysis. The percentage of erythroid population characterized by CD71 and CD235 posi-
tivity was reduced from 47.0 ± 6.3% in trisomic lines with wildtype GATA1 to 11.6 ± 3.9%
in trisomic lines with GATA1 mutation (Figure 2A, p < 0.0001; Figure S1), as we and others
have shown previously [15,25].

Unlike GATA1 mutation, STAG2 knockout increased erythroid population by 3.5% and
11.5% compared to iPSC lines with wildtype GATA1 (p = 0.006). This induction of immature
erythroid population by STAG2 knockout was reported previously in CD34+ cells with
loss of STAG2 [26]. Although the erythroid population in the double-mutant HSPCs was
significantly reduced compared to unmutated trisomic HSPCs (p < 0.0001), there was no
significant difference between the erythroid population in GATA1 mutant HSPCs compared
to the double-mutant HSPCs (p = 0.758). While GATA1s caused suppression and STAG2
knockout resulted in a modest expansion of the erythroid population, the double mutant
mirrored the effect of GATA1s.

3.3. Effect of STAG2 Knockout in the Presence or Absence of GATA1 Mutation on
Megakaryoid Differentiation

Megakaryoid population was analyzed as the percentage of immature megakary-
oblasts (CD34+ CD41+) within the total CD41+ population as described previously [15]. A
statistically significant increase in the percentage of immature megakaryoblasts was ob-
served in GATA1s expressing trisomy 21 HSPCs compared to trisomy 21 HSPCs with wild-
type GATA1 (Figure 2B, 5.7% increase, p = 0.004), consistent with our previous study [15].
There was no statistically significant difference in the megakaryoid population in STAG2
knockout HSPCs compared to wildtype HSPCs (p = 0.061), indicating that STAG2 knock-
out did not have significant impact on megakaryoid population. Of note, the percentage
of megakaryoid population was significantly higher in GATA1 STAG2 mutant HSPCs
(61.3 ± 7.1%) compared to wildtype HSPCs (45.3 ± 2.4%, p = 0.002) or GATA1 mutant
(51.1 ± 3.0%, p = 0.014) HSPCs. These data show that the knockout of STAG2 further stimu-
lated the GATA1s-mediated rise in megakaryoid population, indicative of a co-operative role
of GATA1 and STAG2 mutation in promoting the percentage of megakaryoid population.
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3.4. Effect of STAG2 Knockout in the Presence or Absence of GATA1 Mutation on
Myeloid Differentiation

The myeloid population defined by the presence of CD18 and CD45 markers was
greatly increased in GATA1 mutant HSPCs (38.4± 3.8%) compared to wildtype (7.7± 4.7%)
(Figure 2C, p < 0.0001), in agreement with our prior data [15]. In contrast with the effect of
GATA1 mutation, STAG2 knockout reduced myeloid population by 5.7% compared to the
wildtype HSPCs (p = 0.035). The co-occurrence of GATA1 and STAG2 mutation resulted in
a 10.4% (p = 0.046) reduction in myeloid population compared to GATA1 mutant. Taken
together, these data show that GATA1 and STAG2 mutations exhibit contrasting effects on
myeloid population percentage, and differentiation of iPSC lines harboring both mutations
reduced myeloid cell percentage in comparison with GATA1 mutant iPSC lines.
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3.5. Effect of GATA1 and STAG2 Mutation on Megakaryocyte Maturation

Because the STAG2 knockout co-operated with GATA1s for increasing megakary-
oid population, we further evaluated the effect of STAG2 knockout by culturing the
day 10 HSPCs in megakaryocytic lineage-specific expansion media. The percentage of
CD41+CD42b+ cells representing the mature megakaryocytes was significantly higher
in T21-1 (83.7 ± 1.5%) compared to D21-1 (74.9 ± 1.3%) (Figure 3A, p = 0.019), in agree-
ment with the previously reported effects of trisomy 21 on the promotion of erythro-
megakaryocytic lineage expansion [27]. GATA1 mutation in T21-1G reduced the percentage
of megakaryocytes by 48.5% compared to T21-1 (p = 0.002). Similarly, T21-2G showed 57%
decreased megakaryocytic population compared to T21-2 (p = 0.034). These results are
consistent with the known effect of GATA1 on megakaryocytic maturation [28]. STAG2
mutation did not significantly alter the percentage of megakaryocytes in T21-1S and T21-2S
compared to T21-1 and T21-2, respectively. The co-presence of GATA1 and STAG2 mutations
reduced the percentage of CD41+CD42b+ population in T21-2GS (27.1 ± 1.2%) compared
to T21-2 (81.5 ± 10.8%, p = 0.036). Similarly, the percent megakaryocytes in T21-1GS (55.5 ±
2.0%) were significantly lower than T21-1 (83.7± 1.5%, p = 0.007). There were no significant
differences between the percent megakaryocytes in GATA1 STAG2 mutants compared to
GATA1 mutants.

Methocult colony-forming assay was performed to further assess the multi-lineage
colony-forming potential of the GATA1 and STAG2 mutant lines. Lines with GATA1
mutation only formed CFU-GM colonies (Figure S2A), as we described previously [15].
Unlike GATA1 mutation, STAG2 mutation did not inhibit the formation of CFU-GEMM and
BFU-E colonies (Figure S2B). CFU-GM colonies were lower, while CFU-GEMM colonies
were higher in number in T21-2S compared to T21-2, although these differences were not
statistically significant. The number of CFU-GM colonies in T21-1GS and T21-2GS was
significantly reduced compared to T21-1G and T21-2G, respectively (Figure S2C, p = 0.010
and p = 0.002, respectively). These results indicate that the megakaryocyte maturation was
hindered in GATA1 and GATA1 STAG2 mutant cells, while STAG2 knockout alone did not
have a significant effect.

3.6. Effect of STAG2 and GATA1 Mutations on the Immunophenotype of Megakaryocyte Lineage
Expanded Cell Population

Immunophenotype analysis of the megakaryocyte lineage expanded cell population
showed that the megakaryocytic markers CD41, CD42b, and CD61 were lower in GATA1
mutated lines compared to their respective wildtype lines (Figure 3B). STAG2 mutation
alone did not alter the percentage of cells expressing these markers. Co-presence of STAG2
mutation in GATA1s-expressing cells did not significantly alter the percentage of cells
expressing megakaryocytic markers compared to GATA1 mutant lines.

Of note, the myeloid markers CD13 and CD11b are the only two markers expressed
on the majority of DS-ML blasts in comparison with TAM blasts [29,30]. The percentage
of CD13-expressing cells was higher in megakaryoblasts expanded from iPSC lines with
STAG2 knockout with or without GATA1 mutation (Figure 3B). Interestingly, the CD13+
cell population was highest in T21-1GS (28.7%) and T21-2GS (29.7%) compared to any
other line in the respective isogenic family. The percentage of CD11b+ cells was higher in
the megakaryocytes with GATA1 mutation, with or without STAG2 mutation, but lower
in wildtype or STAG2 mutated cells. These data indicate that CD13 expression was trig-
gered by STAG2 knockout, and CD11b expression was promoted by GATA1s. These two
mutations co-operatively enhanced DS-ML markers.
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colony-forming potential of the GATA1 and STAG2 mutant lines. Lines with GATA1 mu-
tation only formed CFU-GM colonies (Figure S2A), as we described previously [15]. Un-
like GATA1 mutation, STAG2 mutation did not inhibit the formation of CFU-GEMM and 
BFU-E colonies (Figure S2B). CFU-GM colonies were lower, while CFU-GEMM colonies 
were higher in number in T21-2S compared to T21-2, although these differences were not 
statistically significant. The number of CFU-GM colonies in T21-1GS and T21-2GS was 
significantly reduced compared to T21-1G and T21-2G, respectively (Figure S2C, p = 0.010 
and p = 0.002, respectively). These results indicate that the megakaryocyte maturation was 
hindered in GATA1 and GATA1 STAG2 mutant cells, while STAG2 knockout alone did 
not have a significant effect. 

3.6. Effect of STAG2 and GATA1 Mutations on the Immunophenotype of Megakaryocyte 
Lineage Expanded Cell Population 

Figure 3. (A) Megakaryoblast population (CD41+CD42b+) in HSPCs cultured in media that promotes
megakaryocytic lineage expansion is plotted. Error bars denote SE of the mean. Asterisk indicates
statistical significance in indicated pair of iPSC lines, * p < 0.05, ** p < 0.01. (B) Immunophenotyping
analysis of day 5 megakaryocytes. nd = not determined. The percentages of marker positive
population are indicated. The darker color represents higher percentage.

CD56, a marker with aberrant expression on TMD as well as DS-ML blasts [31,32], was
expressed only in the megakaryoblasts expanded from iPSC lines with GATA1 mutation,
but not with STAG2 knockout (Figure 3B). Furthermore, there was a statistically significant
increase in CD56-expressing cells in the double-mutant line T21-1GS (43.8%, mean fluorescent
intensity, MFI = 116,160 ± 2842) compared to T21-G1 (12.8%, p = 0.002; MFI = 21,262 ± 9077,
p < 0.0001; Figure S3A,B). The CD56-expressing cell population was also higher in T21-2GS
(19.0%, MFI = 41,910 ± 2924) compared to T21-2G (15.1%, MFI = 33,752 ± 937, p = 0.029).

STAG2 knockdown has been shown to promote stemness [33]. We tested the presence
of stem cell markers on megakaryocytes generated by lineage expansion of HSPCs derived
from iPSC lines with GATA1 and/or STAG2 mutation. CD117-expressing cells were highest
in T21-1GS (p = 0.001) and T21-2GS (p = 0.048) lines when compared to their respective
isogenic family of GATA1 mutant lines (Figure 3B and Figure S3C). Neither single mutant
of GATA1 or STAG2 showed a statistically significant increase in CD117+ cells compared
to wildtype trisomic, suggesting that mutations in these two genes co-operate to increase
the percentage of CD117+ cells representing stem cell-like population. A recent study
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highlighted the significance of CD117 in mediating leukemia progression in fetal liver HSC
model [34].

Thus, GATA1s in collaboration with STAG2 knockout altered the immunophenotype
of the megakaryocytic population in favor of DS-ML and stem cell markers.

3.7. GATA1 Mutation with or without STAG2 Knockout Altered Distinct Signaling Pathways

Transcriptome analysis of HSPCs (day 12 after hematopoietic differentiation) and
megakaryocytes generated from the trisomic iPSCs with wildtype and mutants was con-
ducted. A heatmap generated by unsupervised hierarchical clustering (FDR < 0.05) showed
that the megakaryocyte samples clustered together, away from the HSPC samples, regard-
less of the mutation status (Figure 4A). Principal component analysis using all samples
revealed four distinct groups (Figure 4B). The GATA1 and GATA1 STAG2 mutant HSPCs
were very close to each other and away from wildtype HSPCs. The STAG2 knockout
megakaryocytes resided close to wildtype megakaryocytes, whereas the GATA1 mutant
megakaryocytes with or without STAG2 mutation formed a separate cluster. These data
indicate that the effect of GATA1s is dominant over STAG2 knockout.

In agreement with the immunophenotyping data (Figure 3B), megakaryocytic markers
such as CD41 (ITGA2B), CD42b (GP1BA), and CD61 (ITGB3) were upregulated in wild-
type megakaryocytes compared to HSPCs, but mutants had significantly lower expression
compared to wildtype megakaryocytes (Figure 4C). Consistent with the prominent role of
GATA1 in megakaryocyte and erythrocyte differentiation [28,35], GATA1 mutation had a
strong suppressive effect on the genes belonging to the ‘platelet activation, signaling, and
aggregation’ (Figure S4A) and ‘erythrocyte differentiation’ (Figure S4B) pathways. The
C-MYB transcription factor pathway that negatively impacts megakaryocytic differenti-
ation [35] was activated by GATA1 mutation. STAG2 knockout had minimal impact on
C-MYB transcription factor network, and the expression profile of GATA1 STAG2 double-
mutant HSPCs was similar to GATA1 mutant (Figure S5A). The upregulation of the C-MYB
target, Bcl2, in GATA1 and GATA1 STAG2 mutant megakaryocytes compared to wildtype
from both iPSC lines was confirmed at the protein level (Figure S5B).

Genes differentially expressed in GATA1 or STAG2 single- and double-mutant megakar
yocytes with respect to the wildtype megakaryocytes were listed (Table S1 and Figure S5A).
There was maximal overlap (32.7%) in the genes differentially regulated in GATA1 and
GATA1 STAG2 mutant megakaryocytes (Figure 5B). The top hits in the ‘biological processes’
and ‘pathways’ associated with differentially expressed genes were identified using En-
richr. The interferon α/β signaling pathway was identified as the topmost modulated
pathway (Table S2) and biological processes (Table S3) in downregulated genes differen-
tially expressed in both T21-1G and T21-1GS megakaryocytes. A gene set enrichment
analysis also identified interferon α/β signaling pathway as significantly downregulated
in GATA1 mutant (Figure S6A). A heatmap of the genes belonging to this pathway showed
that the interferon α/β signaling pathway was greatly suppressed in GATA1 mutant but
upregulated in STAG2 knockout megakaryocytes compared to the wildtype (Figure 5C).
The double mutant megakaryocytes also exhibited downregulation of this pathway. The
retinoic acid-inducible gene-I (RIG-I) and the melanoma differentiation-associated protein
5 (MDA5) were identified as nodes that mediate the interferon signaling pathway [36,37]
(Figure S6B). The reduction in RIG-I and MDA5 protein levels and the downregulation of
phosphorylation of the interferon pathway effector STAT1 in megakaryocytes generated
from both iPSC lines (Figure 5D) confirmed the inhibition of interferon pathway in GATA1
mutant megakaryocytes, with or without STAG2 mutation.
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Figure 4. (A) Heatmap showing the unsupervised hierarchical clustering of all samples. (B) Principal
component analysis of the indicated samples. T21-1 HSPCs (T_1,2 in red), T21-1G HSPCs (TG_1,2 in
green), T21-1GS (TGS_1,2 in blue), T21-1 megakaryocytes (T_ME_1,2 in teal), T21-1G megakaryocytes
(TG_ME_1,2 in pink), T21-1S (TS_ME_1,2 in yellow), T21-1GS (TGS_ME_1,2 in magenta). All genes
were used for both analyses. (C) Heatmap showing the expression of megakaryocyte markers.



Cells 2022, 11, 628 12 of 17
Cells 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 5. (A) Graph showing the number of differentially regulated genes (FDR < 0.05, log fold 
change >2 or <−2) in the indicated megakaryocytes with respect to wildtype T21-1. (B) Venn diagram 
of the differentially regulated genes. The shading is proportional to the percentage of shared genes. 
(C) Heat map showing the expression of genes belonging to the interferon α/β signaling pathway. 
(D) Wes immunoblot analysis of key proteins belonging to the interferon α/β signaling pathway in 
megakaryocytes. Total protein was quantitated using total protein analysis kit and used for normal-
ization. 

Genes upregulated in both T21-1G and T21-1GS megakaryocytes identified the toll-
like receptor cascade, which is a pro-inflammatory pathway that initiates myeloid differ-
entiation [38,39], and interleukin signaling, which functions downstream of the toll-like 
receptor cascade (Figure S6C and Table S2). While these pathways were activated by 
GATA1 mutation, they were suppressed by STAG2 knockout (Figure S6D), in agreement 
with previous reports of downregulation of inflammatory genes by STAG2 knockdown 

Figure 5. (A) Graph showing the number of differentially regulated genes (FDR < 0.05, log fold change
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differentially regulated genes. The shading is proportional to the percentage of shared genes. (C) Heat
map showing the expression of genes belonging to the interferon α/β signaling pathway. (D) Wes im-
munoblot analysis of key proteins belonging to the interferon α/β signaling pathway in megakaryocytes.
Total protein was quantitated using total protein analysis kit and used for normalization.

Genes upregulated in both T21-1G and T21-1GS megakaryocytes identified the toll-like
receptor cascade, which is a pro-inflammatory pathway that initiates myeloid differen-
tiation [38,39], and interleukin signaling, which functions downstream of the toll-like
receptor cascade (Figure S6C and Table S2). While these pathways were activated by
GATA1 mutation, they were suppressed by STAG2 knockout (Figure S6D), in agreement
with previous reports of downregulation of inflammatory genes by STAG2 knockdown [40].
The co-presence of STAG2 and GATA1 mutation partially reverted the upregulation of
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these pathways, especially in megakaryocytes. We also observed an enrichment for
myeloid/neutrophil-associated processes in ‘biological processes’ (Table S3) and an up-
regulation of several genes enriched in myeloid cells including ITGAM (CD11b), ANPEP
(CD13), CD14, ITGAX (CD11c), ADGRE1 (F4/80), CD163, TREM2, MAFB, and SPI1 (PU.1)
in GATA1 mutants. The expression of these genes was also partially reverted in GATA1
STAG2 mutant megakaryocytes (Figure S5C).

‘Extracellular matrix organization’ and ‘NCAM1 interaction’ pathways were also
identified as two of the topmost modulated pathways (Table S2 and Figure S3B). NCAM1
encodes CD56, which was not expressed in wildtype or STAG2 knockout megakaryocytes
but expressed at high levels in GATA1 and GATA1 STAG2 double-mutant megakaryocytes,
as shown in the immunophenotype analysis described above (Figure S3A), thus validating
the RNA-Seq data (Figure S3B). The genes belonging to the ‘extracellular matrix orga-
nization’ pathway were also upregulated in the double-mutant megakaryocytes. Taken
together, GATA1 and STAG2 mutations had distinct effects on signaling pathways regulat-
ing megakaryocytic and myeloid differentiation.

4. Discussion

Trisomy 21 and GATA1s are necessary and sufficient for TAM [25]. However, these
two events are not adequate for DS-ML leukemogenesis. Whole-genome and whole-exome
sequencing analyses identified recurrent somatic mutations in DS-ML blasts, which were
not detected in TAM blasts [11,12]. The association of these putative driver mutations
was the basis of the general agreement in the field that acquisition of additional somatic
mutations drives TAM to develop into DS-ML. In this study, using the iPSC model system,
we provided experimental evidence showing that GATA1s and STAG2 knockout in the
trisomy 21 background co-operatively increased the percentage of megakaryoid population
and promoted the expression of DS-ML and stem cell markers.

GATA1 encodes a transcription factor that plays a prominent role in the proliferation
and differentiation of hematopoietic lineage cells including erythrocytes and megakary-
ocytes [28,41]. Consistent with this role, GATA1 mutation had a strong suppressive effect on
the genes belonging to the ‘platelet activation, signaling, and aggregation’. STAG2 protein
functions as a transcriptional coactivator that regulates chromatin accessibility and thereby
transcription of hematopoietic lineage-specification genes EBF1 and PAX5 [26]. STAG2 loss
in murine HSPCs has been shown to increase self-renewal and reduce differentiation. In our
study, STAG2 knockout showed suppression of ‘platelet activation, signaling, and aggre-
gation’ pathway, though not as prominent as GATA1 mutation. Thus, the megakaryocyte
differentiation was severely hampered in the double-mutant HSPCs, resulting in the ob-
served co-operative increase in the percentage of immature megakaryocytic (megakaryoid)
population.

Although immunophenotypic differences between TAM and DS-ML blasts are not promi-
nent, a small number of studies attempting to tease out these differences showed increased
presence of CD13 and CD11b in DS-ML blasts compared to TAM blasts [29,30]. STAG2 knock-
out in the presence of GATA1s and trisomy 21 increased CD13 and CD11b-expressing
population representing a DS-ML-like immunophenotype. Studies are in progress in the
laboratory to evaluate the in vivo engraftment potential of the double-mutant HSPCs in
comparison with single-mutant cells.

A CRISPR/Cas9 screen in disomic background showed that the loss of some of the
recurrently mutated DS-ML genes in a murine model of GATA1s overexpression led to the
aberrant proliferation of lineage cell types [42]. However, mutations in cohesin complex
components (especially STAG2), which constitute a major subtype of DS-ML recurrent
mutations, were not found by this screen. The results suggest that it is likely that the first
genetic event (i.e., trisomy 21) necessary for providing the cellular context for acquisition
of additional somatic mutations was necessary to manifest the synergism between STAG2
mutation and GATA1s. Recently, it was shown that preleukemia to leukemia transition
in fetal liver trisomic HSCs was mediated by mutations in cohesion genes in addition
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to GATA1 [34]. Our results are consistent with this study, suggesting that hematopoietic
differentiation of gene targeted iPSCs is a suitable model for rare leukemia subtypes.

The downregulation of the interferon α/β signaling pathway, observed in mice en-
gineered to produce GATA1s [43], has been considered as one of the potential events
leading to leukemogenesis in DS-ML [44]. Our identification of this pathway in genes
differentially regulated in GATA1 STAG2 double-mutant megakaryocytes supports the
notion that DS-ML-like characteristics are acquired by the co-operation between these two
mutations. GATA1 mutation triggered pathways such as toll-like receptor signaling that
promote myeloid differentiation. GATA1 STAG2 double mutation countered the expression
of genes affecting myeloid differentiation. These data are consistent with the increased pre-
ponderance of myeloid population in GATA1 mutant HSPCs and suppression of myeloid
population in STAG2 knockout HSPCs. Thus, GATA1s-mediated activation of toll-like
receptor signaling likely leads to myeloid commitment, while the STAG2 knockout halts
myeloid differentiation and promotes self-renewal leading to leukemia. In addition, we
identified ‘extracellular matrix organization’ and ‘NCAM1 interactions’ to be upregulated
in the double mutant megakaryocytes. The role of the extracellular matrix in modulating the
bone marrow microenvironment to favor leukemogenesis is well known [45]. Specifically,
NCAM1 interactions have been shown to be involved in the maintenance of leukemic stem
cells [46]. Thus, the upregulation of these pathways in GATA1 STAG2 mutant megakary-
ocytes alongside downregulation of interferon α/β signaling pathway is likely responsible
for the transformation to the DS-ML phenotype. In summary, we identified specific sig-
naling pathways by which co-operative mutations in GATA1 and STAG2 may develop
leukemia in a trisomy background.

In addition to STAG2, representing cohesion complex components, mutations in
genes encoding epigenetic regulators, and signaling molecules [10–12] have also been
associated with DS-ML leukemogenesis. It is interesting to study the impact of each of
these co-occurring mutations in the presence of trisomy 21 and GATA1s on megakaryoid
and myeloid development leading to leukemogenesis. It is likely that although distinct,
each of these co-occurring mutations may alter the GATA1s-binding sites and/or the
epigenomic landscape, resulting in gene expression that favors malignant transformation.
The development of such additional models is currently in progress in our laboratory.

5. Conclusions

GATA1s and STAG2 knockout co-operatively increased the megakaryoid population
and enhanced expression of DS-ML and stem cell markers, closely resembling the DS-ML
immunophenotype. These two mutations induced specific signaling pathways that halted
megakaryocytic differentiation and promoted self-renewal. Thus, using CRISPR/Cas9
gene editing of trisomy 21 iPSCs, we provide experimental evidence for the co-operation
between trisomy 21, GATA1s, and STAG2 knockout.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11040628/s1, Figures S1–S7. Figure S1: Percentage of erythroid, megakaryoid and
myeloid cells in HSPCs generated by hem-atopoietic differentiation of indicated iPSC lines with
or without GATA1 and/or STAG2 mutation; Figure S2: (A) Representative images of CFU-GEMM,
CFU-GM and BFU-E colonies in a Methocult colony-forming assay. (B) The average number of CFU-
GEMM, CFU-GM and BFU-E colonies from 3–5 independent experiments were plotted; Figure S3:
(A) CD56 cell surface expression in megakaryocytes generated from hematopoietic differentiation of
iPSCs. Average data from three independent experiments was plotted. (B) Heatmap showing NCAM1
expression. (C) CD117 cell surface expression in megakaryocytes generated from hematopoietic
differentiation of iPSCs; Figure S4: Heatmaps showing the expression of genes belonging to ‘platelet
activation, signaling and aggregation’ pathway; Figure S5: (A) Heat map showing the expression
of genes belonging to the C-MYB transcription factor network. (B) Wes immunoblot analysis of
key protein belonging to the C-MYB transcription factor network in megakaryocytes. (C) Heatmap
showing the expression of myeloid markers; Figure S6: (A) Gene set enrichment analysis showing
suppressed type I interferon response in GATA1 mutant megakaryocytes. (B) Heat map showing the
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expression of genes be-longing to the RIG-I/MDA5 mediated induction of interferon α/β signaling
pathway. (C) Gene set enrichment analysis showing increased toll-like receptors signaling in GATA1
mutant megakar-yocytes. (D) Heat maps showing the expression of genes belonging to the Toll-like
receptors cascade and interleukin signaling; Figure S7: Heatmap showing the expression of genes
belonging to ‘ex-tracellular matrix organization’ pathway. Table S1. List of differentially regulated
genes in indicated mutant megakaryocytes compared to wildtype. Table S2. List of pathways
identified by Enrichr analysis. Table S3. List of ‘biological processes’ identified by Enrichr analysis.
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