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Measuring multisensory 
integration: from reaction times to 
spike counts
Hans Colonius   1 & Adele Diederich2

A neuron is categorized as “multisensory” if there is a statistically significant difference between the 
response evoked, e.g., by a crossmodal stimulus combination and that evoked by the most effective of 
its components separately. Being responsive to multiple sensory modalities does not guarantee that 
a neuron has actually engaged in integrating its multiple sensory inputs: it could simply respond to 
the stimulus component eliciting the strongest response in a given trial. Crossmodal enhancement is 
commonly expressed as a proportion of the strongest mean unisensory response. This traditional index 
does not take into account any statistical dependency between the sensory channels under crossmodal 
stimulation. We propose an alternative index measuring by how much the multisensory response 
surpasses the level obtainable by optimally combining the unisensory responses, with optimality 
defined as probability summation under maximal negative stochastic dependence. The new index is 
analogous to measuring crossmodal enhancement in reaction time studies by the strength of violation 
of the “race model inequality’, a numerical measure of multisensory integration. Since the new index 
tends to be smaller than the traditional one, neurons previously labeled as “multisensory’ may lose that 
property. The index is easy to compute and it is sensitive to variability in data.

Single neurons in the deep layers of the mammalian superior colliculus (SC) integrate afferent visual, auditory, 
and somatosensory cues and generate efferent motor commands to structures innervating the musculature of, 
e.g., the eyes and hands1, 2. In a recent, multi-authored paper3 multisensory integration has been defined opera-
tionally “… as the neural process by which unisensory signals are combined to produce a multisensory response 
that is significantly different from the responses evoked by the modality-specific component stimuli”3, p. 1719. 
A related paper4 illustrates the standard method for identifying and evaluating the computations underlying 
multisensory integration by the following example. At the level of a single SC neuron, response strength has 
traditionally been measured by the absolute number of impulses (spikes) registered within a fixed time interval 
after stimulus presentation (or, sometimes, by the firing rate within this interval). A neuron is categorized as 
“multisensory” if the average absolute number of spikes to a crossmodal stimulus combination in a given sample 
of recordings is statistically significantly higher compared to the higher average absolute number of spikes to a 
unisensory stimulus. Analogously, in case of inhibition, “multisensory” means that the average absolute number 
of spikes to a crossmodal stimulus combination is significantly lower compared to the lower average absolute 
number of spikes to a unisensory stimulus2, 5. Moreover, if a neuron responds, for example, to visual but not to 
auditory stimulation and if the response to a visual-auditory combination differs (in the above sense) from the 
response to the visual stimulus, it is also considered being “multisensory”.

Once multisensory enhancement or inhibition has been identified, the computational mode can be further 
subdivided into superadditive, additive, or subadditive enhancement by comparing the multisensory response to 
the predicted sum of the unisensory responses4. Specifically, according to the “inverse effectiveness rule” of mul-
tisensory integration2 the operating mode of a multisensory response is super-additive for weak intensity stimuli 
and transforms into an additive or even sub-additive combination for more intense stimuli6.

Up to date, the most widely used descriptive measure of the magnitude of multisensory integration is the 
crossmodal enhancement index (CRE), also termed crossmodal interaction index. It is defined as
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where, at the sample level, CM is the mean number of spikes in response to the crossmodal stimulus and SMmax 
is the mean number of spikes to the most effective modality-specific component stimulus7. Thus, CRE expresses 
crossmodal enhancement as a proportion of the strongest unisensory response.

Some modifications of CRE have been proposed as well8. Prominently, in the “additive model”, term SMmax 
in Equation (1) is replaced by the sum of the unisensory responses9. The additive version has raised some con-
troversy because observing a multisensory response larger than the largest unisensory response but smaller than 
the sum might be misinterpreted as response inhibition4. In summary, the issue of exactly how to measure the 
strength of multisensory interactions has been under debate for some time4, 8, 10.

The starting point of a new measure developed here is the observation that being responsive to multiple sen-
sory modalities does not guarantee that a neuron has actually engaged in integrating its multiple sensory inputs, 
rather than simply responding to the most effective stimulus in a given trial, i.e., to the stimulus eliciting the 
strongest response. As Stein and colleagues4 (ibid, p. 114) have put it, “At the time of the early physiology studies 
in the 1980s, it was considered possible that these neurons only represented a common route by which independent 
inputs from a variety of senses could gain access to the same motor apparatus in generating behavior (e.g., possibly 
employing a “winner-take-all” algorithm).”

In other words, it is possible that the response to a bimodal stimulus is simply determined by the larger of 
the responses to the modality-specific components in any given trial, e.g., by the the component that happens to 
elicit the higher absolute number of spikes in a given trial. Assuming random variation of the responses, such a 
mechanism is known as probability summation. It would not be considered “true” multisensory integration as it 
does not actually combine the activities elicited by the modality-specific stimulus components (“coactivation”). 
Let us assume, for a moment, that such a probability summation mechanism actually generates the multisensory 
responses. Intriguingly, it will be shown below that the expected value (in a sample: the average) of the random 
number of spikes elicited by a crossmodal stimulus combination will be maximal when probability summation 
operates under (maximal) negative statistical dependency, i.e., when large responses to one stimulus component 
tend to co-occur with small responses to the other component, and vice versa. The measure to be presented below 
takes this maximum as a benchmark.

Given that the actual computations performed by a multisensory neuron are still not fully understood11, devel-
oping a new measure should not depend on specific assumptions about the multisensory integration process. 
Note that it is not claimed here that the neuron actually operates under this negative dependence rule. As long 
as probability summation is considered a viable alternative to “true” multisensory integration, however, some 
specification of the stochastic relation between the unisensory responses has to be made. Assuming maximal 
negative dependency is simply the most conservative choice. Whenever there is empirical or theoretical evidence 
in favor of some other form of dependence, e.g. stochastic independence, this could be taken as benchmark as 
well. Because, in general, the new measure is more restrictive than the traditional CRE, many neurons previously 
categorized as “multisensory” risk losing that property. The purpose of the new measure corresponds to that of 
the traditional measure: given a fixed statistical criterion, one may categorize a single neuron as either being “mul-
tisensory” or not. It is of course possible that a neuron actually “truly” integrates the unimodal activations but still 
does not meet the criterion set by maximal negative probability summation. However, as long as one has no direct 
insight into the integration mechanism, an alternative interpretation in terms of probability summation simply 
cannot be ruled out. Moreover, when such a criterion is not met, the value of the new measure can also be taken as 
an indicator of the strength of multisensory integration occurring. It should be noted, however, that a more liberal 
definition of a multisensory neuron is possible, according to which “any neuron that responds to or is influenced 
by stimuli from two or more sensory modalities”12 would be considered “multisensory”.

In order to gain more insight into the new definition, we first consider an established measure of crossmodal 
enhancement in behavioral data, the race model inequality for reaction times. A numerical measure derived from 
that inequality turns out to be completely analogous to the measure proposed here for neural data. Then, after 
introducing the new index, its properties are illustrated on a sample of spike count data (Mark Wallace, personal 
communication, July 18, 2015) and compared to the traditional index. In addition, the special parametric case of 
Poisson-distributed spikes serves to demonstrate that, in contrast to the traditional index, the new one takes the 
variability of the data into account.

Measuring crossmodal enhancement of reaction time
In the redundant signals paradigm, stimuli from two (or more) different modalities are presented simultaneously, 
and participants are instructed to respond to a stimulus of any modality, whichever is detected first. Besides com-
paring relative detection frequencies of unimodal vs. crossmodal stimuli, behavioral response strength is most 
often measured by reaction time (RT), that is, the time it takes a participant to respond (e.g., via button press) to 
a suddenly appearing stimulus, often visual or acoustic. Typically, time to respond in the crossmodal condition 
is shorter than that in either of the unimodal conditions. In analogy to CRE at the neural level, the index of cross-
modal response enhancement for reaction time (CRERT) is traditionally defined as13–16

=
−

×
RT RT

RT
CRE 100,

(2)
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where RTCM is the mean RT to the crossmodal stimulus and RTmin is the faster of the mean RTs to the 
modality-specific stimuli. Thus, CRERT expresses multisensory enhancement as a proportional reduction of the 
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faster unisensory response by the crossmodal response. For concreteness, we rewrite CRERT at the population 
level, for the case of visual-auditory stimulation, with ERTV, ERTA, and ERTVA denoting expected reaction time 
to the visual stimulus, the auditory stimulus, or the visual-auditory stimulus combination, respectively. CRERT 
then becomes

=
−

×
RT RT RT

RT RT
CRE min{E , E } E

min{E , E }
100,

(3)
V A VA

V A
RT

Just as neural measure CRE of Equation (1), index CRERT has descriptive value. For example, CRERT = 10 means 
that response to the visual-auditory stimulus is 10% faster than the faster of the expected response times to uni-
modal visual and auditory stimuli.

However, it has been recognized early on ref. 17 that simply comparing mean RTs to crossmodal and uni-
modal stimuli is not diagnostic with respect to a presumed underlying multisensory integration process, for the 
following reason. Let us assume that in the crossmodal condition, (i) each individual stimulus elicits a process 
performed in parallel to the others and, (ii), the finishing time of the faster process determines the observed RT. 
This is known as the “race model” for RTs. Assuming random variability of the finishing times, the mean RT in 
the crossmodal condition is predicted to be shorter than the faster of the unimodal mean RTs. This is an effect of 
probability summation and no “true” multisensory integration of the unisensory processes takes place. It has also 
been called “statistical facilitation” in this context.

In order to gauge whether observed crossmodal RTs are faster than predicted by statistical facilitation, Jeff 
Miller18, 19 proposed an even stronger test, the race model inequality (RMI) test,

≤ ≤ ≤ + ≤P V A t P V t P A t(min{ , } ) ( ) ( )

or

≤ + ≥ .F t F t F t t t( ) ( ) ( ) for all , 0 (4)VA V A

Here V and A denote visual and auditory processing times, respectively, with FV, FA the corresponding unimodal 
RT distributions, and FVA the distribution of the RTs in the crossmodal (visual-auditory) condition. Violation of 
Equation (4) at any time point t is evidence in favor of some form of multisensory integration taking place above 
statistical facilitation, often termed “coactivation”. Note that stochastic independence between the processing 
times V and A is not required, but the test is valid only if an assumption of “context independence” holds: the 
distributions of V and A in the unimodal conditions must equal their corresponding marginal distributions in the 
crossmodal condition20, 21 (see next subsection).

The race model inequality has become the standard tool for testing whether observed reaction times to cross-
modal stimuli are faster than predicted by a simple statistical facilitation mechanism. Gondan and Minakata22 
report 83 studies from 2011 to 2014 performing the inequality test using a variety of statistical methods. Because, 
unlike CRE, Inequality (4) does not represent a single numerical measure of the amount of crossmodal enhance-
ment, it has become practice to compute the following geometric measure: the area S between FVA and FV + FA 
defined by all t values where the race model inequality is violated:

∫=
∞

S t dt1 ( ) (5)C
0

with

= > +C t F t F t F t{ : ( ) ( ) ( )},VA V A

with indicator function 1C(t) taking the value of 1 if t ∈ C and zero otherwise. The sample estimate of area S is then 
taken as index of the strength of violation of the inequality. Notably, a brief discussion of the race model inequal-
ity in the next section reveals that area S can be interpreted as the expected value of random variable min{V, A} 
(under maximal negative dependence) and estimating S is rather straightforward not requiring any geometric 
argument (for details, see also ref. 23).

Context independence and coupling of random variables.  Sometimes, instead of Equation (4), a 
more restrictive inequality is tested,

≤ + − ×F t F t F t F t F t( ) ( ) ( ) ( ) ( ), (6)VA V A V A

Assuming stochastic independence between V and A. This raises the general question of how the random variables 
in the unimodal conditions, V and A, related. Actually, as already observed by R.D. Luce20, p. 130, there exists 
–a-priori– no stochastic relation between them: the probability measures for V and A, PV and PA, are defined on 
different probability spaces, thus V and A are stochastically unrelated: there is no empirical context (e.g., trial 
number) in which a unimodal event {V ≤ s} co-occurs with a unimodal event {A ≤ t} to define a joint distribution 
for (V, A). Nevertheless, such a joint distribution can always be constructed by the stochastic concept of coupling. 
A coupling of random variables V and A is a pair of random variables ˆ ˆV A( , ) with a bivariate distribution function 
HVA(s, t) such that its marginal distributions are identical to FV and FA respectively, i.e.,

= =ˆ ˆV V A Aand ,d d
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where =d  means “equality-in-distribution”. Thus, existence of a coupling is equivalent to the assumption of “context 
independence” mentioned above. Inequality (6) corresponds to an independent coupling of V and A with

= ×H s t F s F t( , ) ( ) ( ),VA V A

But there exists an infinite number of possible couplings (for a comprehensive treatment of the theory of cou-
pling, see ref. 24).

For the race model Inequality (4), which can be written equivalently as

≤ + ≥F t F t F t t( ) min{ ( ) ( ), 1}, 0,VA V A

It turns out that the right-hand side corresponds to the coupling of V and A generating maximal negative stochas-
tic dependence between the two random variables. Moreover, the area S between the distribution functions FVA 
and min{FV(t) + FA(t), 1} equals the expected value of random variable min{V, A}, i.e.,

= −S V AE min{ , },

Under maximal negative dependence between V and A, with superscript “—” indicating maximal negative 
dependence.

CRE of RT under maximal negative dependence.  A standard scenario for negative dependence of the 
processing times is “limited capacity”: in any given trial, participant may focus attention on one sensory modality 
and, because of limited attentional capacity, processing of the other modality may become slower. A measure 
of crossmodal response enhancement for reaction times, based on maximal negative dependence, can then be 
defined by replacing min{ERTV, ERTA} in Equation (3) by area S, yielding:

=
−

× .−
−

−
V A RT

V A
CRE E min{ , } E

E min{ , }
100

(7)
VA

RT

Because ≤− V A RT RTE min{ , } min{E , E }V A , a direct consequence of applying Jensen’s inequality (see, e.g., ref. 25 
p. 51), it follows from comparing Equations (3) and (7) that always

≤ .−CRE CRERT RT

In other words, the new index of crossmodal response enhancement for RT is more conservative than the 
traditional one. Proof of all of the above statements, being analogous to the one given for spike counts in the next 
section, is omitted here, but see refs 21, 26 and 27.

Measuring crossmodal enhancement in single neurons
Going over from reaction times to spike counts in single neurons involves two major changes. First, instead of 
measuring a continuous random variable (RT), the discrete number of spikes emitted in a given time interval by 
a neuron is the random variable of interest. Second, the minimum reaction time as unimodal reference point is 
replaced by the maximum spike count of the unisensory responses (within a given time interval) of the neuron.

To fix ideas, let NV, NA, and NVA denote the random number of impulses (spikes), following unisensory (visual, 
auditory) and crossmodal (visual-auditory) stimulation, respectively, without assuming any specific parametric 
distribution for these random variables. Inserting their expected values into the traditional CRE of Equation (1) 
yields

=
−

×
N N N

N N
CRE E max{E , E }

max{E , E }
100,

(8)
VA V A

V A
SP

where subscript SP indicates measurement of spikes. At the level of samples, the expected values are replaced by 
arithmetic averages.

Realizations of random variables NV and NA, with distribution functions GV and GA, respectively, are collected 
across experimental trials under different stimulus conditions (modality-specific and crossmodal). Thus, as 
observed above for reaction times, they refer to distinct probability spaces and there is –a-priori– no natural way 
to combine the results from modality-specific visual and auditory trials. In particular, any assumption about 
stochastic (in-)dependence between NV and NA is void. Nevertheless, one can define a stochastic coupling of the 
two random variables. Coupling of NV and NA here amounts to defining a distribution HVA for a bivariate random 
vector ∼ ∼N N( , )V A  in such a way that its marginal distributions are identical to GV and GA.

Let = ≤ ≤
∼ ∼H m n P N m N n( , ) ( , )VA V A , = …m n, 0, 1, , be the distribution for some coupling of NV and NA. As 

a bivariate (discrete) distribution, it obeys the Fréchet inequalities valid for any distribution28:

+ − ≤ ≤G m G n H m n G m G nmax{0, ( ) ( ) 1} ( , ) min{ ( ), ( )}, (9)V A VA V A

For all m, n = 0, 1, …. Setting m = n, we get

= ≤
∼ ∼H m m P N N m( , ) (max{ , } ),VA V A

and from (9),
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≡ + −
≤
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+
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For m = 0, 1, …. In (10) both upper bound H+(m) and lower bound H−(m) are univariate distribution functions 
of random variable ∼ ∼N Nmax{ , }V A . Moreover, it is well known29 that H+ and H− represent distributions with max-
imal positive, respectively negative, dependence between ∼NV  and ∼NA, assuming non-degenerate marginal distri-
butions GV and GA. Going over to the means we obtain the following

Proposition: Under any coupling of the univariate response random variables NV and NA, the following bounds 
hold for expected value Emax{NV, NA},

≤ ≤ −N N N N N Nmax{E , E } Emax{ , } E max{ , }, (11)V A V A V A

where − N NE max{ , }V A  is the expected value under maximal negative dependence between the univariate response 
random variables.

To prove the right-hand bound of the proposition, rewrite Equation (10) as

− ≤ − = >
≤ −

+

−
H m H m m P N N m

H m
1 ( ) 1 ( , ) (max{ , } )

1 ( ),
VA V A

For m = 0, 1, …. Summing over all m yields the result

∑ − = ≤ .
=

∞
−H m m N N N N[1 ( , )] Emax{ , } E max{ , }

m
VA V A V A

0

The left-hand bound, ≤N N N Nmax{E , E } Emax{ , }V A V A  follows again from Jensen’s inequality.

CRE in single neurons under maximal negative dependence.  From Proposition 1 it is clear that the 
sample value of E− max{NV, NA} is the largest mean obtainable from combining the unisensory responses via 
probability summation. Replacing max{ENV, ENA} by E− max{NV, NA} in the traditional CRESP index of equation 
(8) results in the new index

=
−

× .−
−

−
N N N

N N
CRE E E max{ , }

E max{ , }
100

(12)
VA V A

V A
SP

This new index measures the degree by which a neuron’s observed multisensory response surpasses the level 
obtainable by optimally combining the unisensory responses (assuming that the neuron simply reacts to the more 
salient modality in any given crossmodal trial). The empirical test for multisensory enhancement then amounts 
to comparing the observed mean number of impulses to crossmodal stimulation with the estimate for E−max{NV, 
NA}. For empirical data, the expected value ENVA is replaced by the sample mean of multisensory responses and 
E− max{NV, NA} is estimated using the method of antithetic variates as demonstrated below (see also ref. 25).

Two important consequences.  Applying the new index has two important consequences. First, given that the 
values of the new index are obviously always smaller or equal to the traditional index,

≤−CRE CRE ,SP SP

Some neurons previously labeled “multisensory” may lose that property under the new index. This is illus-
trated with an empirical data set following the next section.

Second, from the definition of CRESP it follows that changing the variability of the unisensory responses while 
leaving max{NV, NA} invariant, will not affect the value of the traditional crossmodal index. In contrast, the new 
index, being based on E− max{NV, NA}, can be sensitive to such changes. This is illustrated here for the case of 
Poisson-distributed spikes.

Example: Poisson-distributed spikes.  Let the spike counts NV and NA follow a Poisson distribution, i.e.,

λ
λ

= = − = ….P N m
m

m( ) exp[ ]
!

for 0, 1, 2 (13)i i
i
m

with i = V or i = A. For this distribution, ENi = λi and, for the variance, VarNi = λi as well. Using the equality of E 
and Var, the traditional index can thus be rewritten as

=
−

×
N N N

N N
CRE E max{Var , Var }

max{Var , Var }
100,

(14)
VA V A

A A
SP

We assume, without loss of generality, that VarNA < VarNV. Obviously, increasing VarNA will not change the 
value of CRESP as long as VarNA is not strictly larger than VarNV. In contrast, as will now be shown, E− max{NV, 
NA}, and therefore −CRESP as well, will not remain invariant with VarNA increasing.

Inserting into the expected value yields
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For given values of parameters λV and λA, approximate computation of this expected value is simplified by using 
the fact30 that the (cumulative) distribution for the Poisson is expressed in terms of the incomplete gamma func-
tion. Specifically, for i = V, A:

∑ λ= = Γ + Γ .
=

P N k m m( ) ( 1, )/ ( )
k

m

i i
0

Here, the ratio λΓ + Γm m( 1, )/ ( )i  is the regularized incomplete gamma function with Γ = −m m( ) ( 1)! and 
λΓ m( , )i  the incomplete gamma function

∫Γ λ = .
λ

∞ − −m e t dt( , )
(15)i

t m 1

i

For illustration of the effect, we choose specific, but otherwise arbitrary, parameter values: ENVA = 30 and, for 
VarNV = λV = 22 and VarNV = λV = 26, we varied VarNA = λA between 5 and 22 and 26, respectively. Table 1 lists 
the corresponding values of CRE−

SP as a function of VarNV and VarNA as well as the CRESP for the two different 
values of VarNV. Notably, increasing VarNA = λA corresponds to a strong decrease in CRE−

SP, whereas CRESP 
remains invariant against such increase in variability of NA.

Note that Table 1 features the “inverse effectiveness” rule mentioned earlier. Increasing the λV intensity param-
eter of the Poisson distribution clearly results in decreasing both indexes, CRE− SP and CRESP. Moreover, CRE− SP 
also decreases when the second parameter, λA increases toward the value of λV. This prediction of the Poisson 
model is obviously empirically testable. This theoretical result is consistent with earlier results of R.C. Griffiths 
et al.31 about the correlation of Poisson random variables under maximal negative dependence. They found that, 
for a fixed value of λV, say, maximal negative correlation increases (in absolute value) with λA getting closer to 
the value of λV (except for small non-mononicities due to the discreteness of the variables). This translates into 
E− max{NV, NA} increasing as well, resulting in turn in smaller values of CRE−

SP.

Empirical data: absolute number of spikes
First, we demonstrate the computation of CRE−

SP and CRESP for a single-neuron data set, recordings from a cat 
superior colliculus (SC) neuron, followed by a comparison of both indexes on a larger number of such neurons. 
All data in this section has been obtained from the lab of Mark T. Wallace12 and represent a small sample of 
recordings published previously32. Since the data only serve for illustrating the approach, we limit methodological 
details to those necessary for understanding.

Computing CRE−
SP and CRESP for data from a single neuron.  The data set consists of the total num-

ber of spikes, recorded within a response window, that occurred from visual, auditory, and visual-auditory stim-
ulation of one and the same neuron in N = 20 trials, respectively (details in Table 2). Neurons differ with respect 
to their spontaneous firing rate, i.e., spikes emitted that are not related to the stimulus presented (baseline firing). 
For a valid comparison of different multisensory neurons, spontaneous activity is usually removed. Spike num-
bers in the left-hand columns of Table 2 include spontaneous activity (S.A.), whereas the right-hand columns 
show the same recordings after S.A. was removed.

Note that a-priori there is no fixed correspondence between trial number and the individual values of V and 
A. The antithetic variates method involves pairing the unisensory responses, sorted by increasing order (V) and 
by decreasing order (A), and computing max(V, A) for each pair. Their mean value represents an estimate of E− 
max{NV, NA}, that is, of the maximum expected value from combining the unisensory responses achievable via 

λV λA CRE−
SP CRESP

22 5 36.3

36.4
22 10 35.1

22 16 29.0

22 22 16.6

26 5 15.4

15.4

26 10 15.0

26 16 12.7

26 22 6.3

26 26 −0.2

Table 1.  Poisson-distributed spike counts: Values of CRE−
SP are shown as a function of λA = VarNA and two 

fixed values of λV = VarNV. CRE−
SP decreases with increasing variability of NA, whereas CRESP remains constant.
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negatively dependent probability summation. Note that the trial numbering of the VA values remains arbitrary, 
only the mean will be used in the computation.

Computing the traditional CRESP value by inserting the estimates from Table 2 in Equation (8), i.e., replacing 
the expected values by the means, yields

=
−

×

≈
. − . .

. .
× = . .

N N N
N N

CRE E max{E , E }
max{E , E }

100

19 15 max{8 05, 5 75}
max{8 05, 5 75}

100 137 89[%]

VA V A

V A
SP

For spike numbers containing S.A. (left-hand columns). The corresponding value for the new index is estimated 
by inserting the estimates from Table 2 in Equation (12),

=
−

×

≈
. − .

.
× = . .

−
−

−
N N N

N N
CRE E E max{ , }

E max{ , }
100

19 15 8 85
8 85

100 116 64[%]

VA V A

V A
SP

The corresponding values for responses with S.A. removed (right-hand columns) amount to

≈
. − . .

. .
× = . .CRE 16 083 max{6 163, 5 243}

max{6 163, 5 243}
100 160 96[%]SP

and

trial

Spike numbers Spike numbers w/o S.A.

V A max(V, A) VA V A max(V, A) VA

1 3 8 8 11 1.1 7.5 7.5 18.9

2 4 8 8 22 2.1 7.5 7.5 13.3

3 5 7 7 17 3.1 6.5 6.5 15.9

4 5 7 7 19 3.1 6.5 6.5 14.9

5 5 7 7 18 3.1 6.5 6.5 9.9

6 6 7 7 13 4.1 6.5 6.5 14.9

7 6 6 6 18 4.1 5.5 5.5 7.9

8 7 6 7 11 5.1 5.5 5.5 22.9

9 7 6 7 26 5.1 5.5 5.5 16.9

10 8 6 8 20 6.1 5.5 6.1 24.9

11 8 6 8 28 6.1 5.5 6.1 15.9

12 9 6 9 19 7.1 5.5 7.1 21.9

13 9 5 9 25 7.1 4.5 7.1 11.9

14 10 5 10 15 8.1 4.5 8.1 13.9

15 10 5 10 17 8.1 4.5 8.1 15.9

16 10 4 10 19 8.1 3.5 8.1 15.9

17 11 4 11 19 9.1 3.5 9.1 14.9

18 11 4 11 18 9.1 3.5 9.1 27.9

19 13 4 13 31 11.1 3.5 11.1 13.9

20 14 4 14 17 12.1 3.5 12.1 7.9

mean 8.05 5.75 8.85 19.15 6.16 5.2 7.5 16.1

standard dev. 3.0 1.3 2.2 5.2 3.0 1.3 1.8 5.2

Table 2.  Sample of recordings from a single cat SC: Columns 2 and 6 (V) are arranged by increasing order, 3 
and 7 (A) by decreasing order. S.A. stands for “spontaneous activity” (4.26 spikes/s in this sample). Standard 
PSTHs (peristimulus time histograms) were computed. Spontaneous activity was computed from the 500 ms 
preceding each stimulus onset (allowing at least 1500 ms between each trial). A threshold of mean S.A. rate per 
10 ms bin plus 2 standard deviations was computed, only used to determine onset and offset. Response onset 
was defined when the first spike occurred within the bin that rises above this threshold and remained above 
for at least 3 bins. Offset was counted as the last spike in the bin just before the response fell back below this 
threshold and remained below for 3 bins. The response window (duration) is the time between onset and offset. 
Total number of spikes (left columns in the table) include all spikes within the response window, which will 
inevitably include some S.A. The right columns include responses with S.A. removed. The expected number 
of S.A. spikes within the given window (i.e., S.A. times window size in seconds) was removed. This is never an 
integer and can sometimes cause negative values on some trials. This number represents “change from baseline 
firing” (information obtained from M. T. Wallace, personal communication, July 18, 2015).
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≈
. − .

.
× = . .−CRE 16 083 7 484

7 484
100 114 90[%]SP

The results are quite clearcut. For this neuron, replacing CRESP by CRE−
SP corresponds to a drop from about 

161% to about 115% with spontaneous activity removed, and from about 138% to about 171% when spontaneous 
activity was retained. Thus, applying the new index may well lead to dropping the “multisensory” label for this 
neuron depending, of course, on one’s criterion for attaching that label.

Computing CRE−
SP and CRESP for data from 20 neurons.  The total data set comprised 84 recording 

blocks from 20 SC cells (15 stimulus presentations in each block), where the number of spikes to visual-auditory 
stimulation was found significantly larger than the maximum of responses to unisensory stimulation, according 
to categorization from the Wallace lab. In 57 of these blocks, there was no response at all from one of the unisen-
sory modalities (either visual or auditory) but a significant response increase for bimodal stimulation. For those 
cases, although considered as manifestation of multisensory integration, we have CRE−

SP = CRESP by definition, 
so the comparison is void. The data from the remaining 27 recording blocks were available for comparing both 
indexes.

The points of Fig. 1 depict pairs of sample estimates of (CRESP, CRE−
SP), with spontaneous activity retained 

in the two left panels and removed in the two right panels (for details of the recording procedure see caption of 
Table 2). In order to obtain confidence interval estimates for the difference between CRE−

SP and CRESP, each of 
the 27 blocks underwent a bootstrap procedure, i.e., 10,000 random samples of N = 15 were taken with replace-
ment from the sets of spike frequencies for visual (V), auditory (A), and bimodal (VA) stimulation. For each 
sample, both CRE−

SP and CRESP were computed yielding a 95% confidence interval for their difference in each 
of the 27 recording blocks. There were 4 out of 27 cases with no significant difference between both measures 
(left panels, filled (red) circles), after spontaneous activity was removed, only 1 out of 19 cases was not significant 

0 150 300 450 600 750
0

100

200

300

400

CRE
SP

C
R
E
−
−

S
P

−50 100 250 400 550 700
−50

50

150

250

350

CRE
SP

C
R
E
−
−

S
P

0 50 100 150
0

50

100

150

CRE
SP

C
R
E
−
−

S
P

−50 0 50 100
−50

0

50

100

CRE
SP

C
R
E
−
−

S
P

Figure 1.  Pairs of sample estimates of (CRESP, CRE−
SP) based on 27 recording blocks (15 stimulus presentations 

in each block). In the left-hand panels spontaneous activity was included, in the right-hand panels it has been 
removed (see caption of Table 2). The lower panels display details of the upper ones, for better visibility. Filled 
circles (red) indicate no significant difference between CRESP and CRE−

SP, based on bootstrap confidence 
intervals, too small to be shown (N = 10,000, 1−α = 0.95). Thus, each open circle refers to a recording where 
the label “multisensory” may be lost when applying the new measure. There were 4 out of 27 cases with no 
significant difference between both measures (left panels), after spontaneous activity was removed, only 1 out 
of 19 cases was not significant (right panels). In the latter, the number of possible comparisons decreased to 19 
because in the other blocks there was no activity left for one of the unisensory conditions.
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(right panels). In the latter, the number of possible comparisons decreased to 19 because in the other blocks there 
was no activity left for one of the unisensory conditions.

In summary, there is a significant drop going from CRESP to CRE−
SP for most recording blocks. Whether or 

not the label “multisensory” is actually lost, however, will depend on the criteria of the statistical test comparing 
the sample means.

Discussion
The issue of how to quantify crossmodal response enhancement due to the occurrence of multisensory inte-
gration has been under discussion in both behavioral and neurophysiological research. The most widely used 
index up to now expresses crossmodal enhancement as a proportion of the strongest unisensory response. It has 
descriptive value but lacks a theoretical basis. Such a foundation is essential because, as widely acknowledged in 
both reaction time and neural studies, being responsive to multiple sensory modalities does not guarantee that 
the response has been generated by actually integrating the multiple sensory inputs, rather than simply respond-
ing to the most salient stimulus modality. Here we suggest a new index that measures by how much the multi-
sensory response surpasses the level obtainable by optimally combining the unisensory responses. Optimality is 
defined by referring to a probability summation mechanism that combines the unisensory responses with maxi-
mal negative dependence. Importantly, no claim is made that the system actually operates under this mechanism, 
it only serves as well-defined benchmark against which to gauge the crossmodal response.

In order to prevent misunderstandings, it may be useful to expand a bit on the statistical context of the new 
index. Operationally, classifying a neuron as “multisensory” refers to the outcome of a statistical test: the number 
of spikes of the neuron is significantly higher (or lower, in case of inhibition) under crossmodal stimulation than 
under unimodal stimulation (see, e.g., review paper bei Stein and colleagues33, p. 521 “Whether considering neu-
ral signals or behavioural performance, this [multisensory integration] is defined operationally as a statistically 
significant difference between the response evoked by a cross-modal combination of stimuli and that evoked by 
the most effective of its components individually”). This is routine procedure for the traditional index and applies 
to the new index as well. The null hypothesis is that a given neuron is not multisensory; the alternative being that 
the neuron is actually of the multisensory type. For both indexes, the criterion for classifying a neuron as “mul-
tisensory” is a statistically significant deviation of the observed number of spikes under crossmodal stimulation 
from that null hypothesis. What our measure–as well as the traditional one–yields is a (numerical) definition 
of the null hypothesis. The new measure is more conservative than the traditional one in the following sense: 
because the numerical value of the null hypothesis corresponding to the new measure is located above (to the 
right of) the one for the traditional measure, the p-value, obtained for a given sample and keeping everything else 
fixed, tends to be larger than the p-value for the traditional measure (note that this description is at the level of the 
expected number of spikes, not the CRE indexes).

It has been demonstrated here that the new index can be defined in a unified manner for studying both reac-
tion times and responses by single neurons (spike frequencies). Whereas the index is closely related to the race 
model inequality, a widely used testing procedure for multisensory integration in reaction times, its application to 
neural responses has new and potentially important consequences: neurons previously labeled as “multisensory” 
may lose that property since the new index tends to yield smaller values for the amount of crossmodal enhance-
ment. This was exemplified here with a data set collected from single SC neurons. The extent to which this holds 
more generally can only be determined by a large-scale investigation of a multitude of neurons from empirical 
studies. Obviously, at the level of a (sub-)population of neurons, such a relabeling may lead to a reassessment of 
the distribution of multisensory neurons and different types of unisensory neurons for that region.

In this context, despite the complete mathematical analogy between applying the race model inequality and 
using the new index, it is worth pointing out a subtle difference concerning possible consequences. In case the 
race model is not violated, the typical conclusion is that “true” multisensory integration (often termed “coacti-
vation”) may still have occurred, but not a level that could not be explained just as well by a simple probability 
summation mechanism. In the neuron case, when the observed crossmodal spike number is not statistically 
higher than predicted by new index, the label “multisensory” will be removed if it was present under the tradi-
tional index. It would be good practice to point out that this relabeling is based on not being able to reject the null 
hypothesis based on probability summation with maximally negative dependency. Moreover, studies probing the 
entire scope of the behavior of multisensory neurons, e.g. by looking at intrinsic differences in the dynamic range 
of these neurons (see ref. 8), may come to different conclusion when using the new index.

We showed that the new index, CRE−
SP, is easy to compute and does not require any specific assumption about 

the spike distribution. Given that “single neuron responses in both unisensory and multisensory brain regions 
are often perplexing, temporally complex and can be counterintuitive to expectations”34, probability summation 
cannot be ruled out as processing mode of a single neuron, and negative dependency would occur, e.g., under a 
neuron’s fixed limited capacity to process two modalities at the same time. The special case of Poisson-distributed 
spikes demonstrated that the new index is sensitive to variability in the data, in contrast to the traditional index 
which by definition only depends on the means of the uni- and multisensory response distributions. This is 
important because it shows that a probability mechanism can even mimic the “inverse effectiveness” rule often 
seen as a marker for multisensory integration.

Future research should address a number of issues. For example, it should be straightforward to generalize 
the new index to also capture crossmodal inhibition. Another issue is whether the logic of the new index can be 
extended to more than two modalities. Such a generalization is not obvious given that maximal negative depend-
ence among three random variables is strongly limited. On a broader level, it would be interesting to explore 
whether the new index, or at least its logic, could be utilized beyond the level of single neuron responses, possibly 
including data from functional magnetic resonance studies35. As the authors of a recent review36 put it, “…, an 
enhanced BOLD response for multisensory relative to unisensory stimulation can be due to “true” multisensory 
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neurons integrating stimulation from two or more sensory modalities, but it can just as well be explained by 
driving two unisensory sub-populations instead of one. If the latter scenario would be true, one might wrongly 
infer multisensory integration at the neuronal level.” Given the recent results by Miller et al.11, showing “… that 
the integration of temporally displaced sensory responses is also highly dependent on the relative efficacies with 
which they drive their common target neuron”, one may more generally question the usefulness of any static 
measure of crossmodal enhancement, and this may lead to add a temporal dimension to any quantitative index 
of crossmodal enhancement.

Last but not least, the methodological approach suggested here may also enable one to derive more spe-
cific information about the integration mechanism of multisensory neurons. A common categorization of such 
mechanisms is into “super-additive”, “additive”, and “sub-additive”, depending on how the unisensory activations 
combine to produce the multisensory response5, 6. The new index, CRE−

SP, measures how far the observed mul-
tisensory response is above a particular sub-additive combination rule, i.e., the maximum rule under negative 
dependency. Interestingly, from37 (and more recent papers in actuarial statistics), it is possible to compute the 
expected value of the maximally achievable sum of two random variables under negative dependency. The result-
ing value of a (modified) CRE−

SP for the sum can then be used to gauge, e.g., how far an observed super-additive 
response is away from a simple additive (linear) combination of the unisensory responses.
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